Application Slowdown Model

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,
Arnab Ghosh, Samira Khan, Onur Mutlu

SAFARI Carnegie Mellon (intel)

Problem:
Interference at Shared Resources

Core Core
Core Core

Shared

Impact of
Shared Resource Interference

6 -

Slowdown
o — No w AN U (@)}

Slowdown
o — No w AN Ul

'l = B

leslie3d (core 0)) gcc (core 1) leslie3d (core 0) mcf (core 1)

Our Goal: Achieve High and Predictable Performance

1. Quantify Impact of Interference - Slowdown

— Key Observation
— Estimating Cache Access Rate 5,
— ASM: Putting it All Together
— Evaluation
2. Control Slowdown
— Slowdown-aware Cache Capacity Allocation

— Slowdown-aware Memory Bandwidth Allocation
— Coordinated Cache/Memory Management

Quantifying Impact of
Shared Resource Interference

Alone
(No interference)

> time

N

Execution time

Shared time
(With interference)
Execution time

Impact of
Interference

Slowdown: Definition

Execution Time Shared

Slowdown=

Execution Time Alone

Approach: Impact of
Interference on Performance

Alone
(No interference) <

> time

Execution time

time
Execution time

Impact of
Interference

Shared
(With interference)

Our Approach: Estimate impact of
interference aggregated over requests

Outline

1. Quantify Slowdown

— Key Observation

2. Control Slowdown

Observation: Shared Cache Access Rate

is a Proxy for Performance
Performance o Shared Cache Access rate

Intel Core i5, 4 cores

Difficult

1 12 14 16 18 2 2.2
Shared Cache Access Rate ;...

Shared Cache Access Rate ;. .4

Outline

1. Quantify Slowdown

— Estimating Cache Access Rate 5,

2. Control Slowdown

10

Estimating Cache Access Rate ,,, ..

Core

Core

Challenge 2€Challenge 1.:
Shared caciMain memory
capacity bandwidth
interferenceinterference

Estimating Cache Access Rate ,,, ..

Core

Main

Core

Memory

Challenge 1:
Main memory

bandwidth
interference

Highest Priority Minimizes
Memory Bandwidth Interference

Can minimize impact of main memory interference
by giving the application highest priority at the
memory controller
(Subramanian et al., HPCA 2013)

1. Highest priority minimizes interference
2. Enables estimation of miss service time
(used to account for shared cache interference)

13

Estimating Cache Access Rate ,,, ..

-

Core Core ‘ b
Shared

“ Cache ‘

—

Challenge 2:
Shared cache
capacity
interference

Cache Capacity Contention

Cache

Access Rate -
é Main

<:I Memory

Priority

Applications evict each other’s blocks
from the shared cache

15

Shared Cache Interference is
Hard to Minimize Through Priority

Main
<:I Memory
. .
o Priority
Priority
Many blocks of the blue core Takes effect instantly

Long warmup
Lots of interference to other applications

16

Our Approach:
Quantify and Remove Cache Interference

1. Quantify impact of shared cache interference

2. Remove impact of shared cache interference

on CAR, .. €Stimates

17

1. Quantify Shared Cache Interference

Cache
Access Rate

- Main
Memory
Core <:
- Priority

Auxiliary
lag Store
Still in auxiliary

—— tag store

Count number of such contention misses

18

2. Remove Cycles to Serve

Contention Misses from CAR,,, .. Estimates

Cache Contention Cycles = #Contention Misses x
Average Miss Service Time

From a',”(” iar y tag fto.r € Measured when application is
when given high priority given high priority

Remove cache contention cycles when estimating
Cache Access Rate ,,,. (CAR 4,,.)

19

Accounting for Memory and
Shared Cache Interference

» Accounting for memory interference

Accesses During High Priority Epochs
High Priority Cycles

CAR Alone ™

« Accounting for memory and cache interference

CAR _ # Accesses During High Priority Epochs
Alone — # High Priority Cycles @ention CycleSS

20

Outline

1. Quantify Slowdown

— ASM: Putting it All Together

2. Control Slowdown

21

Application Slowdown Model (ASM)

Cache Access Rate ,, _ (CARAI
Cache Access Rate , ., (CARSh

one)

Slowdown=

ared)

ASM: Interval Based Operation

Interval Interval

A A

(Y A\
—————————————————————————————————— || &

) | B

m Measure CARg; , eqg m Measure CARg; ., eqg
= Estimate CAR = Estimate CAR

Alone Alone

7 /
Estimate Estimate

slowdown slowdown
23

A More Accurate and Simple Model

 More accurate: Takes into account request
overlap behavior

— Implicit through aggregate estimation of cache access
rate and miss service time

— Unlike prior works that estimate per-request
interference

* Simpler hardware: Amenable to set sampling in
the auxiliary tag store
— Need to measure only contention miss count

— Unlike prior works that need to know if each request
IS @ contention miss or not

24

Outline

1. Quantify Slowdown

— Evaluation

2. Control Slowdown

25

Previous Work on

Slowdown Estimation

* Previous work on slowdown estimation
— STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO '07]

T (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS 'T
er-thread Cycle Accounting [Du Bois et al., HIPEAC '13]

e Basic ldea:
Execution Time
Slowdown= — ——_— shared
< kEXxecution TlmeM

Count interference cycles experienced by each request

Methodology

e Configuration of our simulated system

— 4 cores

— 1 channel, 8 banks/channel
— DDR3 1333 DRAM

— 2MB shared cache

e Workloads

— SPEC CPU2006 and NAS
— 100 multiprogrammed workloads

Slowdown Estimation

Error (in %)

160
140

=
N BB O 00 O N
O O O O O o o

Model Accuracy Results

W FST W PTCA HASM

Average error of ASM’s slowdown estimates: 10%
Previous models have 29%/40% average error

Average# ‘ ‘ ‘ ‘ ‘ ‘

28

1. Quantify Slowdown

— Key Observation

— Estimating Cache Access Rate 5,
— ASM: Putting it All Together

— Evaluation

2. Control Slowdown
— Slowdown-aware Cache Capacity Allocation

— Slowdown-aware Memory Bandwidth Allocation
— Coordinated Cache/Memory Management

29

Outline

1. Quantify Slowdown

2. Control Slowdown
— Slowdown-aware Cache Capacity Allocation

30

Cache Capacity Partitioning

Previous partitioning schemes mainly focus on miss count reduction
Problem: Does not directly translate to performance and slowdowns

31

ASM-Cache: Slowdown-aware
Cache Capacity Partitioning

* Goal: Achieve high fairness and performance
through slowdown-aware cache partitioning

* Key Idea: Allocate more cache space to
applications whose slowdowns reduce the
most with more cache space

32

Outline

1. Quantify Slowdown

2. Control Slowdown

— Slowdown-aware Memory Bandwidth Allocation

33

Memory Bandwidth Partitioning

Goal: Achieve high fairness and performance
through slowdown-aware bandwidth partitioning

34

ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

* Key Idea: Prioritize an application
proportionally to its slowdown

Slowdown,
ZJ_:SIowdownj

High Priority Fraction; =

* Application i’s requests prioritized at the
memory controller for its fraction

Outline

1. Quantify Slowdown

2. Control Slowdown

— Coordinated Cache/Memory Management

36

Coordinated Resource
Allocation Schemes

Cache capacity-aware

- bandwidth allocation
DEEE

EEEE
FEEE
FEEE

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache

Unfairness

Fairness and Performance Results

16-core system

100 workloads

11 0.35

10 03 B FRFCFS-NoPart
5 9 o 0.25 ® FRFCFS+UCP
e Q B TCM+UCP
o 8 © 0.2
® £ m PARBS+UCP
o / S 0.15
3 o m ASM-Cache-Mem
2 6 a 0.1

5 0.05

4 0

1 2
Number of Channels

1 2
Number of Channels

14%/8% unfairness reduction on 1/2 channel systems
compared to PARBS+UCP with similar performance

38

Other Results in the Paper

Distribution of slowdown estimation error
Sensitivity to system parameters

— Core count, memory channel count, cache size
Sensitivity to model parameters
Impact of prefetching

Case study showing ASM’s potential for
providing slowdown guarantees

Summary

Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

Goal: Quantify and control slowdowns

Key Contribution:
— ASM: An accurate slowdown estimation model
— Average error of ASM: 10%

Key Ideas:
— Shared cache access rate is a proxy for performance

— Cache Access Rate ,, . can be estimated by minimizing memory
interference and quantifying cache interference

Applications of Our Model

— Slowdown-aware cache and memory management to achieve
high performance, fairness and performance guarantees

Source Code Release by January 2016

40

Application Slowdown Model

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,
Arnab Ghosh, Samira Khan, Onur Mutlu

SAFARI Carnegie Mellon (intel)

42

Highest Priority Minimizes
Memory Bandwidth Interference

1. Run alone
Time units Service order
Request Buffer State Mee -
|
|
|

Main Main
- - Memory Memory

2. Run with another application .
Tlme:unlts

SerV|ce order

Request Buffer State

I
Main
I | o - -
|

3. Run with another application: highest prior,ity

Time{units ! Service order

Main
- Memory

Request Buffer State

3 2 1
| .. [
Memory

Main
Memory

43

Accounting for Queueing

CAR _ # Accesses During High Priority Epochs
Alone™™ # High Priority Cycles -# Contention Cycles ueueing Cycl

* Acyclesis a queueing cycle if

— a request from the highest priority application is
outstanding and

— the previously scheduled request was from
another application

Impact of Cache Capacity Contention

Shared Main Memory Shared Main Memory and Caches
2 - 2 -
o o
S 15 - S 15 -
o (@)
O 1 ©C 1
S S
©Oos O o5
)])]
0 0 -
bzip2 (core 0) soplex (core 1) bzip2 (core 0) soplex (core 1)

Cache capacity interference causes high
application slowdowns

45

Slowdown Estimation Error

80%
70%
60%
50%
40%
30%
20%
10%

0%

Error with No Sampling

FST ——PTCA === ASM s

46

Distribution

Error Distribution

10 20 30 50 70 100
Error (in %)

% of Requests

70

60 |
50
40 + £
30)

20 |
10 |

0

Miss Service Time Distributions

Measured
FST wwvuwun JINSY / —

50 100 150 200 250 300 350 400
Latency range (in cycles)

(a) No sampling

% of Requests

70

60 |
50 .
40 P,
30 [
20 |
10 f

0

Measured
FST wwvvens XS] Y r—

50 100 150 200 250 300 350 400
Latency range (in cycles)

(b) With sampling

Impact of Prefetching

FST —— PTCA mmmm ASN ==
30% .

25% |
20% r

15%
10%
5%

Slowdown Estimation Error

0%

49

Sensitivity to
Epoch and Quantum Lengths

Epoch
Length
Quantum 1000 10000 50000 100000
Length
1000000 18.4% 12% 14% 16.6%
5000000 17.1% 9.9% 10.6% 11.5%
10000000 16.9% 9.2% 9.9% 10.5%

Sensitivity to Core Count

FST C———PTCA s ASM
50% ; . .

40%

30% [

20%

0%
4 8 16
Number of Cores

Slowdown Estimation Error

51

Sensitivity to Cache Capacity

FST ———PTCA s ASM mmm

r

W
S
2

25%

20%

15%
10%
5% |

Slowdown Estimation Erro

0%
1MB 2MB 4MB
Cache Capacity

Sensitivity to
Auxiliary Tag Store Sampling

128KB C—1 32KB mmmm 8KB
f4KB mmm 16KE mmmm 4KB

— 50%

40% t

30% r

20% r

10%

Slowdown Estimation Erro

0%
FST PTCA ASM

53

Fairness
(Lower is better)

ASM-Cache:
Fairness and Performance Results

15 0.8
@ 0.6
10 c
1)
€04 ® NoPart
o
5 b W UCP
a 0.2
m ASM-Cache
0 - 0 -
4 8 16 4 8 16

Number of Cores Number of Cores

Significant fairness benefits across different systems

54

ASM-Cache:
Fairness and Performance Results

NoPart —— MCFQ mm NoPart —— MCFQ o
14 UCP m= ASM-Cache == 0.7 UCP == ASM-Cache ==
s 12 8T 0.6 [
310 | S8 05|
83 Eg
053(7) 8 ..gcg 04 r -
SE 6| AT 03|
= £2
- 4 t Qg 0.2 r
P cn:‘EU
= 2 BA= 0.1 r
0 0
4 8 16 4 8 16

Number of Cores Number of Cores

55

Fairness

ASM-Mem:
Fairness and Performance Results

20 0.8
£ 15 306
Q c
ge] S ® FRFCFS
@ 10 § 0.4 oM
v T
§ 5 Q0.2 m PARBS
T 0 0 - m ASM-Mem

4 8 16 4 8 16
Number of Cores Number of Cores

Significant fairness benefits across different systems

56

ASM-QoS: Meeting Slowdown Bounds

Slowdown
= - N w
o — (Oa] N o w (On] D
| |

(@]

o>

sphinx3

B Naive-QoS

M ASM-QoS-2.5
W ASM-QoS-3
B ASM-QoS-3.5
m ASM-QoS-4

57

Previous Approach: Estimate
Interference Experienced Per-Request

Shared

(With interference) _ > time

Execution time

N
\

Reg A

Req B

Req C

Request Overlap Makes Interference
Estimation Per-Request Difficult

58

Estimating Performance,, ..

Shared R
(With interference) |, 5
Execution time

Request
- Queued
- Request
Served
Difficult to estimate impact of interference
per-request due to request overlap

59

Impact of Interference on Performance

Alone
(No interference)

> time

N

Execution time

Shared
(With interference)

I — > time
/ Execution time

Impact of
Interference

Previous Approach: Estimate impact of
interference at a per-request granularity
Difficult to estimate due to request overlap

N

60

