
The Application Slowdown Model: Quantifying and Controlling the Impact
of Inter-Application Interference at Shared Caches and Main Memory

Lavanya Subramanian*§ Vivek Seshadri* Arnab Ghosh*†
Samira Khan*‡ Onur Mutlu*

*Carnegie Mellon University §Intel Labs †IIT Kanpur ‡University of Virginia

Abstract
In a multi-core system, interference at shared resources

(such as caches and main memory) slows down applica-
tions running on different cores. Accurately estimating
the slowdown of each application has several benefits:
e.g., it can enable shared resource allocation in a man-
ner that avoids unfair application slowdowns or provides
slowdown guarantees. Unfortunately, prior works on es-
timating slowdowns either lead to inaccurate estimates,
do not take into account shared caches, or rely on a
priori application knowledge. This severely limits their
applicability.
In this work, we propose the Application Slowdown

Model (ASM), a new technique that accurately estimates
application slowdowns due to interference at both the
shared cache and main memory, in the absence of a priori
application knowledge. ASM is based on the observation
that the performance of each application is strongly cor-
related with the rate at which the application accesses
the shared cache. Thus, ASM reduces the problem of es-
timating slowdown to that of estimating the shared cache
access rate of the application had it been run alone on
the system. To estimate this for each application, ASM
periodically 1) minimizes interference for the application
at the main memory, 2) quantifies the interference the
application receives at the shared cache, in an aggregate
manner for a large set of requests. Our evaluations across
100 workloads show that ASM has an average slowdown
estimation error of only 9.9%, a 2.97x improvement over
the best previous mechanism.

We present several use cases of ASM that leverage its
slowdown estimates to improve fairness, performance and
provide slowdown guarantees. We provide detailed eval-
uations of three such use cases: slowdown-aware cache
partitioning, slowdown-aware memory bandwidth parti-
tioning and an example scheme to provide soft slowdown
guarantees. Our evaluations show that these new schemes
perform significantly better than state-of-the-art cache
partitioning and memory scheduling schemes.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MICRO-48, December 05-09, 2015, Waikiki, HI, USA
©2015 ACM. ISBN 978-1-4503-4034-2/15/12 $15.00
DOI: http://dx.doi.org/10.1145/2830772.2830803

1. Introduction

In most multi-core systems, applications running on dif-
ferent cores share the last-level cache and main memory.
These applications contend for the shared resources, caus-
ing interference to each other. As a result, applications
are slowed down compared to when they are run alone
on the system. Since different applications have different
sensitivity to shared resources, the slowdown of an appli-
cation depends heavily on co-running applications and
the available shared resources.
The ability to accurately estimate application slow-

downs can enable several useful mechanisms. For in-
stance, estimating the slowdown of each application may
enable a cloud service provider to estimate the impact
of interference on each application from consolidation
on shared hardware resources, thereby billing the users
appropriately [1, 2]. Perhaps more importantly, accu-
rate slowdown estimates may enable allocation of shared
resources to different applications in a slowdown-aware
manner, thereby satisfying the performance requirements
of different applications.

The slowdown of an application is the ratio of the exe-
cution time of the application when it is run with other
applications (shared execution time) and the execution
time of the application had it been run alone on the same
system (alone execution time). While an application’s
shared execution time can be directly measured while it
is running with other applications, the key question is
how to estimate an application’s alone execution time.
Some previous works proposed techniques to estimate ap-
plications’ alone execution times by profiling applications
offline (e.g., [16, 17, 18, 40]). However, in many scenarios,
such offline profiling of applications might not be feasible
or accurate. For instance, in a cloud service, where any
user can run a job using the available resources, profil-
ing every application offline to gain a priori application
knowledge can be prohibitive. Similarly, in a mobile en-
vironment, where multiple foreground and background
jobs are run together, it is likely not possible to get a
profile of the applications a priori. Finally, regardless
of the usage case of a system, if the resource usage of
an application is heavily input set dependent, the profile
may not be representative. Therefore, a key challenge in
estimating the slowdown of an application is estimating
its alone execution time online, i.e., at runtime, without
actually running the application alone.

While several prior works (e.g., [14,15,46,66]) proposed
online mechanisms to estimate application slowdowns,
these mechanisms are either inaccurate and/or do not

1

take into account shared caches. Fairness via Source
Throttling (FST) [15] and Per-thread cycle accounting
(PTCA) [14] estimate slowdown due to both shared cache
and main memory interference. However, their estimates
have high inaccuracy. The key shortcoming of FST and
PTCA is that they determine the effect of interference
on slowdown at a per-request granularity. Specifically, to
estimate an application’s alone execution time, both FST
and PTCA determine the number of cycles by which each
request of the application is delayed due to interference
at the shared cache and main memory. The drawback
of this approach is that with the abundant amounts of
parallelism in the memory subsystem, the service of dif-
ferent requests will likely overlap. As a result, estimating
the effect of interference on slowdown at an individual
request granularity is difficult and leads to inaccurate
estimates for FST and PTCA, as we show in this paper.
With a shared cache, the problem is exacerbated since
the overlap behavior of memory requests could be very
different when an application shares the cache with other
applications as opposed to when it is run alone.
Our goal is to develop an online model to accurately

estimate the slowdown of each application due to both
shared cache and main memory interference. To this end,
we propose the Application Slowdown Model (ASM). In
contrast to prior approaches, ASM estimates an applica-
tion’s slowdown by observing its aggregate request service
behavior rather than individual request service behavior
to quantify interference. ASM does so by exploiting a
new observation: the performance of each application is
roughly proportional to the rate at which it accesses the
shared cache. This observation enables us to estimate
slowdown as the ratio of the cache access rate when the
application is running alone (Cache-Access-Ratealone or
CARalone) and the cache access rate when the applica-
tion is running together with other applications (Cache-
Access-Rateshared or CARshared).1 CARshared can be di-
rectly measured when the application is running with
other applications. The key challenge with our approach
is how to accurately estimate CARalone.

To address this challenge, ASM periodically estimates
CARalone for an application, by employing two key steps
that 1) minimize the impact of memory bandwidth con-
tention and 2) quantify the impact of shared cache capac-
ity contention. First, in order to factor out the impact of
memory bandwidth contention on CARalone, ASM mini-
mizes interference for an application at the main memory
by giving the application’s requests the highest priority
at the memory controller (similar to [66]). Doing so also
enables ASM to get an accurate estimate of the average
cache miss service time of the application had it been
run alone (to be used in the next step). Second, ASM

1In contrast, prior works [14, 15, 46] estimate an application’s
slowdown as a ratio of execution times (i.e., shared-execution-
time/alone-execution-time), which entails estimating the perfor-
mance impact of the delay of every individual request of the applica-
tion and removing this estimated impact from shared-execution-time
in order to get an estimate for the alone-execution-time.

quantifies the effect of interference at the shared cache
by using an auxiliary tag store [53,56] to determine the
number of shared cache misses that would have been
hits if the application did not share the cache with other
applications (these are called contention misses). This
aggregate contention miss count is used along with the
average miss service time (from the previous step) to
estimate the time it would have taken to serve the appli-
cation’s requests had it been run alone.2 This, in turn,
gives us a good estimate of the application’s CARalone.
In essence, one key contribution of our work is a new

model that estimates an application’s slowdown in the
presence of interference by using previously-proposed
structures (e.g., auxiliary tag stores and memory con-
troller prioritization mechanisms) in a novel way: instead
of trying to estimate the interference-caused delay of each
request, we use these structures to estimate the aggregate
reduction in cache access rates of interfering applications.
We evaluate the accuracy of ASM comparatively to

two state-of-the-art models. Our evaluations using 100
4-core workloads show that ASM’s slowdown estimates
are much more accurate, achieving an average error of
only 9.9% compared to the 2.97x higher average error of
29.4% for FST [15], the best previous model.

We present four use cases that leverage ASM’s slow-
down estimates to achieve different goals: 1) a new
slowdown-aware cache partitioning scheme, 2) a new
slowdown-aware memory bandwidth partitioning scheme,
3) a new scheme to provide soft slowdown guarantees, 4)
mechanisms for fair pricing in a cloud service. We present
detailed evaluations of the first two and a brief evalua-
tion of the third. Our evaluations demonstrate significant
fairness improvement, while maintaining and sometimes
also improving performance, compared to state-of-the-
art cache partitioning (Utility-based Cache Partition-
ing [56], memory-level parallelism and cache-friendliness
aware partitioning [27]) and memory scheduling (Thread-
Cluster Memory Scheduling [31], Parallelism-aware Batch
Scheduling [47]) schemes. We also demonstrate that
ASM can provide slowdown guarantees in the presence of
shared cache and memory interference. Section 7 presents
these use cases and evaluations.

This paper makes the following contributions:
• We introduce the Application Slowdown Model (ASM),

an online model that accurately estimates application
slowdowns due to both shared cache capacity and mem-
ory bandwidth interference.
• We compare ASM to two state-of-the-art models across
a wide range of workloads and system configurations,
showing that ASM’s slowdown estimates are signifi-
cantly more accurate than previous models’ estimates.
• We present four use cases that leverage slowdown es-
timates from ASM to achieve different goals such as
improving fairness and providing slowdown guarantees.

2Note that ASM’s use of auxiliary tag stores [53, 56] is different
from previous works [14,15], which also used them, but to estimate
per-request as opposed to aggregate interference impact.

2

• We quantitatively evaluate three of these use cases that
leverage ASM to partition the shared cache and mem-
ory bandwidth in order to improve fairness and provide
slowdown guarantees. Our mechanisms significantly
improve fairness, and sometimes also performance, com-
pared to four state-of-the-art cache partitioning and
memory scheduling approaches and provide slowdown
guarantees.

2. Background and Motivation
A modern system typically consists of multiple levels of
private caches, a shared last-level cache and off-chip main
memory. In such a system, there are two main sources of
inter-application interference: 1) shared cache capacity,
and 2) main memory bandwidth. First, due to shared
cache capacity contention, an application’s accesses that
would otherwise have hit in the cache (had the application
been run alone), miss in the cache, increasing average
memory access latency. Second, requests from different
applications interfere at the different main memory com-
ponents, such as buses, banks and row-buffers [43,46,47].
As a result, applications delay each other’s requests due
to conflicts at these different components.

Contention at both the shared cache and main memory
increases the overall memory access latency, significantly
slowing down different applications [43,46,47]. Moreover,
an application’s slowdown depends on the sensitivity of its
performance to cache capacity and memory bandwidth,
making online slowdown estimation a hard problem.

2.1. Previous Work on Slowdown Estimation

Several prior works have attempted to estimate appli-
cation slowdown due to shared cache capacity and/or
memory bandwidth interference (e.g., [14, 15,43,46,66]).
As we mentioned in Section 1, the key challenge in es-
timating slowdown is how to accurately estimate the
performance of the application had it been running alone,
without actually running it alone.

Stall-Time Fair Memory (STFM) scheduler [46] esti-
mates an application’s slowdown as the ratio of its alone
and shared main memory stall times. To estimate the
alone memory stall time for an application, STFM counts
the number of cycles each request of the application
is stalled due to interference at the buses, banks, and
the row-buffers. Unfortunately, due to the abundant
parallelism present in main memory, service of different
requests could overlap significantly, making it difficult
to accurately estimate the interference cycles for each
application. As a result, STFM’s slowdown estimates are
inaccurate [66]. Memory-interference Induced Slowdown
Estimation (MISE) [66] addresses this problem using the
observation that an application’s performance is corre-
lated with its memory request service rate and estimates
slowdown as the ratio of request service rates. To measure
the alone request service rate of an application, MISE
periodically gives the application’s requests the highest
priority in accessing main memory. The main drawback

of both STFM and MISE is that they do not account for
shared cache interference.
Fairness via Source Throttling (FST) [15] and Per-

thread cycle accounting (PTCA) [14] estimate applica-
tion slowdowns due to both shared cache capacity and
main memory bandwidth interference. They compute
slowdown as the ratio of alone and shared execution
times and estimate alone execution time by determining
the number of cycles by which each request is delayed.
Both FST and PTCA use a mechanism similar to STFM
to quantify interference at the main memory. To quan-
tify interference at the shared cache, both mechanisms
determine which accesses of an application miss in the
shared cache but would have been hits had the applica-
tion been run alone on the system (contention misses),
and compute the number of additional cycles taken to
serve each contention miss. The main difference between
FST and PTCA is in the mechanism they use to identify a
contention miss. FST uses a pollution filter for each appli-
cation that tracks the blocks of the application that were
evicted by other applications. Any access that misses in
the cache and hits in the pollution filter is considered
a contention miss. On the other hand, PTCA uses an
auxiliary tag store [53,56] for each application that tracks
the expected state of the cache had the application been
running alone on the system. PTCA classifies any access
that misses in the cache and hits in the auxiliary tag
store as a contention miss.3

2.2. Motivation and Our Goal

In this work, we find that the approach used by FST
and PTCA results in significantly inaccurate slowdown
estimates due to two main reasons. First, both FST and
PTCA quantify interference at an individual request gran-
ularity. Given the abundant parallelism in the memory
subsystem, service of different requests overlap signifi-
cantly [22, 48]. As a result, accurately estimating the
number of cycles by which each request is delayed due
to interference is difficult. In fact, STFM [46] recognizes
this problem and introduces a parallelism factor as a
fudge factor. A shared cache only makes the problem
worse as the request stream of an application to main
memory could be completely different when it shares the
cache with other applications versus when it runs alone.
Second, the mechanisms used by FST and PTCA to

identify contention misses, i.e., pollution filters or auxil-
iary tag stores, incur high hardware overhead. In order
to reduce this overhead, the pollution filters are made
approximate [8, 15, 63] and the auxiliary tag stores are
sampled [14,54,55]. For example, PTCA maintains the
auxiliary tag store only for a few sampled cache sets.
The interference cycles for the requests that map to the
sampled sets are counted and scaled accordingly to ac-
count for the total interference cycle count for all requests.
While such techniques reduce hardware cost, they dras-

3Later, in Sections 3.2 and 3.3, we will describe how our mecha-
nism differs from these mechanisms in estimating contention misses.

3

tically reduce the accuracy of the slowdown estimates
(as we show quantitatively in Section 6), since the in-
terference behavior varies widely across requests and is
difficult to estimate accurately by sampling and scaling.
Such inaccuracies in slowdown estimates from prior

works severely limit their applicability. Our goal is to
overcome these shortcomings and build an accurate, low-
overhead, online slowdown estimation model that takes
into account interference at both the shared cache and
main memory. To this end, we propose our Application
Slowdown Model (ASM). In the next section, we describe
the key ideas and challenges in building our model.

3. Overview of ASM
In contrast to prior works, which quantify interference
at a per-request granularity, ASM uses aggregate request
behavior to quantify interference, based on the following
observation.

3.1. Observation: Access Rate as a Proxy for Per-
formance

The performance of each application is proportional to
the rate at which it accesses the shared cache.

Intuitively, an application can make progress when its
data accesses are served. The faster its accesses are served,
the faster it makes progress. In the steady state, the rate
at which an application’s accesses are served (service
rate) is almost the same as the rate at which it generates
accesses (access rate). Therefore, if an application can
generate more accesses to the cache in a given period of
time (higher access rate), then it can make more progress
during that time (higher performance).

In fact, MISE [66] observes that the performance of a
memory-bound application is proportional to the rate at
which its memory accesses are served. Our observation
is stronger than MISE’s observation because our observa-
tion relates performance to the shared cache access rate
and not just main memory access rate, thereby account-
ing for the impact of both shared cache and main memory
interference. Hence, it holds for a broader class of applica-
tions that are sensitive to cache capacity and/or memory
bandwidth, and not just memory-bound applications.
To validate our observation, we conducted an experi-

ment in which we run each application of interest along-
side a memory bandwidth/cache capacity hog program
on an Intel Core-i5 processor with a 6MB shared cache.
The cache and memory access behavior of the hog can be
varied to cause different amounts of interference to the
main program. Each application is run multiple times
with the hog with different characteristics. During each
run, we measure the performance and shared cache access
rate of the application.
Figure 1 plots the results of our experiment for three

applications from the SPEC CPU2006 suite [4]. The plot
shows cache access rate vs. performance of the application
normalized to when it is run alone. As our results indicate,
the performance of each application is indeed proportional

to the cache access rate of the application, validating our
observation. We observed the same behavior for a wide
range of applications.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

(n
o
rm

.
to

 p
e
rf

o
rm

a
n
c
e
 w

h
e
n
 r

u
n
 a

lo
n
e
)

Normalized Cache Access Rate
(norm. to cache access rate when run alone)

astar
lbm

bzip2

Figure 1: Cache access rate vs. performance
ASM exploits our observation to estimate slowdown

as a ratio of cache access rates, instead of as a ratio of
performance.

performance ∝ cache-access-rate (CAR)

Slowdown =
performancealone
performanceshared

=
CARalone

CARshared

While CARshared, which is a proxy for performanceshared
is easy to measure, the challenge is in estimating
CARalone, which is a proxy for performancealone.

CARalone vs. performancealone. In order to es-
timate an application’s slowdown during a given in-
terval, prior works estimate its alone execution time
(performancealone) by tracking the interference expe-
rienced by each of the application’s requests served
during this interval and subtracting these interference
cycles from the application’s shared execution time
(performanceshared). This approach leads to inaccuracy,
since estimating per-request interference is difficult due
to the parallelism in the memory system (Section 2.2).
CARalone, on the other hand, can be estimated more ac-
curately by exploiting the observation made by several
prior works that applications’ phase behavior is relatively
stable over time scales on the order of a few million cycles
(e.g., [24,62]). Hence, we propose to estimate CARalone
periodically over short time periods, during which 1)
the memory bandwidth interference experienced by an
application is minimized and 2) shared cache capacity
interference experienced by the application is quantified.
We describe these mechanisms and their benefits in detail
in the next sections.

3.2. Challenge: Accurately Estimating CARalone

A naive way of estimating CARalone of an application
periodically is to run the application by itself for short
periods of time and measure CARalone. While such a
scheme would eliminate main memory interference, it
would not eliminate shared cache interference, since the
caches cannot be warmed up at will in a short time du-
ration. Hence, it is not possible to take this approach
to estimate CARalone accurately (at least with low per-
formance overhead). Therefore, ASM takes a hybrid
approach to estimate CARalone for each application by

4

1) minimizing interference at the main memory, and
2) quantifying interference at the shared cache.
Step 1: Minimizing main memory interference.

One way of minimizing main memory interference is to
periodically give all the memory bandwidth to each ap-
plication, in turn, for short time periods. However, such
a scheme would not only waste memory bandwidth but
also likely be inaccurate if the corresponding application
did not generate many memory requests during its pe-
riod. Therefore, ASM minimizes interference for each
application at the main memory by simply giving each
application’s requests the highest priority at the memory
controller periodically for short lengths of time (as pro-
posed by previous work [66]). This step results in two
key outcomes. First, it eliminates most of the impact
of main memory interference when ASM is estimating
CARalone for the application (Section 4.3 describes how
we account for the remaining minimal interference). Sec-
ond, it provides ASM with an accurate estimate of the
cache miss service time for the application in the absence
of main memory interference. This estimate is used in
the next step, in quantifying shared cache interference
for the application. Furthermore, it is important to note
that each application is given highest priority for only
short time periods, thereby preventing it from causing
interference to other applications for a long time (this
leads to negligible change in performance/fairness com-
pared to the baseline: performance degrades by ~1% and
fairness improves by ~1%).
Step 2: Quantifying shared cache interference.

To quantify the effect of cache interference on the ap-
plication, we need to identify the excess cycles that are
spent for serving shared cache misses that are contention
misses—those that would have otherwise hit in the cache
had the application run alone on the system. We use an
auxiliary tag store [53, 56] for each application to first
identify contention misses. Once we determine the ag-
gregate number of contention misses, we use the average
cache miss service time (computed in the previous step)
and average cache hit service time (periodically computed
as the average number of cycles taken to serve cache hits)
to estimate the excess number of cycles spent serving the
contention misses—essentially quantifying the effect of
shared cache interference.
Overall model for CARalone. In summary, ASM

estimates CARalone by 1) minimizing interference at the
main memory and 2) quantifying interference at the
shared cache, for each application. In the first step,
in order to minimize interference at the main memory for
an application, the application is given highest priority
at the memory controller for short periods of time. This
1) eliminates most of the impact of main memory in-
terference when estimating CARalone for the application
and 2) provides ASM with an accurate estimate of the
cache miss service time of the application. In the second
step, to quantify interference at the shared cache for the
application, the miss service time estimates from the first

step are used along with contention miss counts from an
auxiliary tag store to estimate the excess cycles spent
serving contention misses, when an application is given
highest priority at the memory controller. These excess
cycles, which would not have been experienced by the
application had it run alone, are then removed from the
number of cycles during which each application is given
highest priority, to calculate CARalone. We describe the
details of estimating CARalone in Section 4.

3.3. Why is ASM Better than Prior Work?

ASM is better than prior work due to three reasons. First,
as we describe in Section 2.2, prior works aim to estimate
the effect of main memory interference on each request
individually, which is difficult and inaccurate. In con-
trast, our approach eliminates most of the main memory
interference for an application by giving the application’s
requests the highest priority (step 1), which also allows
ASM to gather a good estimate of the average cache miss
service time. Second, to quantify the effect of shared
cache interference, ASM only needs to identify the num-
ber of contention misses (step 2), unlike prior approaches
that need to determine how long each contention miss
is delayed due to interference. This makes ASM more
amenable to hardware-overhead-reduction techniques like
set sampling (see Section 4.4 for details). In other words,
the error introduced by set sampling in estimating the
number of contention misses is far lower than the error
it introduces in estimating the actual number of cycles by
which each contention miss is delayed due to interference.
Third, as we describe in Section 7.1, ASM enables the
estimation of slowdowns for different cache allocations
in a straightforward manner, which is non-trivial using
prior models.

4. Implementing ASM

Applications have multiple phases. As a result, the slow-
down of each application due to shared cache and main
memory interference could vary with time. To account for
this, ASM divides execution into multiple quanta, each of
length Q cycles (a few million cycles; see Section 6.6). At
the end of each quantum, ASM 1) measures CARshared,
and 2) estimates CARalone for each application, and re-
ports the slowdown of each application as the ratio of
the application’s CARalone and CARshared.

4.1. Measuring CARshared

Measuring CARshared for each application is fairly
straightforward. ASM keeps a per-application counter
that tracks the number of shared cache accesses for the
application. The counter is cleared at the beginning of
each quantum and is incremented whenever there is a
new shared cache access for the application. At the end
of each quantum, the CARshared for each application can
be computed as
Cache-Access-Rateshared =

Shared Cache Accesses
Q

5

4.2. Estimating CARalone

As we described in Section 3.2, during each quantum,
ASM periodically estimates the CARalone of each appli-
cation by 1) minimizing interference at the main memory
and 2) quantifying interference at the shared cache. To-
wards this end, ASM divides each quantum into epochs
of length E cycles (thousands of cycles), similar to [66].
Each epoch is probabilistically assigned to one of the
co-running applications. During each epoch, ASM col-
lects information for the corresponding application that
is later used to estimate CARalone for the application.
Each application has equal probability of being assigned
an epoch. Assigning epochs to applications in a round-
robin fashion could also achieve similar effects. However,
we build probabilistic mechanisms on top of ASM that
allocate bandwidth to applications in a slowdown-aware
manner (Section 7.2). In order to facilitate building such
mechanisms on top of ASM, we employ a policy that
probabilistically assigns an application to each epoch.
At the beginning of each epoch, ASM communicates

the ID of the application assigned to the epoch to the
memory controller. During that epoch, the memory
controller gives the corresponding application’s requests
the highest priority in accessing main memory.
To track contention misses, ASM maintains an

auxiliary tag store [53,56] for each application that tracks
the state of the cache had the application been running
alone. In this section, we will assume a full auxiliary
tag store for ease of description. However, as we will
describe in Section 4.4, our final implementation uses set
sampling [53,56] to significantly reduce the overhead of
the auxiliary tag store with negligible loss in accuracy.
Table 1 lists the metrics measured by ASM for each

application during the epochs that are assigned to it. At
the end of each quantum, ASM uses these metrics to
estimate the CARalone of the application. Each metric is
measured using a counter while the application is running
with other applications.

Metric Definition

epoch-count # epochs assigned to the application

epoch-hits Total # shared cache hits for the applica-
tion during its assigned epochs

epoch-misses Total # shared cache misses for the appli-
cation during its assigned epochs

epoch-hit-time
cycles during which the application has
at least one outstanding hit during its as-
signed epochs

epoch-miss-time
cycles during which the application has
at least one outstanding miss during its
assigned epochs

epoch-ATS-hits # auxiliary tag store hits for the applica-
tion during its assigned epochs

epoch-ATS-misses # auxiliary tag store misses for the appli-
cation during its assigned epochs

Table 1: Metrics measured by ASM for each application to es-
timate CARalone

The CARalone of an application is given by:

CARalone =
Requests during application’s epochs
Time to serve requests when run alone

=
epoch-hits + epoch-misses

(epoch-count ∗ E)− epoch-excess-cycles
where, epoch-count ∗ E represents the actual time the
system spent prioritizing requests from the application,
and epoch-excess-cycles is the number of excess cycles
spent serving the application’s contention misses—those
that would have been hits had the application run alone.
At a high level, for each contention miss, the system

spends the time of serving a miss as opposed to a hit
had the application been running alone. Therefore,
epoch-excess-cycles =

(# Contention Misses) ×
(avg-miss-time − avg-hit-time)

where, avg-miss-time is the average miss service time
and avg-hit-time is the average hit service time for
the application for requests served during all of the
application’s epochs. Each of these terms is computed
using the metrics measured by ASM, as follows.
Contention Misses = epoch-ATS-hits − epoch-hits

avg-miss-time =
epoch-miss-time
epoch-misses

avg-hit-time =
epoch-hit-time
epoch-hits

4.3. Accounting for Memory Queueing Delay

During each epoch, when there are no requests from the
highest priority application, the memory controller may
schedule requests from other applications. If a high pri-
ority request arrives after another application’s request
is scheduled, it may be delayed. To address this prob-
lem, we apply a mechanism proposed by prior work [66],
wherein ASM measures the number of queueing cycles
for each application using a counter. A cycle is deemed a
queueing cycle if a request from the highest priority appli-
cation is outstanding and the previous command issued
by the memory controller was from another application.
At the end of each quantum, the counter represents the
queueing delay for all epoch-misses . However, since ASM
has already accounted for the queueing delay of the con-
tention misses during its previous estimate by removing
the epoch-excess-cycles taken to serve contention misses,
it only needs to account for the queueing delay for the
remaining misses that would have occurred even if the
application were running alone, i.e., epoch-ATS-misses.
To do this, ASM computes the average queueing cycles
for each miss from the application:

avg-queueing-delay =
queueing cycles

epoch-misses
and computes its final CARalone estimate as

CARalone =
epoch-hits + epoch-misses

(epoch-count ∗ E)− epoch-excess-cycles−
(epoch-ATS-misses ∗ avg-queueing-delay)

6

4.4. Sampling the Auxiliary Tag Store

As we mentioned before, in our final implementation, we
use set sampling [53, 56] to reduce the overhead of the
auxiliary tag store (ATS). Using this approach, the ATS
is maintained only for a small number of sampled sets.
The only two quantities that are affected by sampling are
epoch-ATS-hits and epoch-ATS-misses. With sampling
enabled, we first measure the fraction of hits/misses in the
sampled ATS. We then compute epoch-ATS-hits/epoch-
ATS-misses as a product of the hit/miss fraction with
the total number of cache accesses.

epoch-ATS-hits = ats-hit-fraction × epoch-accesses
epoch-ATS-misses = ats-miss-fraction × epoch-accesses

where epoch-accesses = epoch-hits + epoch-misses.

4.5. Hardware Cost

ASM tracks the seven metrics in Table 1 and # queueing
cycles using registers. We find that using a four byte reg-
ister for each of these counters is sufficient for the values
they track. Hence, the counter overhead is 32 bytes for
each hardware context. In addition to these counters, an
auxiliary tag store (ATS) is maintained for each hardware
context. The ATS size depends on the number of sets
that are sampled. For 64 sampled sets and 16 ways per
set, assuming four bytes for each entry, the overhead is
4KB per-hardware context, which is 0.2% of the size of a
2MB shared cache (used in our main evaluations). Hence,
for 4/8/16 core systems with one hardware context per-
core, the overhead is 0.8%/1.6%/3.2% of the size of a
2MB shared cache.

5. Methodology

System Configuration. We model the main memory
system using a cycle-level in-house DDR3-SDRAM simu-
lator, similar to Ramulator [32]. We validated the simu-
lator against DRAMSim2 [59] and Micron’s behavioral
Verilog model [41]. We integrate our DRAM simulator
with an in-house simulator that models out-of-order cores
with a Pin [37] frontend and PinPoints [52] to capture the
representative phases of workloads. We model a per-core
private L1 cache and a shared L2 cache. Table 2 lists
the main system parameters. Our main evaluations use
a 4-core system with 2MB shared cache and 1-channel
main memory. We plan to make the simulator publicly
available at https://github.com/CMU-SAFARI.
Workloads. For our multiprogrammed workloads, we
use applications from the SPEC CPU2006 [4] and NAS
Parallel Benchmark [3] suites (run single-threaded). We
construct workloads with varying memory intensity, ran-
domly choosing applications for each workload. We run
each workload for 100 million cycles. We present results
for 100 4-core, 100 8-core and 100 16-core workloads.
Metrics. We use average error to compare the accuracy
of ASM and previously proposed models. We compute
slowdown estimation error for each application, at the

Processor 4-16 cores, 5.3GHz, 3-wide issue, 128-entry
instruction window

L1 cache 64KB, private, 4-way associative, LRU, line
size = 64B, latency = 1 cycle

Last-level cache 1MB-4MB, shared, 16-way associative,
LRU, line size = 64B, latency = 20 cycles

Mem. controller 128-entry request buffer per controller, FR-
FCFS [58,74] scheduling policy

Main Memory
DDR3-1333 (10-10-10) [42], 1-4 channels,
1 rank/channel, 8 banks/rank, 8KB rows

Table 2: Configuration of the simulated system
end of every quantum (Q), as the absolute value of

Error =
Estimated Slowdown − Actual Slowdown

Actual Slowdown
× 100%

Actual Slowdown =
IPCalone

IPCshared

We compute IPCalone for the same amount of work com-
pleted in the alone run as that completed in the shared
run for each quantum. For each application, we compute
the average error across all quanta in a workload run and
then compute the average across all occurrences of the
application in all of our workloads.
Parameters. We compare ASM with two previous slow-
down estimation models: Fairness via Source Throt-
tling (FST) [15] and Per-Thread Cycle Accounting
(PTCA) [14]. For ASM, we set the quantum length (Q)
to 5,000,000 cycles and the epoch length (E) to 10,000
cycles. For ASM and PTCA, we present results both with
sampled and unsampled auxiliary tag stores (ATS). For
FST, we present results with various pollution filter sizes
that match the size of the ATS. Section 6.6 evaluates the
sensitivity of ASM to quantum and epoch lengths.

6. Evaluation of the Model

Figure 2 compares the average slowdown estimation error
from FST, PTCA, and ASM, with no sampling in the aux-
iliary tag store for PTCA and ASM, and equal-overhead
pollution filter for FST. Our implementations of FST
and PTCA take into account both memory bandwidth
interference and shared cache capacity interference at a
per-request granularity. The benchmarks on the left are
from the SPEC CPU2006 suite and those on the right are
from the NAS benchmark suite. Benchmarks within each
suite are sorted based on memory intensity increasing
from left to right. Figure 3 presents the corresponding
results with a sampled auxiliary tag store (64 cache sets)
for PTCA and ASM, and an equal-size pollution filter
for FST.

We draw three major conclusions. First, even without
sampling, ASM has significantly lower slowdown estima-
tion error (9%) compared to FST (18.5%) and PTCA
(14.7%) This is because, as described in Section 2.2, prior
works attempt to quantify the effect of interference on a
per-request basis, which is inherently inaccurate given the
abundant parallelism in the memory subsystem. ASM,
in contrast, uses aggregate request behavior to quantify

7

https://github.com/CMU-SAFARI

0%

10%

20%

30%

40%

50%

60%

70%

80%

calculix

povray

tonto
nam

d

dealII

sjeng

perlbench

gobm
k

grom
acs

h264ref

bzip2

astar

cactusAD
M

hm
m

er

gcc
xalancbm

k

sphinx3

G
em

sFD
TD

om
netpp

lbm
leslie3d

soplex

m
ilc

libquantum

m
cf

bt ft is ua m
g

sp cg lu Avg.

S
lo

w
d

o
w

n
 E

s
ti
m

a
ti
o

n
 E

rr
o

r
FST PTCA ASM

Figure 2: Slowdown estimation accuracy with no auxiliary tag store sampling

0%

50%

100%

150%

200%

calculix

povray

tonto
nam

d

dealII

sjeng

perlbench

gobm
k

grom
acs

h264ref

bzip2

astar

cactusAD
M

hm
m

er

gcc
xalancbm

k

sphinx3

G
em

sFD
TD

om
netpp

lbm
leslie3d

soplex

m
ilc

libquantum

m
cf

bt ft is ua m
g

sp cg lu Avg.

S
lo

w
d

o
w

n
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

FST PTCA ASM

Figure 3: Slowdown estimation accuracy with auxiliary tag store sampling

the effect of interference, and hence is more accurate.
Second, sampling the auxiliary tag store and reduc-

ing the size of the pollution filter significantly increase
PTCA and FST’s estimation error respectively, while it
has negligible impact on ASM’s estimates. PTCA’s error
increases from 14.7% to 40.4% and FST’s error increases
from 18.5% to 29.4%, whereas ASM’s error increases from
9% to only 9.9%. Again, as we describe in Section 2.2,
PTCA’s increase in error from sampling is because it
estimates the number of cycles by which each contention
miss (from the sampled sets) is delayed, and scales up
this cycle count to the entire cache. However, since dif-
ferent requests experience different levels of interference,
sampling introduces more error in the latency estimates
of contention misses, as we show in Section 6.3, thereby
introducing more error in PTCA’s estimates. FST’s slow-
down estimation error also increases from sampling, but
the increase is not as significant as PTCA’s increase from
sampling, because it uses a pollution filter that is imple-
mented using a Bloom filter [8], which seems more robust
to size reductions than an auxiliary tag store.
Third, FST and PTCA’s slowdown estimates are par-

ticularly inaccurate for applications with high memory
intensity (e.g., soplex, libquantum, mcf) and high cache
sensitivity (e.g., ft, dealII, bzip2). This is because ap-
plications with high memory intensity generate a large
number of requests to memory, and accurately modeling
the overlap in service of such large number of requests
individually is difficult, resulting in inaccurate slowdown
estimates. Similarly, an application with high cache sen-
sitivity is severely affected by shared cache interference.
Hence, the request streams to main memory of the ap-
plication are drastically different when the application
is run alone versus when it shares the cache with other
applications. This makes it hard to estimate interfer-
ence on a per-request basis. ASM simplifies the problem
by tracking aggregate behavior, resulting in significantly
lower error for applications with high memory intensity

and/or cache sensitivity.
In summary, with reasonable hardware overhead, ASM

estimates slowdowns more accurately than prior work and
is more robust to varying access behavior of applications.
Accuracy with Database Workloads. We evaluate
FST, PTCA and ASM’s slowdown estimation accuracy
with database workloads - specifically, TPC-C [68] and
the Yahoo Cloud Serving Benchmark (YCSB) [11]. The
average error for FST (unsampled), PTCA (unsampled)
and ASM (sampled) are 27%, 12% and 4% respectively.
Hence, we conclude that ASM can effectively estimate
slowdown in modern database workloads as well.

6.1. Distribution of Slowdown Estimation Error

Figure 4 shows the distribution of slowdown estimation
error for FST, PTCA (both unsampled) and ASM (sam-
pled), across all the 400 instances of different applica-
tions in our 100 4-core workloads. The x-axis shows error
ranges and the y-axis shows what fraction of points lie in
each range. Two observations are in order. First, 95.25%
of ASM’s estimates have an error less than 20%, whereas
only 76.25% and 79.25% of FST and PTCA’s estimates
respectively have an error within 20%. Second, ASM’s
maximum error is only 36%, while FST/PTCA have max-
imum errors of 133%/87% respectively (not visible in the
plot). We conclude that ASM’s slowdown estimates have
much lower variance than FST and PTCA’s estimates
and thus they are more robust.

6.2. Impact of Prefetching

Figure 5 shows the average slowdown estimation error
for FST, PTCA and ASM, across 100 4-core workloads
(unsampled), with a stride prefetcher [7, 63] of degree
four and distance 24. The error bars show the standard
deviation across workloads. ASM achieves a significantly
low error of 7.5%, compared to 20% and 15% for FST
and PTCA respectively. ASM’s error reduces compared
to not employing a prefetcher, since memory interference

8

induced stalls reduce with prefetching, which reduces the
amount of interference whose impact on slowdowns needs
to be estimated. This reduction in interference is true for
FST and PTCA as well. However, their error increases
slightly compared to not employing a prefetcher, since
they estimate interference at a per-request granularity.
The introduction of prefetches causes more disruption
and hard-to-estimate overlap behavior among requests
going to memory, making it more difficult to estimate
interference at a per-request granularity. In contrast,
ASM uses aggregate request behavior to estimate slow-
downs, which is more robust, resulting in more accurate
slowdown estimates with prefetching.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 50 70 100

D
is

tr
ib

u
ti
o

n

Error (in %)

FST PTCA ASM

Figure 4: Error distribution

0%

10%

20%

30%

40%

50%

FST PTCA ASM

S
lo

w
d

o
w

n
 E

s
ti
m

a
ti
o

n
 E

rr
o

r

Figure 5: Prefetching impact

6.3. Latency Distribution: Benefits of Epoch-
Based Aggregation

In order to provide more insight into the accuracy of
FST, PTCA and ASM’s slowdown estimates, Figures 6a
and 6b present the distribution of the alone miss service
times across 30 of our most memory-intensive workloads
when actually measured and estimated with FST, PTCA
and ASM, without and with sampling respectively. We
make three major observations. First, even when no
sampling is applied, FST and PTCA’s estimated miss
service time distributions are different from the actual
measured distributions (particularly visible around 50
and 100 ns). This is because FST and PTCA rely on
per-request latency estimation and hence, are not as
effective in capturing request overlap behavior. Second,
ASM, by virtue of estimating miss service time of an
application across an aggregate set of requests when
giving the application high priority, is able to estimate
the miss service times much more accurately. Third,
when the auxiliary tag store is sampled, both FST and

PTCA’s latency estimates (particularly PTCA’s) deviate
much more from actual measured miss service times.
ASM, on the other hand, decouples the estimation of
the number of contention misses and their miss service
times, as describe in Section 4.2. Hence, its estimated
miss service distribution remains mostly unchanged with
sampling.

 0

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300 350 400

%
 o

f
R

e
q

u
e

s
ts

Latency range (in cycles)

Measured
FST

PTCA
ASM

(a) No sampling

 0

 10

 20

 30

 40

 50

 60

 70

 50 100 150 200 250 300 350 400

%
 o

f
R

e
q

u
e

s
ts

Latency range (in cycles)

Measured
FST

PTCA
ASM

(b) With sampling

Figure 6: Miss service time distributions

6.4. Benefits of Estimating Shared Cache Inter-
ference

In this section, we seek to isolate the benefits of using
epoch-based aggregation to account solely for memory
interference from the benefits of using epoch-based ag-
gregation for both main memory and shared cache in-
terference. In order to do so, we evaluate the average
slowdown estimation error of the MISE model [66] that
estimates slowdown due solely to main memory inter-
ference and ASM that estimates slowdown due to both
main memory and shared cache contention. Both MISE
and ASM employ epoch-based aggregation. MISE has an
average slowdown estimation error of 22%, across our 4-
core workloads, whereas ASM has a much lower slowdown
estimation error of 9.9%. This is because, MISE does
not take into account shared cache interference, whereas
ASM takes into account both main memory and shared
cache interference. Hence, we conclude that employing
epoch-based aggregation while accounting for both main
memory and shared cache interference is key to achieving
high accuracy.

6.5. Sensitivity to System Parameters

Core Count. Figure 7 presents sensitivity of slowdown
estimates from FST, PTCA and ASM to core count. Since
PTCA and FST’s slowdown estimation errors degrade
significantly with sampling, for our sensitivity studies, we
present results for prior works with no sampling. How-
ever, for ASM, we still present results with a sampled
auxiliary tag store. We evaluate 100 workloads for each
core count. The error bars show standard deviation across
all workloads.
We draw three conclusions. First, ASM’s slowdown

estimates are significantly more accurate than slowdown
estimates from FST and PTCA across all core counts.
Furthermore, the standard deviation of ASM’s error is
much lower than that of FST and PTCA, showing that
its estimation error has a lower spread. Second, ASM’s
slowdown estimation accuracy reduces at higher core

9

counts. This is because of the residual interference from
memory queueing despite giving applications high prior-
ity. We take this queueing into account, as we describe
in Section 4.3. However, the effect of this queueing is
greater at higher core counts and is harder to account
for entirely. Third, ASM’s accuracy gains over FST and
PTCA increase with increasing core count. As core count
increases, interference at the shared cache and main mem-
ory increases and, consequently, request behavior is even
more different from alone run behavior. Hence, the slow-
down estimation error increases for all models. However,
ASM, by virtue of tracking aggregate request behavior
has the least error increase compared to FST and PTCA.
Cache Capacity. Figure 8 shows the sensitivity of
FST, PTCA and ASM’s slowdown estimates to shared
cache capacity, across all our 4-core workloads. ASM’s
slowdown estimates are significantly more accurate than
FST and PTCA’s estimates, across all cache capacities.

0%

10%

20%

30%

40%

50%

60%

70%

4 8 16

S
lo

w
d
o
w

n
 E

s
ti
m

a
ti
o
n
 E

rr
o
r

Number of Cores

FST PTCA ASM

Figure 7: Error vs. core count

0%

10%

20%

30%

40%

50%

1MB 2MB 4MB

S
lo

w
d
o
w

n
 E

s
ti
m

a
ti
o
n
 E

rr
o
r

Shared Cache Size

FST PTCA ASM

Figure 8: Error vs. cache size

6.6. Sensitivity to Epoch and Quantum Lengths

Table 3 shows the average error, across all our workloads,
for different values of the quantum (Q) and epoch lengths
(E). As the table shows, the estimation error increases
with decreasing quantum length and, in general, increas-
ing epoch length. This is because the number of epochs
(Q/E) decreases as quantum length (Q) decreases and/or
epoch length (E) increases. With fewer epochs, some
applications may not be assigned enough epochs to en-
able ASM to reliably estimate their CARalone. However,
when the epoch length is very small, e.g., 1000 cycles,
the estimation error is the highest. This is because when
epochs are very short, applications are not prioritized for
long enough periods of time at the memory controller,
to emulate alone run behavior accurately. For our main
evaluations, we use a quantum length of 5,000,000 cycles
and epoch length of 10,000 cycles.
PPPPPPPPPP
Quantum
Length

Epoch
Length 1000 10000 50000 100000

1000000 18.4% 12% 14% 16.6%
5000000 17.1% 9.9% 10.6% 11.5%
10000000 16.9% 9.2% 9.9% 10.5%

Table 3: Error sensitivity to epoch and quantum lengths

7. Leveraging ASM
ASM’s slowdown estimates can be leveraged to build
various slowdown-aware mechanisms to improve perfor-

mance, fairness, and provide slowdown guarantees. In
this section, we present four such use cases of ASM.

7.1. ASM Cache Partitioning (ASM-Cache)

ASM-Cache partitions shared cache capacity among ap-
plications with the goal of minimizing slowdown. The
key idea is to allocate more cache ways to applications
whose slowdowns reduce the most from additional cache
space.
7.1.1. Mechanism. ASM-Cache consists of two compo-
nents. First, to partition the cache in a slowdown-aware
manner, we estimate the slowdown of each application
when it is given a different number of cache ways. Next,
we determine the cache way allocation for each applica-
tion based on the slowdown estimates, using a scheme
similar to Utility-based Cache Partitioning [56].
Slowdown Estimation. We estimate slowdown of an
application when it is allocated n ways as

slowdownn =
CARalone

CARn

where, CARn is the cache access rate of the application
when n ways are allocated to it. We estimate CARalone
using the mechanism described in Section 4. While CARn

can be estimated by measuring it while giving all possible
way allocations to each application, such an approach is
expensive and detrimental to performance as the search
space is huge. Therefore, we propose to estimate CARn

using a mechanism similar to estimating CARalone.
Let quantum-hits and quantum-misses be the number of

shared cache hits and misses for the application during a
quantum. At the end of the quantum,

CARn =
quantum-hits + quantum-misses

Cycles to serve the above accesses with n ways

The challenge is in estimating the denominator, i.e., the
number of cycles taken to serve an application’s shared
cache accesses during the quantum, if the application had
been given n ways. To estimate this, we first determine
the number of shared cache accesses that would have
hit in the cache had the application been given n ways
(quantum-hitsn). This can be directly obtained from the
auxiliary tag store. (We use a sampling auxiliary tag
store and scale up the sampled quantum-hitsn value using
the mechanism described in Section 4.4.)

There are three cases: 1) quantum-hitsn = quantum-hits,
2) quantum-hitsn > quantum-hits, and 3) quantum-hitsn <
quantum-hits. In the first case, when the number of hits
with n ways is same as the number of hits during the
quantum, we expect the system to take the same number
of cycles to serve the requests even with n ways, i.e., Q
cycles. In the second case, when there are more hits with
n ways, we expect the system to serve the requests in
fewer than Q cycles. Finally, in the third case, when
there are fewer hits with n ways, we expect the system
to take more than Q cycles to serve the requests. Let
∆hits denote quantum-hitsn − quantum-hits. If quantum-
hit-time and quantum-miss-time are the average cache hit
and miss service times respectively for the accesses of the

10

application during the quantum, we estimate the number
of cycles to serve the requests with n ways as,
cyclesn = Q−∆hits(quantum-miss-time − quantum-hit-time)

wherein we remove/add the estimated excess cycles spent
in serving the additional hits/misses respectively for the
application with n ways. Hence, CARn is,

quantum-hits + quantum-misses
Q−∆hits(quantum-miss-time − quantum-hit-time)

It is important to note that extending ASM to esti-
mate slowdowns for different cache allocations is straight-
forward since we use aggregate cache access rates. In
contrast, extending previous slowdown estimation tech-
niques such as FST and PTCA to estimate slowdowns
for different cache allocations would require estimating
if every individual request would have been a hit/miss for
every possible cache allocation, which is non-trivial.
Cache Partitioning. Once we have each application’s
slowdown estimates for different way allocations, we use
the look-ahead algorithm used in Utility-based Cache
Partitioning (UCP) [56] to partition the cache ways such
that the overall slowdown is minimized. Similar to the
marginal miss utility (used by UCP), we define marginal
slowdown utility as the decrease in slowdown per extra
allocated way. Specifically, for an application with a
current allocation of n ways, the marginal slowdown
utility of allocating k additional ways is,

Slowdown-Utilityn+k
n =

slowdownn − slowdownn+k

k

Starting from zero ways for each application, the marginal
slowdown utility is computed for all possible way allo-
cations for all applications. The application that has
the maximum slowdown utility for a certain allocation
is given those number of ways. This process is repeated
until all ways are allocated. For more details on the
partitioning algorithm, we refer the reader to [56].

7.1.2. Evaluation. Figure 9 compares the performance
and fairness of ASM-Cache against a baseline that em-
ploys no cache partitioning (NoPart), Utility-based Cache
Partitioning (UCP) [56] and memory-level parallelism
and cache friendliness-aware quasi-partitioning scheme
(MCFQ) [27] for different core counts. We simulate
100 workloads for each core count. We use harmonic
speedup [19, 38] to measure system performance and the
maximum slowdown metric [13, 30, 31, 61, 66, 69] (maxi-
mum slowdown in each workload and averaged over all
workloads) to measure unfairness. Four observations are
in order. First, ASM-Cache provides significantly bet-
ter fairness and comparable/better performance across
all core counts, over UCP. This is because ASM-Cache
explicitly takes into account application slowdowns in
performing cache allocation, whereas UCP uses miss
counts as a proxy for performance. Second, MCFQ,
while achieving fairness and performance benefits over
UCP and comparable fairness and performance as ASM-

Cache for workloads with low memory intensities, de-
grades fairness and performance for workloads with high
memory intensities. This is because, although MCFQ
takes into account memory-level parallelism and cache
friendliness/interference, it does not take into account the
impact of memory bandwidth interference. ASM-Cache,
on the other hand, exploits slowdown estimates from ASM
due to both main memory bandwidth and cache capacity
interference for all possible way allocations. This enables
it to estimate slowdown utility in a way that incorporates
cache and memory interference. Third, ASM-Cache’s
gains increase with increasing core count: ASM-Cache
reduces unfairness by 12.5% on the 8-core system and re-
duces unfairness by 15.8% and improves performance by
5.8% on the 16-core system, versus UCP. This is because
contention for cache capacity increases with increasing
core count, offering more opportunity for ASM-Cache to
mitigate unfair slowdowns. Furthermore, the standard de-
viation of maximum slowdown for ASM-Cache across all
our workloads is 3%/11%/13% lower than than of UCP,
for the 4/8/16 core systems (not shown). Fourth, we see
significant fairness improvements of 12.5% with a larger
(4 MB) cache, on a 16-core system (plots not shown due to
space constraints). We conclude that accurate slowdown
estimates from ASM enables effective cache partitioning
among contending applications, thereby improving both
fairness and performance.

 0

 2

 4

 6

 8

 10

 12

 14

4 8 16

U
n
fa

ir
n
e
s
s

 (
M

a
x
im

u
m

 S
lo

w
d
o
w

n
)

Number of Cores

NoPart
UCP

MCFQ
ASM-Cache

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

4 8 16

S
y
s
te

m
 P

e
rf

o
rm

a
n
c
e

 (
H

a
rm

o
n
ic

 S
p
e
e
d
u
p
)

Number of Cores

NoPart
UCP

MCFQ
ASM-Cache

Figure 9: ASM-Cache: Fairness and performance

7.2. ASM Memory Bandwidth Partitioning

ASM-Mem partitions memory bandwidth among appli-
cations, based on slowdown estimates from ASM, with
the goal of improving fairness. The basic idea behind
ASM-Mem is to allocate bandwidth to each application
proportional to its estimated slowdown, such that appli-
cations with higher slowdowns are given more bandwidth.
7.2.1. Mechanism. ASM is used to estimate all appli-
cations’ slowdowns at the end of every quantum. These
slowdown estimates are then used to determine the band-
width allocation of each application. Specifically, the
probability with which an epoch is assigned to an appli-
cation is proportional to its estimated slowdown. The
higher the slowdown of the application, the higher the
probability that each epoch is assigned to the application.
For an application Ai, the probability that an epoch is
assigned to Ai is given by:

Prob. of assigning an epoch to Ai =
slowdown(Ai)∑
k slowdown(Ak)

11

At the beginning of each epoch, the epoch is assigned to
one of the applications based on the above probability
distribution and requests of the corresponding application
are prioritized over other requests during that epoch, at
the memory controller.
7.2.2. Evaluation. We compare ASM-Mem with
three previously-proposed memory schedulers, FRFCFS,
PARBS and TCM. FRFCFS [58, 74] is an application-
unaware scheduler that prioritizes row-buffer hits (to
maximize bandwidth utilization) and older requests (for
forward progress). FRFCFS tends to unfairly slow down
applications with low row-buffer locality and low memory
intensity [43, 46]. To tackle this problem, application-
aware schedulers such as PARBS [47] and TCM [31] have
been proposed. These reorder applications’ requests at
the memory controller, based on access characteristics.

Figure 10 shows the fairness and performance of ASM-
Mem, FRFCFS, PARBS and TCM, for three core counts,
averaged over 100 workloads for each core count. We
draw four major observations. First, ASM-Mem achieves
better fairness than the three previously-proposed sched-
ulers, while achieving comparable/better performance.
This is because ASM-Mem directly uses ASM’s slow-
down estimates to allocate more bandwidth to highly
slowed-down applications, while previous works employ
metrics such as memory intensity as proxies for perfor-
mance/slowdown. Second, ASM-Mem’s gains increase
with core count, achieving 5.5% and 12% improvement in
fairness on the 8- and 16-core systems respectively, com-
pared to the fairest previous scheduler, PARBS. Third,
ASM-Mem achieves fairness gains on systems with larger
channel counts as well: 6% on a 16-core 2-channel system
(not shown). Fourth, ASM-Mem’s standard deviation of
maximum slowdown across all our workloads reduces by
5%/7%/5% compared to the best previous mechanism,
for the 4/8/16 core systems (not shown). We conclude
that ASM-Mem is effective at mitigating interference at
the main memory, thereby improving fairness.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

4 8 16

U
n
fa

ir
n
e
s
s

 (
M

a
x
im

u
m

 S
lo

w
d
o
w

n
)

Number of Cores

FRFCFS
TCM

 PARBS
 ASM-Mem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

4 8 16

S
y
s
te

m
 P

e
rf

o
rm

a
n
c
e

 (
H

a
rm

o
n
ic

 S
p
e
e
d
u
p
)

Number of Cores

FRFCFS
TCM

 PARBS
 ASM-Mem

Figure 10: ASM-Mem: Fairness and performance

Combining ASM-Cache and ASM-Mem. We build
a coordinated scheme, ASM-Cache-Mem, which performs
cache partitioning using ASM-Cache and conveys the
slowdown estimates for each application (corresponding
to its cache way allocation) to the memory controller. The
memory controller uses these slowdown estimates to par-
tition memory bandwidth across applications using ASM-
Mem. We compared ASM-Cache-Mem to combinations
of previous cache partitioning and memory scheduling
mechanisms, among which PARBS+UCP achieves both

the best performance and fairness. ASM-Cache-Mem
improves fairness by 14.6%/8.9% on a 16-core system
with 1/2 channels, over PARBS+UCP, while achieving
performance within 1% of PARBS+UCP.

7.3. Providing Soft Slowdown Guarantees

In multi-core systems where multiple applications are
consolidated, ASM’s slowdown estimates can be leveraged
to bound application slowdowns. Figure 11 shows the
slowdowns of four applications in a workload using a
naive cache allocation scheme and a slowdown-aware
scheme based on ASM. The goal is to achieve a specified
slowdown bound for h264ref. The Naive-QoS scheme,
which is unaware of application slowdowns, allocates all
shared cache ways to h264ref, the application of interest.
By doing so, it minimizes h264ref ’s slowdown, thereby
enabling it to meet any slowdown bound greater than 2.17.
However, this comes at the cost of slowing down other
applications significantly. ASM-QoS, on the other hand,
allocates just enough cache ways to h264ref such that a
specific slowdown bound (indicated by X in ASM-QoS-X)
is met. Hence, ASM-QoS significantly reduces the other
three applications’ slowdowns compared to Naive-QoS.
This is an example policy that leverages ASM to par-

tition the shared cache capacity to achieve a specific
slowdown bound. We propose to explore more sophisti-
cated schemes on top of ASM to control the allocation
of memory bandwidth/cache capacity such that differ-
ent applications’ slowdown bounds are met, while still
achieving high overall system performance.

 1

 1.5

 2

 2.5

 3

 3.5

 4

h264ref mcf sphinx3 soplex

S
lo

w
d

o
w

n

Naive-QoS
ASM-QoS-2.5

ASM-QoS-3

ASM-QoS-3.5
ASM-QoS-4

 0

 0.1

 0.2

 0.3

 0.4

P
e
rf

o
rm

a
n
c
e

(H
a
rm

o
n
ic

 S
p
e
e
d
u
p
)

Figure 11: ASM-QoS: Slowdowns and performance

7.4. Fair Pricing in Cloud Systems

Applications from different users could be consolidated
onto the same machine, e.g., in a server cluster. Pricing
schemes in cloud systems bill users based on CPU core,
memory/storage capacity allocation and run length of a
job [1,2]. ASM’s slowdown estimates can enable taking
into account shared resource interference. For instance,
when jobs A and B are run together on the same system,
job A runs for three hours due to cache/memory interfer-
ence from job B, but would have run for only an hour,
had it run alone. In this scenario, ASM would estimate
job A’s slowdown to be 3x, enabling the user to be billed
for only one hour, versus three hours with a scheme that
bills based only on resource allocation and run time.

12

7.5. Job Migration and Admission Control

ASM’s slowdown estimates could be leveraged by the
system software to make migration and admission control
decisions. Previous works monitor different metrics such
as cache misses and memory bandwidth utilization across
machines/cores in a cluster or cores in a many-core sys-
tem and migrate applications across machines based on
these metrics [12, 36, 57, 67, 70]. While such metrics serve
as proxies for interference, accurate slowdown estimates
are a direct measure of the impact of interference on per-
formance. Hence, periodically communicating slowdown
estimates from ASM to the system software could enable
better migration decisions. For instance, the system soft-
ware could migrate applications away from machines on
which slowdowns are very high or it could perform ad-
mission control and prevent new applications from being
scheduled on machines where currently running appli-
cations are experiencing significant slowdowns, to avoid
violating SLAs. Similarly, page migration mechanisms
can potentially leverage ASM’s slowdown estimates.

8. Related Work

We have already compared ASM to the closest previous
works on estimating slowdowns due to shared cache and
main memory interference, FST [15] and PTCA [14]. In
this section, we compare to other related previous works.
Slowdown Estimation. Lin and Balasubramonian [33]
propose a regression-based model to estimate perfor-
mance for different cache allocations. Since this model
does not take into account memory interference, it has a
high error of 35% (across all our 4-core workloads).
Luque et al. [39] estimate slowdowns due to shared

cache interference, but do not take into account main
memory interference. Eyerman and Eeckhout [20] and
Cazorla et al. [9] estimate slowdowns in SMT processors.
ASM can be combined with these to estimate slowdowns
due to both shared cache/memory interference and SMT.
Profiling. Prior works have attempted to quantify the
impact of cache/memory contention through offline pro-
filing. Mars et al. [40] estimate an application’s sensi-
tivity/propensity to receive/cause interference. Other
previous works have proposed to estimate an applica-
tion’s sensitivity to cache capacity [16,60] and memory
bandwidth [17] through profiling. Yang et al. [72] at-
tempt to estimate applications’ sensitivity to interference
online. However, this work assumes that latency-critical
applications run alone at times, when they can be profiled
(which could degrade system throughput).

The key distinction between these works and ASM is
that these works assume the ability to profile applica-
tions offline or specific execution scenarios such as an
application executing alone, while ASM can estimate
the slowdown of any application online, in the general
scenario of multiple applications running together.
Memory Interference Mitigation. Several previ-
ous works have tackled the problem of mitigating main

memory interference with the goals of improving per-
formance, fairness and quality of service. The major
solution approach to mitigate memory interference has
been application-aware memory scheduling [6, 21,23,25,
30, 31, 44, 46, 47, 49, 65]. ASM-Mem significantly im-
proves fairness over state-of-the-art schedulers, while
achieving comparable performance. Other prior ap-
proaches such as interleaving [28], channel/bank partition-
ing [26, 35, 45, 71], bandwidth partitioning [34,66], source
throttling [10,15,50,51], thread scheduling [12,67,73] can
be combined with ASM to further improve performance
and fairness.
Cache Partitioning. Prior works have proposed cache
partitioning schemes that achieve high performance
and/or fairness [5,27,29,56,64]. ASM-Cache outperforms
state-of-the-art cache partitioning techniques, UCP [56]
and MCFQ [27]. ASM’s slowdown estimates can be
combined with metrics employed by other partitioning
schemes to improve performance and fairness.

9. Conclusion

We introduce the Application Slowdown Model (ASM) to
estimate the slowdowns of applications running concur-
rently on a multi-core system due to both shared cache
and main memory interference. ASM accurately esti-
mates slowdowns using the aggregate request behavior
of each application. We demonstrate the effectiveness of
ASM by using it to enable better shared resource man-
agement schemes to achieve different goals. We conclude
that ASM is a promising substrate that can enable ef-
fective mechanisms to estimate and control application
slowdowns in modern and future multi-core systems.

Acknowledgments
We thank the anonymous reviewers for their feedback.
We acknowledge members of the SAFARI research group
for their feedback. We acknowledge the generous support
from our industrial partners: Google, Intel, Microsoft,
Nvidia, Qualcomm, Samsung, VMware. This work is sup-
ported in part by NSF grants 0953246, 1212962, 1065112,
1320531, the Semiconductor Research Corporation, and
the Intel Science and Technology Center on Cloud Com-
puting. Lavanya Subramanian was a PhD student, Arnab
Ghosh was an intern, and Samira Khan was a postdoc-
toral researcher, all in the SAFARI Group at CMU, when
a majority of this work was carried out.

References
[1] Amazon EC2 Pricing. http://aws.amazon.com/ec2/pricing/.
[2] Microsoft Azure Pricing. http://azure.microsoft.com/en-

us/pricing/details/virtual-machines/.
[3] NAS Parallel Benchmark Suite.

http://www.nas.nasa.gov/publications/npb.html.
[4] SPEC CPU2006. http://www.spec.org/spec2006.
[5] K. Aisopos et al. Pcasa: Probabilistic control-adjusted selec-

tive allocation for shared caches. In DATE, 2012.
[6] R. Ausavarungnirun et al. Staged Memory Scheduling: Achiev-

ing high performance and scalability in heterogeneous systems.
In ISCA, 2012.

13

[7] J.-L. Baer and T.-F. Chen. Effective hardware-based data
prefetching for high-performance processors. IEEE TC, May
1995.

[8] B. Bloom. Space/time trade-offs in hash coding with allowable
errors. ACM Communications, July 1970.

[9] F. Cazorla et al. Predictable Performance in SMT Processors:
Synergy between the OS and SMTs. IEEE TC, 2006.

[10] K. Chang et al. HAT: Heterogeneous adaptive throttling for
on-chip networks. In SBAC-PAD, 2012.

[11] B. Cooper et al. Benchmarking cloud serving systems with
YCSB. In SOCC, 2010.

[12] R. Das et al. Application-to-core mapping policies to reduce
memory system interference in multi-core systems. In HPCA,
2013.

[13] R. Das et al. Application-aware prioritization mechanisms for
on-chip networks. In MICRO, 2009.

[14] K. Du Bois et al. Per-thread cycle accounting in multicore
processors. In HiPEAC, 2013.

[15] E. Ebrahimi et al. Fairness via Source Throttling: A config-
urable and high-performance fairness substrate for multi-core
memory systems. In ASPLOS, 2010.

[16] D. Eklov et al. Cache pirating: Measuring the curse of the
shared cache. In ICPP, 2011.

[17] D. Eklov et al. Bandwidth bandit: Quantitative characteriza-
tion of memory contention. In PACT, 2012.

[18] D. Eklov et al. A software based profiling method for obtaining
speedup stacks on commodity multi-cores. In ISPASS, 2014.

[19] S. Eyerman and L. Eeckhout. System-level performance met-
rics for multiprogram workloads. IEEE Micro, June 2008.

[20] S. Eyerman and L. Eeckhout. Per-thread cycle accounting in
SMT processors. In ASPLOS, 2009.

[21] S. Ghose et al. Improving memory scheduling via processor-
side load criticality information. In ISCA, 2013.

[22] A. Glew. MLP yes! ILP no! In ASPLOS WACI, 1998.
[23] E. Ipek et al. Self-optimizing memory controllers: A reinforce-

ment learning approach. In ISCA, 2008.
[24] C. Isci and M. Martonosi. Runtime power monitoring in high-

end processors: Methodology and empirical data. In MICRO,
2003.

[25] R. Iyer et al. QoS policies and architecture for cache/memory
in CMP platforms. In SIGMETRICS, 2007.

[26] M. K. Jeong et al. Balancing DRAM locality and parallelism
in shared memory CMP systems. In HPCA, 2012.

[27] D. Kaseridis et al. Cache friendliness-aware managementof
shared last-level caches for highperformance multi-core sys-
tems. IEEE TC, April 2014.

[28] D. Kaseridis et al. Minimalist open-page: A DRAM page-
mode scheduling policy for the many-core era. In MICRO,
2011.

[29] S. Kim et al. Fair cache sharing and partitioning in a chip
multiprocessor architecture. In PACT, 2004.

[30] Y. Kim et al. ATLAS: A scalable and high-performance
scheduling algorithm for multiple memory controllers. In
HPCA, 2010.

[31] Y. Kim et al. Thread cluster memory scheduling: Exploiting
differences in memory access behavior. In MICRO, 2010.

[32] Y. Kim et al. Ramulator: A fast and extensible DRAM
simulator. CAL, 2015.

[33] X. Lin and R. Balasubramonian. Refining the utility metric
for utility-based cache partitioning. In WDDD, 2009.

[34] F. Liu et al. Understanding how off-chip memory bandwidth
partitioning in chip multiprocessors affects system perfor-
mance. In HPCA, 2010.

[35] L. Liu et al. A software memory partition approach for
eliminating bank-level interference in multicore systems. In
PACT, 2012.

[36] M. Liu and T. Li. Optimizing virtual machine consolidation
performance on numa server architecture for cloud workloads.
In ISCA, 2014.

[37] C.-K. Luk et al. Pin: Building customized program analysis
tools with dynamic instrumentation. In PLDI, 2005.

[38] K. Luo et al. Balancing thoughput and fairness in SMT
processors. In ISPASS, 2001.

[39] C. Luque et al. CPU accounting in CMP processors. IEEE
CAL, January 2009.

[40] J. Mars et al. Bubble-Up: Increasing utilization in mod-
ern warehouse scale computers via sensible co-locations. In
MICRO, 2011.

[41] Micron. Verilog: DDR3 SDRAM Verilog model.

[42] Micron. 2Gb DDR3 SDRAM, 2012.
[43] T. Moscibroda and O. Mutlu. Memory performance attacks:

Denial of memory service in multi-core systems. In USENIX
Security, 2007.

[44] T. Moscibroda and O. Mutlu. Distributed order scheduling
and its application to multi-core DRAM controllers. In PODC,
2008.

[45] S. P. Muralidhara et al. Reducing memory interference in
multicore systems via application-aware memory channel par-
titioning. In MICRO, 2011.

[46] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO, 2007.

[47] O. Mutlu and T. Moscibroda. Parallelism-aware batch schedul-
ing: Enhancing both performance and fairness of shared
DRAM systems. In ISCA, 2008.

[48] O. Mutlu et al. Runahead execution: An alternative to
very large instruction windows for out-of-order processors. In
HPCA, 2003.

[49] K. Nesbit et al. Fair queuing memory systems. In MICRO,
2006.

[50] G. Nychis et al. Next generation on-chip networks: What
kind of congestion control do we need? In HotNets, 2010.

[51] G. Nychis et al. On-chip networks from a networking perspec-
tive: Congestion and scalability in many-core interconnects.
In SIGCOMM, 2012.

[52] H. Patil et al. Pinpointing representative portions of large
Intel Itanium programs with dynamic instrumentation. In
MICRO, 2004.

[53] J. Pomerene et al. Prefetching system for a cache having
a second directory for sequentially accessed blocks. Patent
407110 A, 1989.

[54] M. Qureshi et al. Adaptive insertion policies for high perfor-
mance caching. In ISCA, 2007.

[55] M. Qureshi et al. A case for MLP-aware cache replacement.
In ISCA, 2006.

[56] M. Qureshi and Y. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches. In MICRO, 2006.

[57] J. Rao et al. Optimizing virtual machine scheduling in numa
multicore systems. In HPCA, 2013.

[58] S. Rixner et al. Memory access scheduling. In ISCA, 2000.
[59] P. Rosenfeld et al. DRAMSim2: A cycle accurate memory

system simulator. IEEE CAL, January 2011.
[60] A. Sandberg et al. Modeling performance variation due to

cache sharing. In HPCA, 2013.
[61] V. Seshadri et al. The evicted-address filter: A unified mecha-

nism to address both cache pollution and thrashing. In PACT,
2012.

[62] T. Sherwood et al. Automatically characterizing large scale
program behavior. In ASPLOS, 2002.

[63] S. Srinath et al. Feedback directed prefetching: Improving the
performance and bandwidth-efficiency of hardware prefetchers.
In HPCA, 2007.

[64] H. Stone et al. Optimal partitioning of cache memory. IEEE
TC, September 1992.

[65] L. Subramanian et al. The blacklisting memory scheduler:
Achieving high performance and fairness at low cost. In ICCD,
2014.

[66] L. Subramanian et al. MISE: Providing performance pre-
dictability and improving fairness in shared main memory
systems. In HPCA, 2013.

[67] L. Tang et al. The impact of memory subsystem resource
sharing on datacenter applications. In ISCA, 2011.

[68] Transaction Processing Performance Council. . http://www.
tpc.org/.

[69] H. Vandierendonck and A. Seznec. Fairness metrics for multi-
threaded processors. IEEE CAL, February 2011.

[70] H. Wang et al. A-DRM: Architecture-aware distributed re-
source management of virtualized clusters. In VEE, 2015.

[71] M. Xie et al. Improving system throughput and fairness
simultaneously in shared memory CMP systems via dynamic
bank partitioning. In HPCA, 2014.

[72] H. Yang et al. Bubble-flux: Precise online qos management
for increased utilization in warehouse scale computers. In
ISCA, 2013.

[73] S. Zhuravlev et al. Addressing shared resource contention in
multicore processors via scheduling. In ASPLOS, 2010.

[74] W. Zuravleff and T. Robinson. Controller for a synchronous
DRAM that maximizes throughput by allowing memory re-
quests and commands to be issued out of order. Patent
5630096, 1997.

14

http://www.tpc.org/
http://www.tpc.org/

	Introduction
	Background and Motivation
	Previous Work on Slowdown Estimation
	Motivation and Our Goal

	Overview of ASM
	Observation: Access Rate as a Proxy for Performance
	Challenge: Accurately Estimating CARalone
	Why is ASM Better than Prior Work?

	Implementing ASM
	Measuring CARshared
	Estimating CARalone
	Accounting for Memory Queueing Delay
	Sampling the Auxiliary Tag Store
	Hardware Cost

	Methodology
	Evaluation of the Model
	Distribution of Slowdown Estimation Error
	Impact of Prefetching
	Latency Distribution: Benefits of Epoch-Based Aggregation
	Benefits of Estimating Shared Cache Interference
	Sensitivity to System Parameters
	Sensitivity to Epoch and Quantum Lengths

	Leveraging ASM
	ASM Cache Partitioning (ASM-Cache)
	Mechanism.
	Evaluation.

	ASM Memory Bandwidth Partitioning
	Mechanism.
	Evaluation.

	Providing Soft Slowdown Guarantees
	Fair Pricing in Cloud Systems
	Job Migration and Admission Control

	Related Work
	Conclusion

