Application Slowdown Model: Quantifying and Controlling Impact of Interference at Shared Caches and Main Memory

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, Onur Mutlu Carnegie Mellon University, Intel Labs, University of Virginia

Problem: Shared Resource Interference

Impact of **Shared Resource Interference**

Our Goal

Provide high and predictable performance in the presence of shared resource interference

Our Approach

1. High application slowdowns 2. Unpredictable application slowdowns Build a model to estimate slowdowns

Challenge: Estimating Cache Access Rate Alone

Leverage our model for slowdownaware resource management

Application Slowdown Model (ASM)

Observation: Proxy for Performance

For a memory bound application, **Performance** *α* **Cache access rate**

Minimize memory bandwidth contention: **Using priority** (Subramanian et al., HPCA 2013)

Quantify shared cache capacity contention: **Using auxiliary tag stores** (Pomerene et al., 1989)

Auxiliary tag store counts *#contention misses*

Leveraging the Application Slowdown Model

Slowdown-aware cache capacity partitioning

Previous work: Reduce miss counts;

Providing Slowdown Guarantees

- Cache allocation with the goal of meeting a slowdown bound
- Allocate just enough cache space to critical application

Our proposal: Reduce slowdowns

Slowdown-aware memory bandwidth partitioning

Allocate remaining cache space to other applications

Allocation memory bandwidth proportional to slowdowns

Significant fairness benefits across different channel counts