
Appears in the journal of IEEE Design and Test, 2015

Mitigating the Memory Bottleneck with
Approximate Load Value Prediction

Amir Yazdanbakhsh, Gennady Pekhimenko∗, Bradley Thwaites
Hadi Esmaeilzadeh, Onur Mutlu∗, and Todd C. Mowry∗

Georgia Institute of Technology ∗Carnegie Mellon University

Abstract— This paper aims to tackle two fundamental memory
bottlenecks: limited off-chip bandwidth and long access latency.
Our approach exploits the inherent error resilience of a wide
range of applications through an approximation technique, called
Rollback-Free Value Prediction (RFVP). When certain safe-to-
approximate load operations miss in the cache, RFVP predicts
the requested values. However, RFVP does not check for or
recover from load value mispredictions, hence avoiding the high
cost of pipeline flushes and re-executions. RFVP mitigates long
memory access latencies by enabling the execution to continue
without stalling for these accesses. To mitigate the limited off-chip
bandwidth, RFVP drops a fraction of load requests which miss
in the cache after predicting their values. The drop rate then
becomes a knob to control the tradeoff between performance/en-
ergy efficiency and output quality.

Our extensive evaluations show that RFVP, when used in
GPUs, yields significant performance improvements and energy
reductions for a wide range of quality loss levels.

Index Terms—Memory Bandwidth, Load Value Approxima-
tion, Approximate Computing, GPUs, Value Prediction, Memory
Latency.

I. INTRODUCTION

THE disparity between the speed of processors and off-
chip memory is one of the main challenges in micro-

processor design. Loads that miss in the last level cache can
take hundreds of cycles to deliver data. This long latency
causes frequent long stalls in the processor (memory wall).
Modern GPUs exploit large-scale data parallelism to hide
main memory latency. However, this solution suffers from
a fundamental bottleneck: limited off-chip communication
bandwidth to supply data to processing units (bandwidth wall).
Fortunately, there is an opportunity to leverage the inherent
error resiliency of many emerging applications to tackle the
memory latency and bandwidth problems. Our paper exploits
this opportunity.

Large classes of emerging applications such as data ana-
lytics, machine learning, cyber-physical systems, augmented
reality, and vision can tolerate error in large parts of their
execution. Hence the growing interest in developing general-
purpose approximation techniques. These techniques accept
error in computation and trade Quality of Result for gains in
performance, energy, storage capacity, and hardware cost [1],
[2], [3], [4].1 However, there is a lack of approximation
techniques that address the key memory system performance
bottlenecks of long access latency and limited off-chip band-
width.
1In the interest of space, we provide one representative citation in this paper.

To mitigate these memory subsystem bottlenecks, this paper
introduces a new approximation technique called Rollback-
Free Value Prediction (RFVP). The key idea behind RFVP
is to predict the value of the safe-to-approximate loads when
they miss in the cache, without checking for mispredictions or
recovering from them, thus avoiding the high cost of pipeline
flushes and re-executions. RFVP mitigates the memory wall
by enabling the computation to continue without stalling for
long-latency memory accesses of safe-to-approximate loads.
To tackle the bandwidth wall, RFVP drops a certain fraction
of the cache misses after predicting their values. Dropping
these requests reduces the memory bandwidth demand as well
as memory and cache contention. The drop rate becomes a
knob to control the tradeoff between performance-energy and
quality.

In this work, we devise new concepts and mechanisms that
maximize RFVP’s opportunities for performance and energy
gains with acceptable quality loss.

II. ARCHITECTURE DESIGN FOR RFVP
A. Rollback-Free Value Prediction
Motivation. GPU architectures exploit large-scale data-level
parallelism through many-thread SIMD execution to mitigate
the penalties of long memory access latency. Concurrent SIMD
threads issue many simultaneous memory accesses that require
high off-chip bandwidth–one of the main bottlenecks for
modern GPUs [5]. Figure 1 illustrates the effects of memory
bandwidth on application performance by varying the available
off-chip bandwidth in the Fermi architecture. These results
support our expectation that alleviating the bandwidth bot-
tleneck can result in significant performance benefits. RFVP
aims to lower the memory bandwidth pressure by dropping
a fraction of the predicted safe-to-approximate loads, trading
output quality slightly for large gains in performance and
energy efficiency.
Overview. As explained earlier, the key idea of rollback-free
value prediction (RFVP) is to predict the values of the safe-to-
approximate loads when they miss in the cache with no checks
or recovery from misspeculations. RFVP not only avoids the
high cost of checks and rollbacks but also drops a fraction
of the cache misses. Dropping these misses enables RFVP
to mitigate the bottleneck of limited off-chip bandwidth, and
does not affect output quality when the value prediction is
correct. All other requests are serviced normally, allowing
the processing core to benefit from the spatial and temporal
locality in future accesses.

2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Sp
ee
du
p

bac
kpr
op

fas
twa
lsh

gau
ssia

n

hea
rtw
all

ma
trix
mu
l

par
ticl
efil
ter

s.re
duc

e

sim
ilar
itys

cor
e

s.sr
ad2

stri
ngm

atc
h

geo
me
an

13.7 2.5 13.5 2.6 4.0 2.6
0.5 x 2.0 x 4.0 x 8.0 x Perfect MemoryBaseline Bandwidth

Fig. 1: Performance improvement with different amounts of
DRAM bandwidth and perfect memory (last bar). The baseline
bandwidth is 177.4 GB/sec (based on the Nvidia GTX 480
chipset with Fermi architecture). The legend (N×) indicates
a configuration with N times the memory bandwidth of the
baseline. Perfect memory is when all the memory accesses
are handled as L1 cache hits.

Drop rate is a knob to control the tradeoff between per-
formance/energy gains and quality loss. A higher drop rate
causes the core to use more predicted approximate values and
avoid accessing main memory. We expose the drop rate as an
architectural knob to the software. The compiler or the runtime
system can use this knob to control the performance/energy
and quality tradeoff. Furthermore, RFVP enables the core to
continue without stalling for long-latency memory accesses
that service the predicted load misses. Consequently, these
cache-missing loads are removed from the critical path of the
program execution.

B. Safe Approximation with RFVP

Not all load instructions can be safely approximated. For
example, loads that affect critical data segments, array indices,
pointer addresses, or control flow conditionals are usually
not safe to approximate. RFVP is not used to predict the
value of such loads. As prior work showed [6], safety is a
semantic property of the program, and language construction
with programmer annotations is necessary to identify safely-
approximable instructions. Similarly, RFVP requires program-
mer annotations to determine the set of candidate load instruc-
tions for safe approximation. Therefore, any architecture that
leverages RFVP needs to provide ISA extensions that enable
the compiler to mark the safe-to-approximate loads.

C. Instruction Set Architecture to Support RFVP

We extend the ISA with two new features: (1) an approxi-
mate load instruction, and (2) a new instruction for setting the
drop rate.

The extended ISA has two versions of the load instructions.
A bit in the opcode is set when a load is approximate,
permitting the microarchitecture to use RFVP. Otherwise, the
load is precise and must be executed normally. Executing an
approximate load does not always invoke the predictor. RFVP
is triggered only when the load misses in the cache. For ISAs
without explicit load instructions, the compiler marks any safe-
to-approximate instruction that can generate a load micro-op.
RFVP is triggered only when the load micro-op misses in the
cache.

The drop rate is a knob that is exposed to the compiler
to control the quality tradeoffs. We provide an instruction that
sets the value of a special register to the desired drop rate. This
rate is usually set once during application execution (not for
each load). More precisely, the drop rate is the percentage of
approximate cache misses that do not initiate memory access
requests, and instead trigger RFVP. When the request is not
dropped, it is considered a normal cache miss, and its value
is fetched from memory.

In our experiments, the drop rate is statistically identified
by our compilation workflow and remains constant during
program execution.

D. Integrating RFVP into the Microarchitecture

The value predictor supplies the data to the processing core
when triggered by a safe-to-approximate load. The core then
uses the data as if it were supplied by the cache. The core
commits the load instruction without any checks or pipeline
stalls caused by the original miss. In the microarchitecture,
we use a simple Linear Feedback Shift Register (LFSR) to
determine when to drop the request based on the specified
drop rate.

In modern GPUs, each Streaming Multiprocessor (SM)
contains several Stream Processors (SP) and has its own
dedicated L1. We augment each SM with an RFVP predictor
that is triggered by its L1 data cache misses. Integrating
the RFVP predictor with SMs requires special consideration
because each GPU SIMD load instruction accesses multiple
data elements for multiple concurrent threads. In the case of
an approximate load miss, if the predictor drops the request,
it predicts the entire cache line. The predictor supplies the
requested words back to the SM, and also inserts the predicted
line into the L1 cache. If RFVP did not insert the entire cache
line, the subsequent safe-to-approximate loads to the same
cache line would produce another miss. Since RFVP never
predicts nor drops all missing safe-to-approximate loads, the
line would need to be requested from memory in the next
access. Due to the temporal locality of the cache line accesses,
RFVP would not be able to effectively reduce bandwidth
consumption. Hence, our decision is to predict and insert the
entire cache line.

Since predicted lines may be written to memory, we require
that any data accessed by a precise load must not share a cache
line with data accessed by approximate loads. The compiler is
responsible for allocating objects in memory such that precise
and approximate data never share a cache line. We accomplish
this by always requiring that the compiler allocate objects in
memory at cache line granularity. Approximate data always
begins at a cache line boundary, and is padded to end on a
cache line boundary (similar to [6]). Thus, we can ensure that
any data value prediction does not contaminate precise load
operations.

III. LANGUAGE AND SOFTWARE SUPPORT FOR RFVP

Our design principle for RFVP is to maximize the oppor-
tunities for performance and energy efficiency gains, while
limiting the adverse effects of approximation on output quality.

3

A. Providing Safety Guarantees

Safety is a semantic property of a program [6]. Therefore,
only the programmer can reliably identify which instructions
are safe to approximate. For example, EnerJ [6] provides
language constructs and compiler support for annotating safe-
to-approximate operations in Java. We rely on a similar tech-
nique. The rule of thumb is that it is usually not safe to approx-
imate array indices, pointers, and control flow conditionals.
However, even after excluding these cases to ensure safety,
as our results confirm (shown later), RFVP still provides
significant performance and energy gains because there are
enough performance-critical loads that are safe to approximate.

B. Targeting Performance-Critical Loads

After safe-to-approximate loads are identified, the next step
is a profiling pass that identifies the subset of these loads that
cause the largest fraction of cache misses. As prior work has
shown [7], and our experiments corroborate, only a few load
instructions cause most of the cache misses. In all of our
GPU applications except similarityscore, at most six loads
cause more than 80% of the misses. We refer to these loads
as the performance-critical loads. Clearly, focusing rollback-
free value prediction on these loads provides the opportunity
to eliminate most of the cache misses. Furthermore, this focus
reduces the predictor size and consequently its overheads.
Therefore, this step provides the set of the most performance-
critical and safe-to-approximate loads as candidates for ap-
proximation.

C. Avoiding Significant Quality Degradations

The first two steps provide a small list of safe and
performance-critical loads. However, approximating all these
loads may lead to significant quality degradation. Therefore, in
the last step, we perform a quality profiling pass that identifies
the approximable loads that significantly degrade quality.
This final step examines the output quality degradation by
individually approximating the safe loads. A load is removed
from the approximable list if approximating it individually
leads to quality degradation higher than a programmer-defined
threshold. Furthermore, any approximation technique may
prolong convergence for iterative algorithms. We guard against
this case by removing, through profiling, safe-to-approximate
load instructions, which increase run time when approximated.

Finally, the compiler uses a simple heuristic algorithm to
statically determine the highest drop rate given a statistical
quality requirement and a set of representative inputs. Of the
set of representative inputs, half are used for profiling and the
rest are used for performance evaluation.

Altogether, these three steps provide a compilation work-
flow that focus RFVP on the safe-to-approximate loads with
the highest potential–both in terms of performance and effect
on the output quality.

IV. VALUE PREDICTOR DESIGN FOR RFVP

One of the main design challenges for effective rollback-
free value prediction is devising a low-overhead fast-learning

value predictor. The predictor needs to quickly adapt to the
rapidly-changing value patterns in every approximate load
instruction. We use the two-delta stride predictor [8] due to its
low complexity and reasonable accuracy as the base for multi-
value prediction.2 Empirically, the two-delta predictor provides
a good tradeoff between accuracy and complexity. We choose
this scheme because it requires only one addition to perform
the prediction and only a few additions and subtractions for
training. It also requires lower storage overhead than more
accurate context-sensitive alternatives. However, this predictor
cannot be readily used for multi-value prediction (for predict-
ing the entire cache line), which is required for GPUs, as
explained earlier.

A. Value Predictor Design for GPUs

Here, we elaborate on the RFVP predictor design for multi-
value, (i.e., fill the entire cache line) prediction in GPUs, where
SIMD loads read multiple words.
GPU predictor structure. The fundamental challenge in
designing the GPU predictor is that a single data request is a
SIMD load that must produce values for multiple concurrent
threads. A naive approach to performing value prediction in
GPUs is to replicate the single value predictor for each con-
current thread. For example, in a typical modern GPU, there
may be as many as 1536 threads in flight during execution.
Therefore, the naive predictor would require 1536 separate
two-delta predictors, which is impractical.

In many GPU applications, the adjacent threads within
a warp process data elements with some degree of value
similarity, e.g. pixels of an image. Previous work [9] shows the
value similarity between the neighboring locations in memory
for GPGPU workloads. Furthermore, GPU bandwidth com-
pression techniques (e.g., [10]) exploit this value similarity in
GPGPU workloads to compress data with simple compression
algorithms [11]. Our evaluation also shows significant value
similarity between adjacent threads in the applications we
study.

In our multi-value predictor design for GPUs, we leverage
(1) the existing value similarity in the adjacent threads and
(2) the fact that predictions are only approximations and the
application can tolerate small prediction errors. The GPU
predictor is indexed by the hash of the WarpID plus the load
PC. This combination ensures the unique identification of the
loads of each warp.

We design a predictor3 that consists of only two specialized
two-delta predictors. In order to perform the entire cache
line4 prediction, we introduce special prediction and update
mechanisms for RFVP, which we explain later in this section.
Additionally, to reduce the conflicts between loads from dif-
ferent active warps, we make the GPU predictor set associative
with LRU replacement policy. As Figure 2 shows, for each row
in the predictor, we keep the corresponding load’s {WarpID,

2Each row in a two-delta predictor consists of three values: (1) the last value,
(2) stride1, and (3) stride2. Please refer to [8] for the details of how the base
two-delta predictor works.

3For measurements, we use a predictor that has 192 entries, is 4-way set
associative, and consists of two two-delta predictors.

4In our GPU configuration (Table I), each cache line has 32 4-byte words.

4

PC} as the row tag. The load values will only be predicted if
their {WarpID, PC} matches the row tag.

We explain the prediction and update mechanisms for our
GPU configuration (Table I) in which there are 32 threads per
warp. However, RFVP predictor can be adapted for other GPU
configurations.

TABLE I: GPU microarchitectural parameters.
Processor: 700 MHz, SMs: 16, Warp Size: 32, SIMD Width: 8,
Threads per Core: 1024, L1 Data Cache: 16KB, 128B line, 4-way,
LRU; Shared Memory: 48KB, 32 banks; L2 Unified Cache: 768KB,
128B line, 8-way, LRU; Memory: GDDR5, 924 MHz, FR-FCFS, 4
memory channels, Bandwidth: 177.4 GB/sec

RFVP prediction mechanism. When there is a match be-
tween {WarpID, PC} of a SIMD load and one of the row tags
of the RFVP predictor, the predictor generates two predictions:
one for ThreadID=0–15 and one for ThreadID=16–31.
RFVP generates the entire cache line prediction by replicating
the two predicted values for the corresponding threads. As
Figure 2 shows, the Two-Delta (Th0–Th15) structure gener-
ates one prediction for threads with ThreadID=0–15, and the
Two-Delta (Th16-Th31) for threads with ThreadID=16–31.
Note that each of the two two-delta predictors works similarly
as the baseline two-delta predictor [8]. Using this approach,
RFVP is able to predict the entire cache line for each SIMD
load access.5

In the GPU execution model, there might be situations in
which an issued warp has less than 32 active threads. Having
less than 32 active threads causes “gaps” in the predicted cache
line. However, the data in these gaps might be later used by
other warps. The simple approach is not to perform value
prediction for these gaps and fill them with random data. Our
evaluation shows that this approach leads to significant output
quality degradation. To avoid this quality degradation, RFVP
fills the gaps with the predicted approximate values. We add
a column to each two-delta predictor that tracks the last value
of word0 and word16 in the cache line being accessed by
the approximate load. When predicting the cache line, all the
words that are accessed by the active threads are filled by the
pair of two-delta predictors. The last value column of thread
group Th0–Th15 (LVW0) is used to fill the gaps in W0 to
W15. Similarly, the last value column of thread group Th16–
Th31 (LVW16) is used to fill the gaps in W16 to W31. This
proposed mechanism in RFVP guarantees that all the threads
get the predicted approximate values (instead of random data)
and avoids the significant output quality degradation.

RFVP update mechanism. When a safe-to-approximate
load misses in the cache but is not dropped, the predictor
updates the two-delta predictor upon receiving the data from
lower level memory. The fetched data from lower level mem-
ory is precise and we refer to its value as the current value. The
Two-Delta (Th0-Th15) structure is updated with the current
value of the active thread of the thread group ThreadID=0–15

5Due to the high cost of the floating-point operations, our RFVP predictor
falls back to a simple last value predictor for FP values. In other words,
the predictor only passes the last value entry of each of the two two-delta
predictors as the predicted data. We use the FP bit in the RFVP predictor to
identify the floating-point loads.

LVW0 Two-Delta (Th0-Th15) LVW16 V FP Tag LRU

Hash

Two-Delta (Th16-Th31)

{WarpID,PC}

ThreadID_Bit[5]
Active[ThreadID]

V: Valid Bit (1 bit), FP: Floating Point Entry (1 bit), Tag:{WarpID, PC} (38 bits), LRU: LRU Bits (6 bits)

W31W0

00 01 10 11
0
1

Set0

SetN

Prediction for Th0-Th15 Prediction for Th16-Th31

ThreadID_Bit[5]
Active[ThreadID]

00 01 10 11
0
1

Fig. 2: Structure of the multi-value predictor for RFVP in
GPUs. The GPU predictor consists of two two-delta and two
last value predictors. The GPU predictor is also set-associative
to reduce the conflicts between loads from different active
warps. It produces predictions for full cache lines.

with the lowest threadID. Similarly, the Two-Delta (Th16-
Th31) is updated with the current value of the active thread
of thread group ThreadID=16–31 with the lowest threadID.

V. EXPERIMENTAL RESULTS

This section empirically evaluates the tradeoffs between
performance, energy, and quality when RFVP is employed in a
modern GPU. We use the cycle-level GPGPU-Sim simulator
version 3.1 [12]. We modified the simulator to include our
ISA extensions, value prediction, and all necessary cache and
memory logic to support RFVP. We use one of GPGPU-Sim’s
default configurations (Table I) that closely models an Nvidia
GTX 480 chipset (Fermi architecture). For each benchmark,
we use 10 different inputs to evaluate RFVP. We define
application-specific quality metrics to assess the quality of
each application’s output with RFVP. For image applications
(fastwalsh, gaussian), we use image difference Root-Mean-
Square Error (RMSE). For heartwall and particlefilter, we use
average displacement. For backprop and stringmatch, we use
average relative error and mismatch rate, respectively. In all
other applications, we use RMSE as the quality degradation
metric.
Performance, energy, memory bandwidth, and quality.
Figure 3a shows the speedup with RFVP for 1%, 3%, 5%,
and 10% quality degradation. We have explored this tradeoff
by setting different drop rates, which is RFVP’s knob for
quality control. The baseline is the default architecture without
RFVP. Figures 3b and 3c illustrate the energy reduction and
the reduction in off-chip bandwidth consumption, respectively.

As Figures 3a and 3b show, RFVP yields, on average, 36%
speedup and 27% energy reduction with 10% quality loss.
The speedup is as high as 2.2× for matrixmul and 2.4× for
similarityscore with 10% quality loss. The maximum energy
reduction is 2.0× for similarityscore. RFVP yields these
benefits despite approximating less than 10 static performance-
critical load instructions per kernel. The results show the
effectiveness of our profiling stage in focusing approximation
where it is most beneficial.

With 5% quality loss, the average performance and energy
gains are 16% and 14%, respectively. These results demon-
strate RFVP’s ability to navigate the tradeoff between quality

5

and performance-energy based on the user requirements. Even
with a small quality degradation of 1%, RFVP yields signif-
icant speedup and energy reduction in several applications,
including fastwalsh, particlefilter, similarityscore, s.srad2.
In particular, the benefits are as high as 22% speedup and
20% energy reduction for particlefilter with strictly less than
1% quality loss.

Comparing Figures 3a, 3b, and 3c shows that the benefits
strongly correlate with the reduction in bandwidth consump-
tion. This strong correlation suggests that RFVP is able
to significantly improve both GPU performance and energy
consumption by predicting load values and dropping memory
access requests. The applications for which the bandwidth con-
sumption is reduced the most (matrixmul, similarityscore),
are usually the ones that benefit the most from RFVP. One
notable exception is s.reduce. Figure 3c shows that RFVP
reduces this application’s bandwidth consumption significantly
(up to 90%), yet the performance and energy benefits are
relatively modest (about 10%). However, Figure 1 illustrates
that s.reduce yields less than 40% performance benefit even
with perfect memory (when all the memory accesses are L1
cache hits). Therefore, the benefits from RFVP are predictably
limited even with significant bandwidth reduction. This case
shows that the applications’ performance sensitivity to off-chip
communication bandwidth is an important factor in RFVP’s
ability to improve performance and energy efficiency.

Also, Figure 3 shows no benefits for stringmatch with
less than 10% quality degradation. This case is an interesting
outlier which we discuss in greater detail in the upcoming
paragraphs. To better understand the sources of the benefits,
we perform an experiment in which RFVP fills the L1 cache
with predicted values, but does not drop the corresponding
memory accesses. In this scenario, RFVP yields only 2%
performance improvement and increases energy consumption
by 2% on average for these applications. These results suggest
that the source of RFVP’s benefits come primarily from
reduced bandwidth consumption, which is a large bottleneck
in GPUs that hide latency with many-thread execution.

All applications but one benefit considerably from RFVP
due to reduced off-chip communication. Particularly, the en-
ergy benefits are due to reduced runtime and fewer costly data
fetches from off-chip memory. Overall, these results confirm
the effectiveness of rollback-free value prediction in mitigating
the bandwidth bottleneck for a diverse set of GPU applications.

Quality tradeoffs with drop rate. Drop rate is RFVP’s knob
for navigating the quality tradeoffs. It dictates what percentage
of the approximate load cache misses to value-predict and
drop. For example, with a 12.5% drop rate, RFVP drops one
out of eight approximate load cache-misses. We examine the
effect of this knob on performance, energy, and quality by
sweeping the drop rate from 12.5% to 90%.

Figure 4 illustrates the effect of drop rate on speedup (Fig-
ure 4a), energy reduction (Figure 4b), and quality degradation
(Figure 4c). As the drop rate increases, so do the performance
and energy benefits. However, the benefits come with some
cost in output quality. The average speedup ranges from 1.07×
with a 12.5% drop rate, to as much as 2.1× with a 90% drop

1
1.11

1.0
1.1
1.2
1.3
1.4
1.5
1.6

Sp
ee
du
p 

ba
ckp
rop

fas
twa
lsh

ga
us
sia
n

he
art
wa
ll

ma
trix
mu
l

pa
rtic
lefi
lte
r

s.r
ed
uc
e

sim
ilar
ity
sco
re

s.s
rad
2

ge
om
ean

str
ing
ma
tch

2.2 2.4
Error 1% Error 3% Error 5% Error 10%

(a) Speedup

En
er

gy
 R

ed
uc

tio
n 

1.0

1.1

1.2

1.3

1.4
1.9 2.01.6

backprop

fastwalsh

gaussian

heartw
all

matrix
mul

partic
lefilte

r

s.re
duce

sim
ilarity

score

s.srad2

geomean

strin
gmatch

(b) Energy Reduction

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.9

B
an

dw
id

th
  

C
on

su
m

pt
io

n
R

ed
uc

tio
n 2.3 1.9

backprop

fastwalsh

gaussian

heartw
all

matrix
mul

partic
lefilte

r

s.re
duce

sim
ilarity

score

s.srad2

geomean

strin
gmatch

(c) Memory Bandwidth Consumption Reduction

Fig. 3: RFVP’s (a) performance improvement, (b) energy
reduction, and (c) memory bandwidth consumption reduction
for at most 1%, 3%, 5%, and 10% quality degradation in a
modern GPU (described in Table I).

rate. Correspondingly, the average energy reduction ranges
from 1.05× to 1.7× and the average quality degradation
ranges from 6.5% to 31%.

Figure 4c shows that in all but one case, quality degradation
increases slowly and steadily as the drop rate increases. The
clear exception is stringmatch. This application searches a file
with a large number of strings to find the lines that contain a
search word. Its input data set contains only English words
with very low value locality. Furthermore, the application
outputs is the indices of the matching lines, which have
a very low margin for error. Either the index is correctly
identified or the output is wrong. The quality metric is the
percentage of the correctly found lines. During search, even if
a single character is incorrect, the likelihood of matching the
words and identifying the correct lines is low. Even though
stringmatch shows 61% speedup and 44% energy reduction
with a 25% drop rate, the corresponding quality loss of 60%
is not acceptable. In fact, stringmatch is an example of an
application that cannot benefit from RFVP due to its low error
tolerance.

As Figure 4 shows, each application tolerates the effects of
RFVP approximation differently. For some applications, such
as gaussian and fastwalsh, as the rate of approximation (drop
rate) increases, speedup, energy reduction and quality loss
gradually increase. In other applications such as matrixmul
and similarityscore, the performance and energy benefits
increase sharply while the quality degradation increases grad-
ually. For example, in similarityscore, increasing the drop

6

1.0
1.1
1.2
1.3
1.4
1.5
1.6 2.

2
3.
3

4.
2

8.
3

1.
7

9.
1

2.
4

3.
8

4.
7

1.
6

1.
8

1.
9

2.
0

2.
2

3.
5

Drop Rate = 12.5% Drop Rate = 25% Drop Rate = 50% Drop Rate = 60% Drop Rate = 75% Drop Rate = 80% Drop Rate = 90%

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch geomean

2.
1

1.
7

1.
6

1.
9

2.
5

2.
9

3.
9

4.
0

2.
0

2.
6

3.
0

1.
6

1.
7

1.
8

2.
9

Sp
ee
du
p

(a) Speedup

1.0
1.1
1.2
1.3
1.4
1.5
1.6 1.

9
2.

5
2.

9
3.

9

4.
0

2.
0

2.
6

3.
0

1.
6

1.
7

1.
8

2.
9

1.
7

En
er

gy
 R

ed
uc

tio
n

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch geomean
(b) Energy Reduction

Q
ua

lit
y

D
eg

ra
da

tio
n 100%

80%
60%
40%
20%
0%

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch average
(c) Quality Degradation

Fig. 4: Exploring (a) speedup, (b) energy reduction, and (c) quality trade-offs with different drop rates.

rate from 25% to 50% yields a jump in speedup (from 28%
to 59%) and energy reduction (from 10% to 57%), while
quality loss rises by only 2%.

We conclude that RFVP provides high performance and
energy efficiency benefits at acceptable quality loss levels, for
applications whose performance is most sensitive to memory
bandwidth (see Figure 1).

VI. RELATED WORK

To our knowledge, this paper is the first work that: (1)
provides a mechanism for approximate value prediction for
load instructions in GPUs, (2) enables memory bandwidth
savings by enabling the dropping value-predicted memory
requests at acceptable output quality loss levels, and (3)
develops a new multiple-value prediction mechanism for GPUs
that enables the prediction of entire cache line.

Below, we discuss related works in (1) approximate com-
puting, (2) value prediction, and (3) load value approximation.

General-purpose approximate computing. Recent work
explored a variety of approximation techniques. However,
approximation techniques that tackle memory subsystem per-
formance bottlenecks are lacking. This paper defines a new
technique that mitigates the memory subsystem bottlenecks of
long access latency and limited off-chip bandwidth.

Some of the existing techniques include (a) loop per-
foration [1], (b) computation substitution [9], (c) precision
scaling [6], and (d) approximate circuit synthesis [3]. Most
of these techniques (1) operate at the coarse granularity of a
loop body or a function call, (2) are agnostic to and unaware
of micro-architectural events, and (3) are explicitly invoked
by the code. In contrast, rollback-free value prediction (1)
operates at the fine-granularity of a single load instruction,

(2) is triggered by microarchitectural events, and (3) does not
require direct and explicit runtime software invocation.

Value prediction. RFVP takes inspiration from prior work
that explores exact value prediction [8]. However, our work
fundamentally differs from traditional value prediction tech-
niques because it does not check for mispredictions and does
not recover from them.6

Load value approximation. In [15], we introduced the
RFVP technique for conventional CPU based systems to lower
the effective memory access latency. Later, in a concurrent
effort [16], San Miguel et al. proposed a technique that uses
value prediction without checks for misprediction to address
the memory latency bottleneck in CPU based systems. This
work differs from our previous [15] and the concurrent [16]
work as follows: (1) we specialize our techniques for GPU
processors, targeting mainly the memory bandwidth bottle-
neck, (2) we utilize the value similarity of accesses across
adjacent threads in GPUs to develop a low-overhead multi-
value predictor for an entire cache line, and (3) we drop a
portion of cache-miss load requests to fundamentally reduce
the memory bandwidth demand in GPUs.

VII. CONCLUSIONS

This paper introduces Rollback-Free Value Prediction
(RFVP) and demonstrates its effectiveness in tackling two
major memory system bottlenecks–limited off-chip bandwidth
(bandwidth wall) and long memory access latency (memory
wall), with a focus on GPU-based systems. RFVP predicts

6Note that a previous work by Zhou and Conte [13] and use of value
prediction in runahead mode [14] are recovery-free value predictors, but they
explore purely speculate nature of execution as apposed to error tolerance
of programs.

7

the values of safe-to-approximate loads only when they miss
in the cache and drops a fraction of them without checking
for mispredictions or recovering from them. The drop rate
is a knob that controls the tradeoff between quality of results
and performance/energy gains. Our extensive evaluations show
that RFVP, when used in GPUs, yields significant performance
improvements and energy reductions for a wide range of
quality loss levels. As the acceptable quality loss increases, the
benefits of RFVP increase. Even at a modest 1% acceptable
quality loss, RFVP improves performance and reduces energy
consumption by more than 20%. These results confirm that
RFVP is a promising technique to tackle the memory band-
width and latency bottlenecks in applications that exhibit some
level of error tolerance.

VIII. ACKNOWLEDGEMENTS

We thank anonymous reviewers of IEEE D&T as well as
past anaonymous reviewers of PACT 2014, ASPLOS 2015,
and ISCA 2015, who reviewed previous versions of this work.
This work was supported by a Qualcomm Innovation Fellow-
ship, Microsoft Research PhD Fellowship, Nvidia, NSF awards
#1409723, #1423172, #1212962 and CCF #1553192, Semi-
conductor Research Corporation contract #2014-EP-2577, and
a gift from Google.

REFERENCES

[1] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in FSE, 2011.

[2] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H. Esmaeilzadeh,
A. Hassibi, L. Ceze, and D. Burger, “General-purpose code acceleration
with limited-precision analog computation,” in ISCA, 2014.

[3] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar,
S. Sethuraman, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi,
H. Esmaeilzadeh, and K. Bazargan, “Axilog: Language support for
approximate hardware design,” in DATE, 2015.

[4] Y. Luo, S. Govindan, B. P. Sharma, M. Santaniello, J. Meza, A. Kansal,
J. Liu, B. Khessib, K. Vaid, and O. Mutlu, “Characterizing appli-
cation memory error vulnerability to optimize datacenter cost via
heterogeneous-reliability memory,” in DSN, 2014.

[5] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the future of parallel computing,” IEEE Micro, no. 5, 2011.

[6] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in PLDI, 2011.

[7] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery,
and J. P. Shen, “Speculative precomputation: Long-range prefetching of
delinquent loads,” in ISCA, 2001.

[8] R. J. Eickemeyer and S. Vassiliadis, “A load-instruction unit for
pipelined processors,” IBM Journal of Research and Development, 1993.

[9] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “SAGE:
self-tuning approximation for graphics engines,” in MICRO, 2013.

[10] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarung-
nirun, C. Das, M. Kandemir, T. C. Mowry, and O. Mutlu, “A case for
core-assisted bottleneck acceleration in GPUs: enabling flexible data
compression with assist warps,” in ISCA, 2015.

[11] G. Pekhimenko, V. Seshadri, O. Mutlu, P. B. Gibbons, M. A. Kozuch,
and T. C. Mowry, “Base-delta-immediate compression: practical data
compression for on-chip caches,” in PACT, 2012.

[12] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
cuda workloads using a detailed gpu simulator,” in ISPASS, 2009.

[13] H. Zhou and T. M. Conte, “Enhancing memory-level parallelism via
recovery-free value prediction,” IEEE Trans. Comput., vol. 54, 2005.

[14] O. Mutlu, H. Kim, and Y. N. Patt, “Address-value delta (AVD) predic-
tion: Increasing the effectiveness of runahead execution by exploiting
regular memory allocation patterns,” in MICRO, 2005.

[15] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh,
O. Mutlu, J. Park, G. Mururu, and T. Mowry, “Rollback-free value
prediction with approximate loads,” in PACT, August 2014.

[16] J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in MICRO, December 2014.

