
Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,

Arnab Ghosh, Samira Khan, Onur Mutlu

1

Application Slowdown Model

Problem:
Interference at Shared Resources

2

Main
Memory

Shared
Cache

CoreCore

CoreCore

Impact of
Shared Resource Interference

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

S
lo

w
d

o
w

n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

S
lo

w
d

o
w

n

2. Unpredictable application slowdowns
1. High application slowdowns

3

gcc (core 1) mcf (core 1)

Our Goal: Achieve High and Predictable Performance

Outline

1. Quantify Impact of Interference - Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management

4

Quantifying Impact of
Shared Resource Interference

5

Alone
(No interference)

time

Execution time

Shared
(With interference)

time

Execution time

Impact of
Interference

Slowdown: Definition

6

Slowdown=
Execution Time

Shared

Execution Time
Alone

Approach: Impact of
Interference on Performance

7

Alone
(No interference)

time

Execution time

Shared
(With interference)

time

Execution time

Impact of
Interference

Previous Approach: Estimate impact of
interference at a per-request granularity

Difficult to estimate due to request overlap

Our Approach: Estimate impact of
interference aggregated over requests

Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management

8

Observation: Shared Cache Access Rate
is a Proxy for Performance

Performance Shared Cache Access rate

9

1

1.2

1.4

1.6

1.8

2

2.2

1 1.2 1.4 1.6 1.8 2 2.2

Sl
o

w
d

o
w

n

Shared Cache Access Rate Alone/
Shared Cache Access Rate Shared

astar

lbm

bzip2

Slowdown=
Cache Access Rate

Alone

Cache Access Rate
Shared

Intel Core i5, 4 cores

Difficult

Easy

Slowdown=
Execution Time

Shared

Execution Time
Alone

Shared Cache Access Rate Alone

Shared Cache Access Rate Shared

Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management

10

Estimating Cache Access Rate Alone

11

Main
Memory

Shared
Cache

CoreCore

CoreCore

Challenge 1:
Main memory

bandwidth
interference

Challenge 2:
Shared cache

capacity
interference

Estimating Cache Access Rate Alone

12

Main
Memory

Shared
Cache

CoreCore

CoreCore

Challenge 1:
Main memory

bandwidth
interference

Highest Priority Minimizes
Memory Bandwidth Interference

Can minimize impact of main memory interference
by giving the application highest priority at the

memory controller
(Subramanian et al., HPCA 2013)

Highest priority Little interference

(almost as if the application were run alone)

13

1. Highest priority minimizes interference
2. Enables estimation of miss service time

(used to account for shared cache interference)

Estimating Cache Access Rate Alone

14

Main
Memory

Shared
Cache

CoreCore

CoreCore

Challenge 2:
Shared cache

capacity
interference

Cache Capacity Contention

15

Main
Memory

Shared
Cache

Cache
Access Rate

Priority

Core

Core

Applications evict each other’s blocks
from the shared cache

Shared Cache Interference is
Hard to Minimize Through Priority

16

Main
Memory

Shared
Cache

Priority

Core

Core

Priority

Takes effect instantlyMany blocks of the blue core
Takes a long time for red core to benefit

from cache priorityLong warmup
Lots of interference to other applications

Our Approach:
Quantify and Remove Cache Interference

1. Quantify impact of shared cache interference

2. Remove impact of shared cache interference
on CARAlone estimates

17

1. Quantify Shared Cache Interference

18

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tag Store

Priority

Core

Core

Still in auxiliary
tag store

Auxiliary
Tag StoreCount number of such contention misses

2. Remove Cycles to Serve
Contention Misses from CARAlone Estimates

19

From auxiliary tag store
when given high priority

Measured when application is
given high priority

Remove cache contention cycles when estimating
Cache Access Rate Alone (CAR Alone)

Cache Contention Cycles = #Contention Misses x
Average Miss Service Time

Accounting for Memory and
Shared Cache Interference

• Accounting for memory interference

CAR Alone=
Accesses During High Priority Epochs

High Priority Cycles

• Accounting for memory and cache interference

CAR Alone=
Accesses During High Priority Epochs

High Priority Cycles −# Contention Cycles

20

Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management

21

Application Slowdown Model (ASM)

22

Slowdown=
Cache Access Rate

Alone
(CARAl

one
)

Cache Access Rate
Shared

(CARSh
ared

)

ASM: Interval Based Operation

time

Interval

Estimate

slowdown

Interval

Estimate

slowdown

 Measure CARShared

 Estimate CARAlone

 Measure CARShared

 Estimate CARAlone

23

A More Accurate and Simple Model

• More accurate: Takes into account request
overlap behavior
– Implicit through aggregate estimation of cache access

rate and miss service time
– Unlike prior works that estimate per-request

interference

• Simpler hardware: Amenable to set sampling in
the auxiliary tag store
– Need to measure only contention miss count
– Unlike prior works that need to know if each request

is a contention miss or not

24

Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

25

Previous Work on
Slowdown Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ’07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ’10]

– Per-thread Cycle Accounting [Du Bois et al., HiPEAC ’13]

• Basic Idea:

Count interference cycles experienced by each request
26

Slowdown=
Execution Time

Shared

Execution Time
Alone

Methodology

• Configuration of our simulated system
– 4 cores

– 1 channel, 8 banks/channel

– DDR3 1333 DRAM

– 2MB shared cache

• Workloads
– SPEC CPU2006 and NAS

– 100 multiprogrammed workloads

27

Model Accuracy Results

28

Select applications

0

20

40

60

80

100

120

140

160

ca
lc

u
lix

p
o

vr
ay

to
n

to

n
am

d

d
ea

lII

sj
en

g

p
er

lb
en

…

go
b

m
k

xa
la

n
cb

…

sp
h

in
x3

G
em

sF
…

o
m

n
et

p
p

lb
m

le
sl

ie
3

d

so
p

le
x

m
ilc

lib
q

m
cf

N
P

B
b

t

N
P

B
ft

N
P

B
is

N
P

B
u

a

A
ve

ra
ge

Sl
o

w
d

o
w

n
 E

st
im

at
io

n

Er
ro

r
(i

n
 %

)

FST PTCA ASM

Average error of ASM’s slowdown estimates: 10%
Previous models have 29%/40% average error

Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management

29

Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management

30

Cache Capacity Partitioning

31

Main
Memory

Shared
Cache

Core

Core

Previous partitioning schemes mainly focus on miss count reduction
Problem: Does not directly translate to performance and slowdowns

ASM-Cache: Slowdown-aware
Cache Capacity Partitioning

• Goal: Achieve high fairness and performance
through slowdown-aware cache partitioning

• Key Idea: Allocate more cache space to
applications whose slowdowns reduce the
most with more cache space

32

Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management

33

Memory Bandwidth Partitioning

34

Main
Memory

Shared
Cache

Core

Core

Goal: Achieve high fairness and performance
through slowdown-aware bandwidth partitioning

ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

• Key Idea: Prioritize an application
proportionally to its slowdown

• Application i’s requests prioritized at the
memory controller for its fraction

35

j
j

i
i

Slowdown

Slowdown
 FractionPriority High

Outline

1. Quantify Slowdown

– Key Observation

– Estimating Cache Access Rate Alone

– ASM: Putting it All Together

– Evaluation

2. Control Slowdown

– Slowdown-aware Cache Capacity Allocation

– Slowdown-aware Memory Bandwidth Allocation

– Coordinated Cache/Memory Management

36

Coordinated Resource
Allocation Schemes

37

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache capacity-aware
bandwidth allocation

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache

Fairness and Performance Results

38

16-core system
100 workloads

14%/8% unfairness reduction on 1/2 channel systems
compared to PARBS+UCP with similar performance

4

5

6

7

8

9

10

11

1 2

U
n

fa
ir

n
es

s
(L

o
w

er
 is

 b
et

te
r)

Number of Channels

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2

P
er

fo
rm

an
ce

Number of Channels

FRFCFS-NoPart

FRFCFS+UCP

TCM+UCP

PARBS+UCP

ASM-Cache-Mem

Other Results in the Paper

• Distribution of slowdown estimation error

• Sensitivity to system parameters

– Core count, memory channel count, cache size

• Sensitivity to model parameters

• Impact of prefetching

• Case study showing ASM’s potential for
providing slowdown guarantees

39

Summary

• Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

• Goal: Quantify and control slowdowns
• Key Contribution:

– ASM: An accurate slowdown estimation model
– Average error of ASM: 10%

• Key Ideas:
– Shared cache access rate is a proxy for performance
– Cache Access Rate Alone can be estimated by minimizing memory

interference and quantifying cache interference

• Applications of Our Model
– Slowdown-aware cache and memory management to achieve

high performance, fairness and performance guarantees

• Source Code Release by January 2016

40

Quantifying and Controlling Impact of
Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri,

Arnab Ghosh, Samira Khan, Onur Mutlu

41

Application Slowdown Model

Backup

42

Highest Priority Minimizes
Memory Bandwidth Interference

Request Buffer State

Main
Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State

Main
Memory

2. Run with another application
Service order

Main
Memory

123

Request Buffer State

Main
Memory

3. Run with another application: highest priority
Service order

Main
Memory

123

Time units

Time units

3

43

Accounting for Queueing

• A cycles is a queueing cycle if

– a request from the highest priority application is
outstanding and

– the previously scheduled request was from
another application

44

CAR Alone=
Accesses During High Priority Epochs

High Priority Cycles−# Contention Cycles−#Queueing Cycles

Impact of Cache Capacity Contention

45

Cache capacity interference causes high
application slowdowns

Shared Main Memory Shared Main Memory and Caches

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1)

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1)
S

lo
w

d
o

w
n

Error with No Sampling

46

Error Distribution

47

Miss Service Time Distributions

48

Impact of Prefetching

49

Sensitivity to
Epoch and Quantum Lengths

50

Sensitivity to Core Count

51

Sensitivity to Cache Capacity

52

Sensitivity to
Auxiliary Tag Store Sampling

53

ASM-Cache:
Fairness and Performance Results

54

Significant fairness benefits across different systems

0

5

10

15

4 8 16

Fa
ir

n
es

s
(L

o
w

e
r

is
 b

et
te

r)

Number of Cores

0

0.2

0.4

0.6

0.8

4 8 16

P
e

rf
o

rm
an

ce

Number of Cores

NoPart

UCP

ASM-Cache

ASM-Cache:
Fairness and Performance Results

55

ASM-Mem:
Fairness and Performance Results

56

0

5

10

15

20

4 8 16

Fa
ir

n
es

s
(L

o
w

er
 is

 b
et

te
r)

Number of Cores

0

0.2

0.4

0.6

0.8

4 8 16
P

e
rf

o
rm

an
ce

Number of Cores

FRFCFS

TCM

PARBS

ASM-Mem

Significant fairness benefits across different systems

ASM-QoS: Meeting Slowdown Bounds

57

0

0.5

1

1.5

2

2.5

3

3.5

4

h264ref mcf sphinx3 soplex

Sl
o

w
d

o
w

n

Naive-QoS

ASM-QoS-2.5

ASM-QoS-3

ASM-QoS-3.5

ASM-QoS-4

Previous Approach: Estimate
Interference Experienced Per-Request

58

Shared
(With interference) time

Execution time

Req A

Req B

Req C

Request Overlap Makes Interference
Estimation Per-Request Difficult

Estimating PerformanceAlone

59

Shared
(With interference)

Execution time

Req A

Req B

Req C
Request
Queued
Request
Served

Difficult to estimate impact of interference
per-request due to request overlap

Impact of Interference on Performance

60

Alone
(No interference)

time

Execution time

Shared
(With interference) time

Execution time

Impact of
Interference

Previous Approach: Estimate impact of
interference at a per-request granularity

Difficult to estimate due to request overlap

