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Problem:
Interference at Shared Resources
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Our Goal: Achieve High and Predictable Performance




1. Quantify Impact of Interference - Slowdown

— Key Observation
— Estimating Cache Access Rate 5,
— ASM: Putting it All Together
— Evaluation
2. Control Slowdown
— Slowdown-aware Cache Capacity Allocation

— Slowdown-aware Memory Bandwidth Allocation
— Coordinated Cache/Memory Management



Quantifying Impact of
Shared Resource Interference
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Slowdown: Definition
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Approach: Impact of
Interference on Performance
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Our Approach: Estimate impact of
interference aggregated over requests



Outline

1. Quantify Slowdown

— Key Observation

2. Control Slowdown



Observation: Shared Cache Access Rate

is a Proxy for Performance
Performance o Shared Cache Access rate

Intel Core i5, 4 cores

Difficult
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Outline

1. Quantify Slowdown

— Estimating Cache Access Rate 5,

2. Control Slowdown
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Estimating Cache Access Rate ,,, ..
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Estimating Cache Access Rate ,,, ..
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Highest Priority Minimizes
Memory Bandwidth Interference

Can minimize impact of main memory interference
by giving the application highest priority at the
memory controller
(Subramanian et al., HPCA 2013)

1. Highest priority minimizes interference
2. Enables estimation of miss service time
(used to account for shared cache interference)
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Estimating Cache Access Rate ,,, ..
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Cache Capacity Contention
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Applications evict each other’s blocks
from the shared cache
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Shared Cache Interference is
Hard to Minimize Through Priority

Main
<:I Memory
. .
o Priority
Priority
Many blocks of the blue core Takes effect instantly

Long warmup
Lots of interference to other applications
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Our Approach:
Quantify and Remove Cache Interference

1. Quantify impact of shared cache interference

2. Remove impact of shared cache interference

on CAR, .. €Stimates
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1. Quantify Shared Cache Interference

Cache
Access Rate

- Main
Memory
Core <:
- Priority

Auxiliary
lag Store
Still in auxiliary

—— tag store

Count number of such contention misses
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2. Remove Cycles to Serve

Contention Misses from CAR,,, .. Estimates

Cache Contention Cycles = #Contention Misses x
Average Miss Service Time

From a',”(” iar y tag fto.r € Measured when application is
when given high priority given high priority

Remove cache contention cycles when estimating
Cache Access Rate ,,,. (CAR 4,,.)
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Accounting for Memory and
Shared Cache Interference

» Accounting for memory interference

# Accesses During High Priority Epochs
# High Priority Cycles

CAR Alone ™

« Accounting for memory and cache interference

CAR _ # Accesses During High Priority Epochs
Alone — # High Priority Cycles @ention CycleSS
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Outline

1. Quantify Slowdown

— ASM: Putting it All Together

2. Control Slowdown
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Application Slowdown Model (ASM)
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ASM: Interval Based Operation
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A More Accurate and Simple Model

 More accurate: Takes into account request
overlap behavior

— Implicit through aggregate estimation of cache access
rate and miss service time

— Unlike prior works that estimate per-request
interference

* Simpler hardware: Amenable to set sampling in
the auxiliary tag store
— Need to measure only contention miss count

— Unlike prior works that need to know if each request
IS @ contention miss or not
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Outline

1. Quantify Slowdown

— Evaluation

2. Control Slowdown
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Previous Work on

Slowdown Estimation

* Previous work on slowdown estimation
— STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO '07]

T (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS 'T
er-thread Cycle Accounting [Du Bois et al., HIPEAC '13]

e Basic ldea:
Execution Time
Slowdown= — ——_— shared
< kEXxecution TlmeM

Count interference cycles experienced by each request



Methodology

e Configuration of our simulated system

— 4 cores

— 1 channel, 8 banks/channel
— DDR3 1333 DRAM

— 2MB shared cache

e Workloads

— SPEC CPU2006 and NAS
— 100 multiprogrammed workloads



Slowdown Estimation

Error (in %)
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Model Accuracy Results
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Average error of ASM’s slowdown estimates: 10%
Previous models have 29%/40% average error

Average# ‘ ‘ ‘ ‘ ‘ ‘
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1. Quantify Slowdown

— Key Observation

— Estimating Cache Access Rate 5,
— ASM: Putting it All Together

— Evaluation

2. Control Slowdown
— Slowdown-aware Cache Capacity Allocation

— Slowdown-aware Memory Bandwidth Allocation
— Coordinated Cache/Memory Management
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Outline

1. Quantify Slowdown

2. Control Slowdown
— Slowdown-aware Cache Capacity Allocation
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Cache Capacity Partitioning

Previous partitioning schemes mainly focus on miss count reduction
Problem: Does not directly translate to performance and slowdowns

31



ASM-Cache: Slowdown-aware
Cache Capacity Partitioning

* Goal: Achieve high fairness and performance
through slowdown-aware cache partitioning

* Key Idea: Allocate more cache space to
applications whose slowdowns reduce the
most with more cache space
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Outline

1. Quantify Slowdown

2. Control Slowdown

— Slowdown-aware Memory Bandwidth Allocation
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Memory Bandwidth Partitioning

Goal: Achieve high fairness and performance
through slowdown-aware bandwidth partitioning
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ASM-Mem: Slowdown-aware
Memory Bandwidth Partitioning

* Key Idea: Prioritize an application
proportionally to its slowdown

Slowdown,
ZJ_:SIowdownj

High Priority Fraction; =

* Application i’s requests prioritized at the
memory controller for its fraction



Outline

1. Quantify Slowdown

2. Control Slowdown

— Coordinated Cache/Memory Management
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Coordinated Resource
Allocation Schemes

Cache capacity-aware

- bandwidth allocation
DEEE

EEEE
FEEE
FEEE

1. Employ ASM-Cache to partition cache capacity
2. Drive ASM-Mem with slowdowns from ASM-Cache




Unfairness

Fairness and Performance Results

16-core system

100 workloads

11 0.35

10 03 B FRFCFS-NoPart
5 9 o 0.25 ® FRFCFS+UCP
e Q B TCM+UCP
o 8 © 0.2
® £ m PARBS+UCP
o / S 0.15
3 o m ASM-Cache-Mem
2 6 a 0.1

5 0.05

4 0

1 2
Number of Channels

1 2
Number of Channels

14%/8% unfairness reduction on 1/2 channel systems
compared to PARBS+UCP with similar performance
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Other Results in the Paper

Distribution of slowdown estimation error
Sensitivity to system parameters

— Core count, memory channel count, cache size
Sensitivity to model parameters
Impact of prefetching

Case study showing ASM’s potential for
providing slowdown guarantees



Summary

Problem: Uncontrolled memory interference cause high
and unpredictable application slowdowns

Goal: Quantify and control slowdowns

Key Contribution:
— ASM: An accurate slowdown estimation model
— Average error of ASM: 10%

Key Ideas:
— Shared cache access rate is a proxy for performance

— Cache Access Rate ,, . can be estimated by minimizing memory
interference and quantifying cache interference

Applications of Our Model

— Slowdown-aware cache and memory management to achieve
high performance, fairness and performance guarantees

Source Code Release by January 2016
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Highest Priority Minimizes
Memory Bandwidth Interference

1. Run alone
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Accounting for Queueing

CAR _ # Accesses During High Priority Epochs
Alone™™ # High Priority Cycles -# Contention Cycles ueueing Cycl

* Acyclesis a queueing cycle if

— a request from the highest priority application is
outstanding and

— the previously scheduled request was from
another application



Impact of Cache Capacity Contention

Shared Main Memory Shared Main Memory and Caches
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Cache capacity interference causes high
application slowdowns

45



Slowdown Estimation Error
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Distribution

Error Distribution
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Impact of Prefetching
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Sensitivity to
Epoch and Quantum Lengths

Epoch
Length
Quantum 1000 10000 50000 100000
Length
1000000 18.4% 12% 14% 16.6%
5000000 17.1% 9.9% 10.6% 11.5%
10000000 16.9% 9.2% 9.9% 10.5%




Sensitivity to Core Count
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Sensitivity to Cache Capacity
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Sensitivity to
Auxiliary Tag Store Sampling
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Fairness
(Lower is better)

ASM-Cache:
Fairness and Performance Results
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Significant fairness benefits across different systems
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ASM-Cache:
Fairness and Performance Results
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Fairness

ASM-Mem:
Fairness and Performance Results
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Significant fairness benefits across different systems
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ASM-QoS: Meeting Slowdown Bounds
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Previous Approach: Estimate
Interference Experienced Per-Request
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Request Overlap Makes Interference
Estimation Per-Request Difficult
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Estimating Performance,, ..
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Execution time

Request
- Queued
- Request
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Difficult to estimate impact of interference
per-request due to request overlap
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Impact of Interference on Performance
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Previous Approach: Estimate impact of
interference at a per-request granularity
Difficult to estimate due to request overlap

N
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