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Impact of 
Shared Resource Interference
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2. Unpredictable application slowdowns
1. High application slowdowns
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Our Goal: Achieve High and Predictable Performance



Outline

1. Quantify Impact of Interference - Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management
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Quantifying Impact of 
Shared Resource Interference
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Slowdown: Definition
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Approach: Impact of 
Interference on Performance 

7

Alone 
(No interference)

time

Execution time

Shared 
(With interference)

time

Execution time

Impact of 
Interference

Previous Approach: Estimate impact of 
interference at a per-request granularity

Difficult to estimate due to request overlap

Our Approach: Estimate impact of 
interference aggregated over requests
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Observation: Shared Cache Access Rate 
is a Proxy for Performance

Performance  Shared Cache Access rate
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Outline
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Estimating Cache Access Rate Alone
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Estimating Cache Access Rate Alone
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Highest Priority Minimizes 
Memory Bandwidth Interference 

Can minimize impact of main memory interference 
by giving the application highest priority at the 

memory controller 
(Subramanian et al., HPCA 2013) 

Highest priority  Little interference

(almost as if the application were run alone)
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1. Highest priority minimizes interference
2. Enables estimation of miss service time 

(used to account for shared cache interference)



Estimating Cache Access Rate Alone
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Cache Capacity Contention
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Shared Cache Interference is 
Hard to Minimize Through Priority
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Takes effect instantlyMany blocks of the blue core
Takes a long time for red core to benefit 

from cache priorityLong warmup 
Lots of interference to other applications



Our Approach: 
Quantify and Remove Cache Interference

1. Quantify impact of shared cache interference

2. Remove impact of shared cache interference 
on CARAlone estimates
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1. Quantify Shared Cache Interference

18

Main 
Memory

Shared 
Cache

Cache 
Access Rate

Auxiliary 
Tag Store

Priority

Core

Core

Still in auxiliary 
tag store

Auxiliary 
Tag StoreCount number of such contention misses



2. Remove Cycles to Serve 
Contention Misses from CARAlone Estimates
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From auxiliary tag store
when given high priority

Measured when application is 
given high priority

Remove cache contention cycles when estimating 
Cache Access Rate Alone (CAR Alone)

Cache Contention Cycles = #Contention Misses x          
Average Miss Service Time



Accounting for Memory and 
Shared Cache Interference

• Accounting for memory interference

CAR Alone=
# Accesses During High Priority Epochs

# High Priority Cycles

• Accounting for memory and cache interference

CAR Alone=
# Accesses During High Priority Epochs

# High Priority Cycles −# Contention Cycles
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Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management
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Application Slowdown Model (ASM)
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ASM: Interval Based Operation

time
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A More Accurate and Simple Model

• More accurate: Takes into account request 
overlap behavior
– Implicit through aggregate estimation of cache access 

rate and miss service time
– Unlike prior works that estimate per-request 

interference

• Simpler hardware: Amenable to set sampling in 
the auxiliary tag store
– Need to measure only contention miss count
– Unlike prior works that need to know if each request 

is a contention miss or not
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Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation
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Previous Work on 
Slowdown Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Count interference cycles experienced by each request
26
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Methodology

• Configuration of our simulated system
– 4 cores

– 1 channel, 8 banks/channel

– DDR3 1333 DRAM 

– 2MB shared cache

• Workloads
– SPEC CPU2006 and NAS 

– 100 multiprogrammed workloads
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Model Accuracy Results
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Average error of ASM’s slowdown estimates: 10% 
Previous models have 29%/40% average error



Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management
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Outline
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Cache Capacity Partitioning
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Problem: Does not directly translate to performance and slowdowns



ASM-Cache: Slowdown-aware 
Cache Capacity Partitioning

• Goal: Achieve high fairness and performance 
through slowdown-aware cache partitioning

• Key Idea: Allocate more cache space to 
applications whose slowdowns reduce the 
most with more cache space
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Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management
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Memory Bandwidth Partitioning
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ASM-Mem: Slowdown-aware 
Memory Bandwidth Partitioning

• Key Idea: Prioritize an application 
proportionally to its slowdown

• Application i’s requests prioritized at the 
memory controller for its fraction
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Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management
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Coordinated Resource 
Allocation Schemes
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1. Employ ASM-Cache to partition cache capacity 
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Fairness and Performance Results
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16-core system 
100 workloads

14%/8% unfairness reduction on 1/2 channel systems 
compared to PARBS+UCP with similar performance 
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Other Results in the Paper

• Distribution of slowdown estimation error

• Sensitivity to system parameters

– Core count, memory channel count, cache size

• Sensitivity to model parameters

• Impact of prefetching

• Case study showing ASM’s potential for 
providing slowdown guarantees
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Summary

• Problem: Uncontrolled memory interference cause high 
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory 

interference and quantifying cache interference

• Applications of Our Model
– Slowdown-aware cache and memory management to achieve 

high performance, fairness and performance guarantees

• Source Code Release by January 2016
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Quantifying and Controlling Impact of 
Interference at Shared Caches and Main Memory
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Highest Priority Minimizes 
Memory Bandwidth Interference 
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Memory

1. Run alone
Time units Service order

Main 
Memory

12

Request Buffer State

Main 
Memory

2. Run with another application
Service order

Main 
Memory

123

Request Buffer State

Main 
Memory

3. Run with another application: highest priority
Service order

Main 
Memory

123

Time units

Time units

3

43



Accounting for Queueing

• A cycles is a queueing cycle if

– a request from the highest priority application is 
outstanding and

– the previously scheduled request was from 
another application
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CAR Alone=
# Accesses During High Priority Epochs

# High Priority Cycles−# Contention Cycles−#Queueing Cycles



Impact of Cache Capacity Contention
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Cache capacity interference causes high 
application slowdowns
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Error with No Sampling
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Error Distribution
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Miss Service Time Distributions
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Impact of Prefetching
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Sensitivity to 
Epoch and Quantum Lengths
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Sensitivity to Core Count
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Sensitivity to Cache Capacity
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Sensitivity to 
Auxiliary Tag Store Sampling
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ASM-Cache:
Fairness and Performance Results
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Significant fairness benefits across different systems 
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ASM-Cache:
Fairness and Performance Results
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ASM-Mem: 
Fairness and Performance Results
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ASM-QoS: Meeting Slowdown Bounds
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Previous Approach: Estimate 
Interference Experienced Per-Request
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Estimation Per-Request Difficult



Estimating PerformanceAlone
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Impact of Interference on Performance 

60

Alone 
(No interference)

time

Execution time

Shared 
(With interference) time

Execution time

Impact of 
Interference

Previous Approach: Estimate impact of 
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Difficult to estimate due to request overlap


