
Amnesic Cache Management for Non-Volatile
Memory

Dongwoo Kang∗, Seungjae Baek∗, Jongmoo Choi∗, Donghee Lee†, Sam H. Noh ‡ and Onur Mutlu §
∗Dept. of Software, Dankook University, South Korea

Email: {kangdw, baeksj, choijm}@dankook.ac.kr
†School of Computer Science, University of Seoul, South Korea

Email: dhl express@uos.ac.kr
‡School of Comp. & Info. Eng., Hongik University, South Korea

Email: samhnoh@hongik.ac.kr
§Dept. of Electrical and Computer Engineering, Carnegie Mellon University, USA

Email: onur@cmu.edu

Abstract—One characteristic of non-volatile memory (NVM) is
that, even though it supports non-volatility, its retention capability
is limited. To handle this issue, previous studies have focused
on refreshing or advanced error correction code (ECC). In this
paper, we take a different approach that makes use of the limited
retention capability to our advantage. Specifically, we employ
NVM as a file cache and devise a new scheme called amnesic
cache management (ACM). The scheme is motivated by our
observation that most data in a cache are evicted within a short
time period after they have been entered into the cache, implying
that they can be written with the relaxed retention capability. This
retention relaxation can enhance the overall cache performance
in terms of latency and energy since the data retention capability
is proportional to the write latency. In addition, to prevent the
retention relaxation from degrading the hit ratio, we estimate
the future reference intervals based on the inter-reference gap
(IRG) model and manage data adaptively. Experimental results
with real-world workloads show that our scheme can reduce
write latency by up to 40% (30% on average) and save energy
consumption by up to 49% (37% on average) compared with the
conventional LRU based cache management scheme.

I. INTRODUCTION

The emergence of NVM technologies such as phase-change
memory (PCM) and spin transfer torque RAM (STT-RAM)
that provides both byte-addressability and non-volatility are
bringing about new opportunities in designing the memory
hierarchy [1], [2]. One characteristic of NVM, however, is
that even though NVM supports non-volatility, non-volatility
is sustained for only a certain time period, which we refer to
as the retention capability of the device. For instance, PCM
represents different data states using different resistances, and
the retention capability of PCM becomes limited due to a phe-
nomenon known as the resistance drift [3], [4], which results
in the states (or target bands, in PCM jargon) representing
bits to collide with neighboring states. Hence, if the resistance
drift is left unattended, data is eventually lost. Such limits on
retention capabilities are also observed in STT-RAM due to the
thermal stability of the magnetic tunnel junction (MTJ) [5] and
in NAND flash memory due to the charge loss in the floating
gate [6]. Another characteristic related to limited retention
capability is its relation with write speed and control of this
retention capability. Specifically, the write latency to an NVM

is proportional to the retention capability of NVM. That is,
write latency increases with longer retention capability and
vice versa. Take the PCM example once again. As resistance
drifts are the reason for data loss, one way to mitigate this loss
is to allocate larger margins between states so that it becomes
more robust to the resistance drift. To do so, however, requires
narrowing the width of a state (the target band), which in turn
requires more iterations to write a cell as this requires finer
control, eventually making writes longer. In contrast, wider
target bands makes data vulnerable to retention error, but has
a positive effect of shortening the write speed. Specifically, we
can improve the write speed by 1.7x by reducing the retention
capability from 107 to 104 seconds [7].

Again, the same tradeoff is also observed in STT-RAM
where high thermal stability makes the cell more tolerable to
random bit-flips, while making it more difficult to write [5].
Similarly, in NAND flash, retention capability can be enforced
at the cost of more fine-grained control upon writing and
more complex error correction code (ECC) [6]. This tradeoff
sets new challenges to system architects in various aspects of
performance, reliability, and energy consumption.

In this paper, we exploit the tradeoff between retention
capability and write latency to design a novel cache manage-
ment scheme where NVM is used as a file cache. Whereas
traditional cache management schemes focus on selecting vic-
tim cache blocks through replacement policies, we introduce
the amnesic notion, that is, ability to forget, into the cache
management scheme. While replacement based management
can be regarded as 1) writing data with unlimited retention
time and 2) evicting data that are predicted as not being re-
referenced in the near future, our amnesic approach can be
viewed as 1) predicting the interval to be re-referenced in
the future and writing data with the corresponding retention
capability and 2) forgetting them if they are not re-referenced
within the interval, thereby making space for new data to be
moved in.

A key metric in traditional cache performance analysis is
the hit ratio. The basic assumption behind traditional cache
studies is that write latency is constant. This study differs in
that we propose to enhance cache performance by reducing the

978-1-4673-7619-8/15/$31.00 c© 2015 IEEE

write latency using the amnestic notion, even though it may
hurt the hit ratio. However, even in terms of the hit ratio, it is
possible that the amnesic notion can provide benefits. The key
issue in enhancing the hit ratio is appropriately forgetting the
most unwanted block, the victim block, so that space can be
made for the new block to come in. To forget at appropriate
points in time, we make use of the inter-reference gap (IRG)
model [8].

We argue that, the amnesic approach is a more viable
approach for devices that have limited retention capability such
as NVM, and we show through experiments that this approach
brings about performance and energy benefits. Experimental
results show that our approach improves write performance
by 30% on average and saves energy consumption by 37%
on average compared with the conventional LRU based cache
management scheme.

The rest of this paper is organized as follows. In Section II,
we present the background information regarding this study
including NVM usages and characteristics. Then, we explain
the structure of an NVM cache considered in this study and
discuss cache behaviours in Section III. Our proposal and
evaluation results are described in detail in Section IV and V,
respectively. Section VI surveys related work. Finally, we
summarize and conclude with future work in Section VII.

II. BACKGROUND

In this section, we first explore how NVM affects the mem-
ory hierarchy in modern computer systems. Then, we discuss
the notion of limited retention capability and its relation with
write latency in detail.

A. NVM in memory hierarchy

Emerging NVM technologies such as PCM [3], STT-
RAM [9], RRAM(Resistive RAM) [10] and NV-DIMM (Non-
volatile Dual In-line Memory Module) [11] provides various
features in terms of interfaces, density, performance, durability,
reliability and power-savings. These features allow system
architects to employ NVM usefully at various levels of the
memory hierarchy.

One feature of NVM is byte-addressability. Also, NVM is
more superior to DRAM with respect to scalability and density
enabling NVM to be utilized in large-scale main memory
systems [12]–[15]. For instance, 20-nm PCM prototypes have
already been demonstrated and 8-nm PCM is projected to be
available soon [7]. However, PCM suffers from high latency,
especially write latency, compared to DRAM. Hence, several
studies have proposed the use of hybrid memory consisting
of NVM and DRAM to reap the merits of both DRAM’s fast
latency and NVM’s scalability at the same time [16]–[18].

Another feature of NVM is non-volatility. NVM shows
better performance compared to traditional storage media such
as NAND flash memory and disks. Hence, it is a favorable
choice for high-performance storage systems [19]–[23]. In
addition, data can be kept permanently, while being accessed
in the same manner as data structures in main memory. This
allows NVM to be utilized as an efficient persistent store [24]–
[27].

When we go one step further, we can build a new type of
unified memory that can be used for both main memory and
storage at the same time [2], [7], [28]–[31]. Such integration
allows features such as 1) accessing files through the load/store
instructions instead of the heavy block-oriented interfaces, 2)
moving data between main memory and storage without actual
copying, 3) whole system persistency, and 4) instant execution
and booting.

NVM can also be utilized as a cache. Employing NVM
as a CPU cache allows us to achieve the density and power-
saving advantages [32]–[34]. When we utilize it as a file cache,
we can accelerate not only performance but also durability
due to the non-volatility of NVM [35]–[38]. Just as flash
memory is actively being adopted as a cache in today’s storage
systems [39], [40], NVM technologies are expected to gain
more attention as a cost-effective cache candidate in the near
future [41].

B. Tradeoff between retention capability and write speed

All memory types can be spread along a spectrum in
regards to retention capability starting from the least retentive
to the most. At one extreme, there is the DRAM whose
retention time is small, needing, in general, to be refreshed
every 64ms. At the other extreme, there is the hard disk
whose retention time is larger than 1015 seconds, which, in
practical terms, can be seen as having infinite retention. NVM
and flash memory sit between the two extremes having some
limited retention capabilities, which can be controlled along a
particular range through the write process.

State ‘11’ State ‘10’ State ‘01’ State ‘00’

Margin

Resistance

Resistance
drift

Target band

(a) Data loss due to resistance drift in PCM

State ‘11’ State ‘10’ State ‘01’ State ‘00’

Charge

Charge loss Disturbance

(b) Data loss due to charge loss and disturbance in NAND

Fig. 1: States in 2-bit MLC PCM and NAND

An important characteristic related to retention capability
is its relation to write latency. Let us elaborate on this relation
using Figure 1(a) and (b) that shows the states of 2-bit
MLC PCM and NAND, respectively. PCM utilizes the trait
of chalcogenide glass, which can be in either the amorphous
or the crystalline phase [3]. There are a range of resistances
between the two phases. By dividing this range accordingly,
PCM represents two states for SLC and four states for MLC.

The mechanism is similar to the NAND case, where states
can be differentiated according to the number of charges in
the floating gate [6].

Each state in a PCM cell has a target band, a region of
resistances that corresponds to valid bits. The resistance in
a PCM cell has a tendency to increase with time, and this
is known as the resistance drift. Hence, when the resistance
drifts up to the boundary of the next region, the state can be
incorrectly represented leading to data loss [4]. A similar data
loss phenomenon is also observed in NAND where retention
errors occur due to charge loss over time and read/write
disturbances [6].

To alleviate this problem, PCM allots a margin between
target bands. Wider margins makes it more tolerant to the
resistance drift. However, this also makes the width of the tar-
get bands narrower. To write to PCM, an iterative mechanism
that alters the resistance of a cell by 4R at each iteration
is employed. Hence, narrowing target bands requires more
precise control over the iterative mechanism. Ultimately, this
demands smaller 4R resulting in a slowdown of the write
latency.

Such tradeoff between the retention capability and write
speed, that is, higher retention increasing write latency and
vice versa, has been observed and exploited in a previous
study. Specifically, Liu et al. uses a model to demonstrate that
1.7x write speedup can be obtained by reducing the retention
capability of PCM from 107 to 104 [7]. They also uncover
several quantitative data related to this tradeoff.

NAND flash also exhibits this tradeoff [42]. Writes in
NAND flash make use of the incremental step pulse program-
ming (ISPP) mechanism. The mechanism increases the thresh-
old voltage (Vth) of a NAND cell step-by-step with a certain
voltage increment (4Vth). The amount of voltage increment
in each step affects the write latency and retention time.
Specifically, larger increments makes writing faster since less
steps are required during ISPP. In contrast, larger increments
reduces retention time since it widens the threshold voltage
distribution minimizing the margin for tolerating retention
errors. Note that STT-RAM also shows a similar tradeoff [5].

In this study, we focus on PCM since PCM is a mature
technology and its adoption to real systems are imminent [41].
Also, the availability of quantitative data about the tradeoff
in PCM provided by Liu et al. [7] allows us to evaluate
the schemes that we propose from diverse viewpoints. We
emphasize that our proposal can be applied not only to PCM,
but also to NAND and STT-RAM.

III. CACHE ARCHITECTURE AND MOTIVATION

In this section, we first describe the NVM cache architec-
ture considered in this paper. Then, we discuss several cache
behaviors such as the mean caching time and distribution
of intervals between consecutive references that serve as the
motivation behind this study.

A. NVM cache architecture

Figure 2 illustrates a conceptual structure of a system
equipped with an NVM cache. It consists of three layers:
application, NVM cache, and storage. The NVM cache can

ApplicationApplicationApplication

NVM cache

Storage

Fig. 2: NVM cache architecture.

be materialized in various forms such as a buffer cache in
host systems [35], [36], [38], a server-side cache [41], or a
cache within storage systems [43].

Employing an NVM cache provides performance improve-
ments by handling requests on the spot instead of fetch-
ing/destaging data from/to a storage system. The hit ratio is an
important measure for caches, and the replacement policy plays
a key role in the resulting hit ratio. The LRU (Least Recently
Used) policy is commonly used since it tends to keep data with
temporal locality in the cache. A delayed write mechanism
that writes dirty data back to the storage periodically or when
they are replaced can be integrated with LRU to enhance
performance further. One concern of this mechanism is that
some written data could be lost if a sudden power failure
occurs. However, the non-volatile nature of NVM relieves
this concern and allows this mechanism to be applied more
aggressively. We use the LRU policy with delayed write, which
writes data back to storage when they are replaced or just
before the data is lost due to the limited retention capability,
as the baseline configuration for the NVM cache.

B. Cache behavior analysis

Our quest is to make use of the various levels of retention
capability. Hence, the first thing we want to observe is how
much retention capability an NVM cache requires. For this,
we analyze real-world trace which is the MSR Cambridge [44]
under the baseline configuration and measure the caching time
of a cache unit, 4KB block, as shown in Figure 3. The trace has
I/O information during 7 days. Caching time, here, is defined
as the total time a block kept in the cache, specifically, the time
difference between the eviction time and the first reference
time.

 1

 10

 100

 1000

 10000

 100000

 1e+06

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G

B

2
G

B

4
G

B

C
a
ch

in
g
 t
im

e
(s

e
c)

Cache size

Quartiles Median

(a) hm0 workload

 1

 10

 100

 1000

 10000

 100000

 1e+06

1
2
8
M

B

2
5
6
M

B

5
1
2
M

B

1
G

B

2
G

B

4
G

B

C
a
ch

in
g
 t
im

e
(s

e
c)

Cache size

Quartiles Median

(b) proj3 workload

Fig. 3: Mean caching time

0%

20%

40%

60%

80%

100%

usr0
stg

0
src2

0

hm
0

mds0
prn

0
prn

1
proj3Pe

rc
en

ta
ge

 o
f R

ef
er

en
ce

 in
te

rv
al

Workloads

∼ 102

∼ 103
∼ 104

∼ 105
∼ 106

Fig. 4: Proportion of reference intervals

From Figure 3, where we show results for only two of
the workloads (working set of each workload is 7.8GB and
8.5GB, repectively), we find that most data are evicted within
a limited time period after they enter the cache when cache
size is less than each working set. For instance, when the cache
size is 1 GB (roughly 12% of the working set), the mean
caching time is around 104 seconds, while it is less than 105

seconds with the cache size of 4 GB. Note that the whole
tracing duration of each workload is 7 days, which is 6× 105

seconds. Similar trend is also observed in other workloads in
the MSR Cambridge trace.

In general, system architects have preferred NVM with
large retention capabilities to achieve better non-volatility.
Also, JEDEC recommends the retention capability to be set to
107 when we design a system that makes use of the durability
of NVM [45]. Therefore, the default retention capability of the
write operation in PCM is normally set to 107 when PCM is
utilized as storage [7].

However, our observation shows that a large portion of data
in a cache is evicted before that 107 seconds recommended
by JEDEC when the case is not unlimited as general system
environment cases. This implies that we can improve the write
performance by simply applying retention relaxation, that is,
writing data with less retention capability. Retention relaxation
is even more appealing in a cache as in a cache there are no
worries about reliability or data loss as data are backed up in
storage. Note that most traditional cache management schemes
guarantee the inclusion property, that is, data in cache are also
maintained in storage.

One concern of retention relaxation is that it may deterio-
rate the hit ratio by missing data that are re-referenced after the
relaxed retention time. To analyze and quantify this effect, we
divide reference intervals into 5 regions as shown in Figure 4
and measure what percentage of references are re-referenced
(whether reads or writes) within each interval. This figure
shows that, even though roughly 90% of data are re-referenced
within the 105 second interval, a non-negligible amount of
data are also being re-accessed after that time interval. Indeed,
retention relaxation can be a double-edged sword. It can
enhance write performance by relaxing the retention capability

Free Used

Default write

Evict

Cache hit

(a) LRU scheme

Free Used
Relaxed write

Evict

Refresh with
Relaxed write

(b) REF scheme

Fig. 5: State diagram for LRU and REF schemes

for data repeatedly written in short intervals or for data that
are evicted without being re-referenced. However, when data
is re-referenced after its retention capability, it will induce
a miss, reducing the hit ratio and triggering extra accesses
to retrieve the data from storage. To make use of retention
relaxation efficiently, we need to differentiate data according
to their access intervals and decide how to deal with them such
that our goal is met.

IV. AMNESIC CACHE MANAGEMENT

In this section, we discuss how to overcome the hit ratio
reduction while obtaining performance gains from retention
relaxation. We first discuss a naive refreshing based scheme.
Based on faults found with the naive approach, we present two
Amnesic Cache Management (ACM) schemes that we propose
that make use of the fact that NVM loses (or forgets, hence
amnesic) data after some time.

A. Refresh based cache management

When retention is relaxed, the hit ratio may suffer as data
that was cached may become invalid as the retention period
expires. One feasible way to resolve this problem is to refresh
the cached data. That is, the data cache can be read from
and then written back to the cache to replenish the retention
capability just before the retention period expires.

Figure 5 shows the state diagram for the traditional LRU-
based cache management scheme (LRU) and the refresh-
based cache management scheme (REF). In LRU, when a
new write request occurs, first, space that is in a free state, if
available, is transitioned to the used state. Then, data is written
(either fetched from storage or issued by an application) into
the allocated space, where writing is done with the default
retention capability that maximizes the retention time. In this
study, we assume this is 107 seconds as is done by Liu et
al. [7]. When there is no free space, the space occupied by the
LRU block is reclaimed to serve the new request.

The REF scheme works similarly to the LRU scheme,
except that it writes data with the relaxed retention capability,
such as 104 or 105. Also, it performs refreshing for data
whose retention time is about to expire. This REF scheme can
enhance write speed through retention relaxation. For instance,
by relaxing retention period from 107 to 104, we can enhance
the write latency by 1.7 times [7]. Also, through refreshing,
the same hit ratio as LRU can be maintained.

Free

Tentative Confirmed

Expired

Expired

Relaxed
write

Cache hit &
Default write

Fig. 6: State diagram for SACM

However, REF raises several concerns. One is the perfor-
mance degradation due to refreshing though techniques such
refreshing in the background could be employed to partially
or fully alleviate this degradation. The second concern is
the energy consumption due to periodic refreshing. The final
concern is the endurance issue. Refreshing increases the actual
number of writes to PCM, which eventually leads to shortened
PCM lifetime.

Several studies on how to mitigate the refresh overhead
such as smart refresh, adaptive refresh and retention-capability
aware refresh have been proposed [4], [6], [7], [46]. In this
study, we take a completely different approach and propose an
amnesic approach, that is, an approach that forgets the contents
of the cache for better performance and energy usage. In the
following, we propose two versions of the amnesic approach.

B. Simple Amnesic Cache Management

Figure 6 shows the state diagram of the Simple Amnesic
Cache Management (SACM) scheme. There are three states in
SACM; free, tentative and confirmed. Upon its initial write into
the cache, the datum is written with the relaxed write (with
retention 104 seconds in this study)and is set to the Tentative
State (TS). Then, if it is referenced again (read or write) within
the retention time, its state is transitioned from TS to the
Confirmed State (CS) and is rewritten with the default write
(with retention 107 seconds in this study). However, if it is not
referenced again and the retention time (104 seconds) expires,
SACM simply forgets the data, and the state is transitioned
from TS to the Free State (FS). Data in CS that expires are
also forgotten. Note that our scheme satisfies the inclusion
property by writing back dirty data into storage just before the
retention time expires. Hence, there is no loss of data. Note
that, to guarantee the durability, we can employ the write-back
flush or write-back persist proposed by Qin et al. [50].

In SACM, the time spent in TS can be considered to be a
monitoring period where the value of the data is weighed. If
it is not referenced again within the retention time, the data
evaporates making new room in the cache. If it is re-referenced,
it is considered worthy and moved to CS. This is an important
step in SACM. If the monitoring period is too short this will
lead to misses even though data may exhibit temporal locality.
On the other hand, if it is too large, SACM may waste cache
space while maintaining valueless data.

SACM comes with several merits. First, it can enhance
write latency by applying retention relaxation for data that

Free

Tentative Confirmed
based on IRG

Expired

Ghost hit &
Adaptive writeExpired

Relaxed write

Cache hit &
Adaptive write

Fig. 7: State diagram for AACM

are not re-referenced in the cache. Second, by introducing
the state CS, it provides enough time for the re-referenced
data to be kept in the cache. Finally, it is practical in the
sense that it requires only minor hardware modifications to
support the two write modes, the relaxed mode and the default
mode. Several hardware-level techniques for this supporting
have been demonstrated in [7], [47]–[49].

However, there are a couple of issues with SACM. First,
the transition from TS to CS causes additional writes. For write
requests, they are inevitable, so they are not an issue, which
would also be true for the LRU scheme. However, for read
requests, the additional writes are all extras that may worsen
the endurance of NVM. Even so, we observe that these writes
affect little on endurance, which will be discussed later in
Section V.

The other issue concerns the default write when transition-
ing to CS. The question is whether this is the right choice.
In Figure 4 we observed that a considerable amount of data
are being re-referenced at intervals much shorter than 105.
This observation leads us to go one step further and design an
adaptive scheme, which we discuss in the next section.

C. Adaptive Amnesic Cache Management

The second scheme that we propose is the Adaptive Am-
nesic Cache Management (AACM) scheme. Figure 7 shows
the state diagram of AACM. AACM has the same three states
as in SACM, but with two differences. The first difference
is that when transitioning from TS to CS, the write used is
now an adaptive write, which we discuss in more detail later,
instead of the default write. The other difference is that we
introduce a new transition from FS to CS based on the use of
a ghost buffer. We elaborate on this further below.

The key idea of AACM is that it estimates the next refer-
ence of each data and writes it with the appropriate retention
capability adaptively. To estimate the next reference, we make
use of the inter-reference gap (IRG) model [8] that has shown
that future IRGs can be predicted from past IRGs. IRG is
defined as an interval between two consecutive references of
a data block.

In this study, we use the first order Markov chain. Specif-
ically, when a data block is re-referenced, we measure the
interval between the previous and current references. Then, we
assume that the next interval will be the same as the measured
interval. Based on this estimation, we write that data with the
appropriate retention capability.

Since all data blocks have different IRGs, AACM writes
them adaptively with different capabilities, hence the term
adaptive write. However, allowing each and every data block
to have a different retention capability is not feasible as the
NVM hardware will become too complex. Hence, in this study,
we take a coarse grain adaptive write approach and divide
the retention capability into the six levels where each level is
separated by the five threshold shown in Figure 4. Then, the
write retention capability of each block is set to the closest
upper bound of the IRG among the six levels so that it can
guarantee that the data block will be kept in the cache until
that IRG. For instance, if the IRG of a data block is 3000,
it is written with the retention capability of 104 seconds.
Note that determining the IRG does not always accompany an
actual write on cache. For instance, assume that a data block
is written with the retention capability of 104 and it is re-
referenced after 2000 seconds. Then, the IRG of this block is
now set to 2000 seconds. However, as the remaining retention
capability of 8000 seconds can still satisfy the next IRG, the
adaptive write does not perform the actual write to NVM. The
question now, with AACM, is how accurate our IRG-based
prediction is. We measure the accuracy of our prediction using
the method depicted in Figure 8(a), where accuracy is defined
as the number of correct predictions over the total number of
predictions. Since we write data with a retention capability
that is larger or equal to the estimated interval, we count a
prediction as correct if the retention capability selected is larger
or equal to the actual interval. For instance, at time Ti+2, a
prediction is counted as correct if P (ti+2) ≥ ∆ti+3 where
P (ti+2) is the predicted interval at Ti+2 and ∆ti+3 is the
actual interval.

!tᵢ₊₂

Tᵢ Tᵢ₊₁ Tᵢ₊₂

!tᵢ₊₁

Tᵢ₊₃

!tᵢ₊₃

Tᵢ₊₄

!(tᵢ₊₁) < "tᵢ₊₂ !(tᵢ₊₂) ≥ "tᵢ₊₃ !(tᵢ₊₃)≥"tᵢ₊₄

!tᵢ₊₄

Incorrect prediction Correct prediction

(a) Accuracy Metric

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

usr0
stg
0
src2

0

hm
0
mds0

prn
0
prn
1
homes

webmail

wm+online

Ac
cu
ra
cy

Workloads
(b) Accuracy results

Fig. 8: Effectiveness of IRG-based prediction

Figure 8(b) shows the accuracy results for the workloads
considered. We find that the IRG-based prediction is quite
precise, all being larger than 90%. This implies that our
prediction method can differentiate data that are worthy to
cache from others using IRGs. Hence, AACM can enhance
performance without hurting the hit ratio through the use of
adaptive writes. To keep the record of IRG level, the IRG-
based prediction only needs 144 bytes for each 4KB block.

Let us now discuss the transition from FS to CS. Recall
that the transition from TS to CS only happens upon a re-
reference. If a data block has a large IRG that does not survive
its retention capability, state transition from TS to CS does not
occur. For such data, we integrate a ghost buffer [51], which is
a set of metadata managed to monitor the behavior of evicted
data, into AACM. When a new request is a hit in the ghost
buffer (in FS), we can estimate the IRG of the request, allowing
us to transition the data from FS to CS.

D. Cache utilization

Let us now consider the use of a cache in our amnesic
approach. The cache space used in ACM is determined by the
following equation.

U = α×R (1)

where U is the cache size used by data, α is the request arrival
rate, and R is the average retention time. This equation tells
us that the cache size used increases as the request arrival rate
and retention time increases.

Note that in AACM, the retention capability of data in CS
is determined by the IRGs. For data in TS, we can derive the
proper retention capability from Equation 1. Specifically, if the
total cache size is S and the space used by the data in CS is
SC , then the retention capability for the relaxed write that can
utilize the cache fully is calculated as S−SC

α . α can be assessed
by epoch-based monitoring.

The request arrival rate, however, will fluctuate over time
resulting in the cache being under utilized or to overflow.
When the cache is under utilized, that is, U < S our schemes
selectively refreshes the expired data whose IRG is less than
the relaxed retention time. This allows the expired data to be
treated as a new request.

When the cache overflows, that is, U > S there will be
cached data with retention time remaining, but not enough
space to service incoming requests. As this is a typical situation
that occurs with traditional caches, we take similar measures
and evict a block to make space for the new request. As
we are managing the IRGs for the blocks in the cache, we
choose the victim block in TS or CS, whose remaining time
to the estimated next reference is the longest. Algorithm 1
shows the pseudo code for AACM which consists of two key
procedures; i) DO ACCESS() and ii) AMNESIC(), while the
former is triggered by cache accesses, the latter one is invoked
every second. The DO ACCESS() uses two arguments, the
requested LBA (Logical Block Address) and a flag, denoted
RW, to indicate whether this request is read or write. If the
request hits in the cache, AACM predicts the IRG and conducts
either the adaptive write operation for the write request or the
refresh operation for the read request if the remaining retention
capability is shorter than the predicted IRG. Otherwise, the

requested data (either given by an application or fetched from
storage) is written into the cache with the retention capability
predicted using the ghost buffer or Equation 1. On the other
hand, AMNESIC() checks whether there are blocks whose
retention time is expired. Then, it invalidates them in the cache
while writing them back to the storage if they are dirty.

Algorithm 1 AACM algorithm
1: procedure DO ACCESS(LBA,RW)
2: if LBA cache hit then
3: pIRG← IRG PREDICT() . predict and update IRG
4: if RW is READ then
5: if pIRG > Tremain then . Tremain is the remain

retention capability
6: REFRESH(LBA, pIRG− Tremain))
7: end if
8: else . write hit case
9: ADAPTIVE WRITE(LBA, pIRG)

10: end if
11: else . cache miss case
12: if free block=0 then
13: EVICT() . subsection IV-D
14: end if
15: if RW is READ then
16: Read from storage
17: end if
18: if ghost cache hit then
19: pIRG← IRG PREDICT()
20: else
21: pIRG← proper retention time . equation 1
22: end if
23: ADAPTIVE WRITE(LBA, pIRG)
24: end if
25: end procedure

26: procedure REFRESH(LBA, pIRG)
27: Read from cache
28: ADAPTIVE WRITE(LBA, pIRG)
29: end procedure

30: procedure AMNESIC() . run every second
31: for each list (1 for TS and 6 for CS) do
32: blocks← expiration candidate in list
33: for each block b ∈ blocks do
34: if b is dirty then
35: WRITE-BACK(b)
36: end if
37: Stateb ← FS . state of b is free
38: end for
39: end for
40: end procedure

V. EVALUATION

In this section, we first discuss the experimental environ-
ment. Then, we discuss how our proposed schemes affect
performance, energy consumption, and endurance, in sequence.

A. Experimental environment

Our experiments are conducted via trace-driven simula-
tions. We use in-house NVM based cache simulator, which
consists of two main components. One is a trace replayer that
reads a trace (eg. MSR Cambridge trace) and composes the
corresponding I/O requests based on the time recorded in the

TABLE II: Experimental parameters

Parameter PCM SSD
Read latency 16 us 50 us
Write latency 91.2 us 900 us
Read energy 81.9 nj 14.25 uj
Write energy 4.73 uj 256 uj

trace. The other component is a storage emulator which holds
a request for latency time. We use two storage emulators for
SSD and PCM. The simulator is a time accurate, implying that
it responds a request according to the latency parameters of
SSD and PCM. Table II summarizes the parameters extracted
from previous work [52], [53]. The write latencies reduced by
retention relaxation are estimated using the model proposed by
Liu et al. [7]. Specifically, by relaxing from 107 to 106 seconds,
we can obtain 1.2x write speedup, while relaxing to 105,
104, 103, and 102 yields 1.5x, 1.7x, 1.9x and 2.1x speedup,
respectively. For cache management, it makes use of 8 lists,
one for free blocks, another one for blocks in the tentative state
and other six for the six IRG levels in the confirmed state.
We have implemented not only the proposed schemes, SACM
and AACM, but also the traditional LRU and REF schemes
for comparison purposes. In current implementation, the ghost
buffer can maintain information up to 1K blocks.

We use several real-world workloads such as those from
MSR Cambridge [44], the FIU traces [54], and the web search
engine [55] as summarized in Table I. The MSR Cambridge
traces cover 36 volumes from various servers and we select
10 of them. The webmail, webmail with online (denoted
‘wm+online’), and homes of the FIU traces are traces of
21 days of mail, course management activities, and the NFS
server, respectively. Finally, the web search workload (denoted
‘Websearch3’) contains the I/O traces for a web search engine.
The workloads used show a spectrum of read-intensive to
write intensive workloads. Unless stated otherwise, the results
presented are for the cache size set to be 25% of the working
set of each workload. We also show results for other cache
sizes later in this section.

B. Performance, energy, and endurance

Figure 9 shows the hit ratio results for the various schemes.
The results show LRU and REF having the same hit ratio. This
is natural as the blocks that they hold in the cache are the
same. In SACM, the hit ratio is affected by the separation of
the TS and CS states. They result in two different effects. One,
it differentiates the less cacheable data from others improving
the hit ratio, and two, it decreases the hit ratio due to retention
relaxation. The result for SACM is that the hit ratios are
comparable to LRU giving and taking a little bit depending on
the workload. With AACM, IRG information allows for more
accurate management, that is, through retention relaxation
more cache space is made available for more cacheable data.

Figure 10 presents the average latency of the considered
schemes normalized to that of LRU. In this experiment, we
assume that all refreshing time can be hidden by conducting it

TABLE I: Workload characteristics

Workload Read Write Working set Duration Description
hm0 11.0 GB 22.9 GB 7.8 GB 7days Hardware monitoring
mds0 3.3 GB 7.8 GB 3.9 GB 7days Media server
prn0 13.2 GB 53.6 GB 22.5 GB 7days Print server
prn1 181.4 GB 30.8 GB 88.2 GB 7days Print server
proj3 18.2 GB 2.6 GB 8.5 GB 7days Project directory
rsrch0 1.4 GB 11.0 GB 1.3 GB 7days Research projects
src20 1.4 GB 9.9 GB 1.8 GB 7days Source control
stg0 7.4 GB 15.8 GB 8.1 GB 7days Web staging
ts0 4.1 GB 11.8 GB 2.2 GB 7days Terminal server
usr0 35.4 GB 13.3 GB 4 GB 7days User home directory

webmail 5.4 GB 24.3 GB 1.9 GB 20 days Web mail
wm+ online 11.9 GB 42.6 GB 2.1 GB 21 days Course management

homes 15.5 GB 65.3 GB 17.3 GB 21 days File server
Websearch3 62.6 GB 32.5 MB 6.5 GB 3.2 days Search engine

0%

20%

40%

60%

80%

100%

hm
0

mds0

prn0

prn1

proj3

rsrch0

src20

stg0

ts0

usr0

webmail
wm+online
homes
W

ebsearch3

Hi
t r

ati
o

Workloads

LRU
REF

SACM
AACM

Fig. 9: Hit ratio

 0.2

 0.4

 0.6

 0.8

 1

 1.2

hm
0

mds0

prn0

prn1

proj3

rsrch0

src20

stg0

ts0

usr0

webmail
wm+online
homes
W

ebsearch3

No
rm

ali
ze

d a
ve

ra
ge

 la
ten

cy

Workloads

LRU
REF

SACM
AACM

Fig. 10: Normalized average latency (with refresh being done
in the background, hence, hidden from user)

completely in background mode. It shows that in comparison
with LRU 1) AACM reduces latency by as much as 40% with
an average of 30%, 2) REF reduces latency even more by as
much as 48% (36% on average), and 3) SACM reduces latency

 0

 1

 2

 3

 4

 5

 6

hm
0

mds0

prn0

prn1

proj3

rsrch0

src20

stg0

ts0

usr0

webmail
wm+online

homes
W

ebsearch3

No
rm

ali
ze

d a
ve

ra
ge

 la
ten

cy

Workloads

LRU
REF

SACM
AACM

Fig. 11: Normalized average latency (refreshing is visible to
user)

by as much as 7% (4% on average).

Now, let us consider the refreshing overhead. Note that
refreshing is required for REF to periodically replenish the
retention capability, for SACM to transition data from TS to
CS when handling read requests, and for AACM to guarantee
the estimated intervals in CS. Figure 11 shows the normalized
latency including the refreshing overhead. The results show
that REF suffers considerably, while SACM and AACM still
perform better than LRU though the margin has dwindled. The
reason they still perform better is because of the performance
gains obtained through retention relaxation even though they
pay for the refreshing overhead. Note that, in reality, some
refreshing overhead will be hidden while others exposed,
yielding performance in between Figure 10 and Figure 11.

Figure 12 reveals one of the reasons why AACM scheme
gains in performance. In the figure, we measure the intervals
between two consecutive writes and draw the cumulative
distribution of intervals. The results show that 40%∼60% of
written data are updated within 102 seconds. LRU writes these
data with the retention capability of 107 seconds. In contrast,
AACM writes them with the appropriate relaxed capability

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

C
D

F

IRG (second)

(a) prn0 workload

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

C
D

F

IRG (second)

(b) prn1 workload

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

C
D

F

IRG (second)

(c) mds0 workload

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

C
D

F

IRG (second)

(d) hm0 workload

Fig. 12: Distribution of intervals of consecutive writes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

hm
0

mds0

prn0

prn1

proj3

rsrch0

src20

stg0

ts0

usr0

webmail
wm+online
homes
W

ebsearch3

No
rm

ali
ze

d c
on

su
me

d e
ne

rg
y o

n P
CM

Workloads

LRU SACM AACM

(a) PCM cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4
hm

0

mds0

prn0

prn1

proj3

rsrch0

src20

stg0

ts0

usr0

webmail
wm+online
homes
W

ebsearch3

No
rm

ali
ze

d c
on

su
me

d e
ne

rg
y

Workloads

LRU
REF

SACM
AACM

(b) Whole storage system

Fig. 13: Energy consumption

based on IRG, resulting in the performance improvement as
shown in Figure 10. Note that the performance improvement
also comes from the accuracy of the IRG-based prediction

shown with Figure 8 in Section IV-C.

Figure 13 shows the energy consumption from two view-
points, one consumed by the PCM cache only and the other
consumed by both the PCM cache and SSD storage. Energy is
calculated using the equation, E = Nread ∗ Eread +Nwrite ∗
Ewrite, where Nread and Nwrite are the number of reads
and writes, respectively, and Eread and Ewrite are energy
consumed for each read and write, respectively. The number
of reads and writes are measured during simulation, while the
energy values shown in Table II are used for the default read
and write operations. For the relaxed write operation, we adopt
the model proposed by Liu et al. [7] that estimates the energy
savings by considering the reduction of iterations in the write
process due to retention relaxation.

Figure 13(a) shows that the energy consumed relative to
using the conventional LRU. Note that, for readability, we do
not show the results for REF as they are substantially higher
being as much as 9 times higher than LRU. The results show
that compared to LRU, AACM and SACM both reduces energy
consumption, the savings being on average 37% (and as high as
49%) and 11% for AACM and SACM, respectively. When we
consider the whole storage system, Figure 13(b) shows that
AACM saves energy by an average of 13%. Energy saving
comes from two sources, retention relaxation in PCM and
reduction of accesses in SSD, obtained by the increased cache
hit ratio.

 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1
 1.02
 1.04
 1.06

hm
0

m
ds0

prn0

prn1

proj3

rsrch0

src20

stg0

ts0

usr0

w
ebm

ail
w

m
+online

hom
es

W
ebsearch3

N
or

m
al

iz
ed

 w
rit

e
co

un
t

Workloads

LRU SACM AACM

Fig. 14: Endurance

One concern of our scheme is the endurance of PCM
since our proposal incurs additional writes. Specifically, SACM
requires additional writes when it transitions data from TS to
CS, while AACM requires it for guaranteeing the estimated
IRGs. However, Figure 14 shows that the additional writes
are not significant with SACM showing similar write counts
to LRU, while AACM incurs roughly 1% (4% at maximum)
more writes compared to LRU. We observe that the enhanced
hit ratio compensates for these additional writes. In this figure,
we again omit the results for REF that is 5 times higher
than LRU. Considering the MLC PCM endurance (105 [56])
and the total amount of writes (wm+online), we can estimate
that the lifetime of the PCM cache is around 26 years which

is similar to that under the LRU scheme. Another concern
of our technique is the data integrity brought by retention
relaxation. To address this issue, we can employ an integrity
check mechanism such as cyclic redundancy check (CRC), but
this is beyond of our scope.

55%
60%
65%
70%
75%
80%
85%
90%
95%

25% 50% 80%

Hi
t r

ati
o

Cache size

LRU-hm0LRU-mds0LRU-prn0LRU-stg0LRU-usr0
LRU-webmail

AACM-hm0AACM-mds0AACM-prn0AACM-stg0AACM-usr0
AACM-webmail

(a) Hit ratio

 0

 0.2

 0.4

 0.6

 0.8

25% 50% 80%

No
rm

ali
ze

d
lat

en
cy

Cache size

hm0mds0
prn0stg0

usr0
webmail

(b) Latency (AACM latency normalized to LRU)

Fig. 15: Performance under different cache sizes (25%, 50%,
80% of working set of each workload)

Now let us turn our focus on the results with different cache
sizes. For simplicity, we only consider AACM in discussing
these results. Figure 15 shows the hit ratio and latency of
LRU and AACM when we increase the cache size so that
it can contain 25% (the results presented so far), 50% and
80% of the working set of each workload. In terms of the hit
ratio, we find that 1) when the cache size is set to be small,
AACM performs better since its ability to forget makes more
room for more cacheable data and 2) when the cache size
becomes larger, both schemes show comparable performance
since LRU also keeps most of the cacheable data. In terms of
latency, AACM outperforms LRU due to retention relaxation
for all considered cache sizes. From the results, we also expect
AACM to perform well for environments where multiple
applications with diverse characteristics share the cache space.

Figure 16 shows the proportion of data that was “evicted”
from the cache by exceeding the retention capability limit,
that is, forgetting. Recall that for our schemes, data can be
evicted from the cache through replacement or by forgetting.
From this figure, we observe that when the cache size is set

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

25% 50% 80%

Fo
rg

et
 ra

tio

Cache size

hm0mds0
prn0stg0

usr0
webmail

Fig. 16: Proportion of forgetting

to 80% of the working set, 20∼95% (46% on average) of
evicted data are due to forgetting. If we consider this finding
with Figure 15(a), which shows that LRU and AACM show
similar hit ratios, then this tells us that LRU is keeping data
in the cache for an unnecessarily long time. AACM forgets
these data early, resulting in latency improvements as shown
in Figure 15(b). When the cache size is set to 25%, the portion
evicted through forgetting is only 5∼10%. However, as cache
space is in high demand, this space made available through
forgetting allows more worthy data to be brought in to cache
resulting in the hit ratio improvement.

VI. RELATED WORK

Previous studies related to our work can be categorized
into two groups. The first group of work is about exploiting
the tradeoff between the retention capability and write speed
while the second group is about using NVM as a file cache.
We discuss the two in the following.

Liu et al. propose NVM duet, a novel architecture that
unifies working memory and persistent store [7]. It exploits the
limited retention capability of PCM to enhance performance
by relaxing consistency and durability constraints when PCM
is used as working memory while these constraints are guar-
anteed when it is used for persistent store. Jiang et al. design
a write truncate mechanism to decrease the write iterations
in PCM, where the retention errors due to the truncation is
compensated using the assistance of an extra ECC [47].

Sampson et al. suggest a novel approximate storage that
allows errors by reducing the number of programming pulses
to improve the performance of PCM [48]. Seong et al. show
that PCM is prone to soft errors due to the resistance drift
problem [57]. They also propose tri-level-cell PCM, which can
lower the errors while enhancing performance.

STT-RAM is considered as an attractive alternative to the
conventional on-chip SRAM cache due to its high density,
competitive read latency and lower leakage power consump-
tion. However, long write latency is a serious concern and

several previous studies utilize retention relaxation to solve this
concern. For instance, Smullen et al. design a reduced-retention
STT-RAM cache, which is a hybrid cache with a DRAM-style
refresh policy [5]. Sun et al. propose a multi-retention level
cache and a dynamic counter-controlled refreshing scheme and
employ different levels according to the cache layer [49]. Jog
et al. formulate the relationship between retention-time and
write-latency and suggest optimal retention-time for efficient
cache hierarchy [33].

In the flash memory-based storage domain, retention re-
laxation has also exploited to boost performance and lifetime.
Liu et al. observe that 49∼99% of writes require less-than
1-week retention time [42]. Based on this observation, they
design a retention-aware FTL that supports two write modes,
retention-relaxed mode and normal mode, and perform peri-
odic reprogramming. Cai et al. suggest a retention-aware error
management scheme that makes use of retention relaxation
to reduce the ECC overhead and periodic reprogramming (or
remapping) to enhance the lifespan of storage [6]. Pan et al.
propose a quasi-nonvolatile SSD and scheduling scheme to
minimize the refreshing impact on performance [58].

Our work is similar to these previous studies in that
retention relaxation is used to enhance performance or lifetime
of storage. However, our approach is novel in that we make
use of the data loss characteristics, that is, the ability to forget,
where as all previous studies rely on refreshing to deal with
relaxed retention.

The second group studies related to our work is on those
that make use of NVM as a file cache. Kim et al., with real-
world traces, demonstrate that PCM-based caching is a viable,
cost-effective option for enterprise storage systems [41]. Lee et
al. design a novel scheme, called in-place commit, that exploits
the non-volatility of NVM [35]. By unioning the buffer cache
with journaling layer, it can enhance performance significantly
without any loss of reliability.

Fan et al. design a new replacement policy for an NVM
cache, called H-ARC (Hierarchical Adaptive Replacement
Cache) [36]. It considers not only the conventional factors such
as recency and frequency but also NVM-related factors such as
dirty and clean for replacement decisions. Liu et al. propose
a hash-based caching scheme to improve the random write
performance for their PCM-HDD storage architecture [37]. Lee
et al. discuss the characteristics of NVM and show that a new
metric is required for an NVM cache [38].

All these studies discuss ways to increase the effectiveness
of an NVM cache. However, they do not consider the limited
retention capability, which is the main focus in our work.
One exception is the work by Huang et al. that considers
ECC relaxation to reduce the ECC overhead when the SSD is
used as a cache [59]. However, to compensate for relaxation,
they periodically read data from storage instead of attempting
adaptive write or forgetting as we do. To the best of our
knowledge, this is the first work that introduces the use of the
amnesic notion to balance the retention capability and write
performance.

VII. CONCLUSION

Recently as data becomes bigger and cloud computing
prevails, requirement for placing data closer to consumers,

such as content delivery network (CDN), also increases rapidly.
Applying NVM as a cache is accepted as one promising
solution for this requirement. In this paper, we explore new
cache management schemes that introduce the amnesic notion
to balance the limited retention capability and write speed.
Experimental results show that our proposal is effective in
terms of performance and energy consumption.

There are two research directions as a future work. One is
applying our concept to other resource managements such as
approximate computing, retention relaxed storage and zombie
memory. The second direction is extending our scheme so that
it can reflect another characteristics of NVM such as read/write
latency asymmetry and endurance. For instance, we expect
that the IRG information can be exploited usefully for wear-
leveling in NVM.

ACKNOWLEDGMENT

We would like to thank to our shepherd, Prof. Myoungsoo
Jung, and anonymous reviewers for their insightful comments.
This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MEST) (No. 2012R1A2A2A01014233)

REFERENCES

[1] R. F. Freitas and W. W. Wilcke, “Storage-class memory: the next storage
system technology,” IBM Journal of Research and Development, vol. 52,
no. 4, 2008.

[2] K. Bailey, L. Cede, S. D. Gribble, and H. M. Levy, “Operating system
implications of fast, cheap, non-volatile memory,” in Proceedings of
the 13th USENIX conference on Hot topics in operating systems, ser.
HotOS, 2011.

[3] O. Zilberberg, S. Weiss, and S. Toledo, “Phase-change memory: An
architecture perspective,” ACM Computing Surveys, vol. 45, no. 3, 2013.

[4] M. Awasthi, M. Shevgoor, K. Sudan, R. Balasubramonian, B. Rajen-
dran, and V. Srinivasan, “Handling PCM resistance drift with device,
circuit, architecture, and system solutions,” in Non-Volatile Memories
Workshop, ser. NVMW, 2011.

[5] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan, “Re-
laxing non-volatility for fast and energy-efficient STT-RAM caches,”
in Proceedings of the 17th IEEE Symposium on High Performance
Computer Architecture, ser. HPCA, 2011.

[6] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal, and
K. Mai, “Flash correct-and refresh: Retention-aware error management
for increased flash memory lifetime,” in Proceedings of the 30th IEEE
International Conference on Computer Design, ser. ICCD, 2012.

[7] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang,
“NVM duet: Unified working memory and persistent store architecture,”
in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS, 2014.

[8] V. Phalke and B. Gopinath, “An inter-reference gap model for temporal
locality in program behavior,” in Proceedings of the ACM SIGMETRCS
joint international conference on Measurement and modeling on com-
puter systems, ser. SIGMETRICS, 1995.

[9] W. Zhao, E. Belhaire, Q. Mistral, C. Chappert, V. Javerliac, B. Dieny,
and E. Nicolle, “Macro-model of spin-transfer torque based magnetic
tunnel junction device for hybrid magnetic-CMOS design,” in Pro-
ceedings of the International Behavioral Modeling and Simulation
Workshop, 2006.

[10] R. Degraeve, A. Fantini, S. Clima, B. Govoreanu, L. Goux, Y. Y. Chen,
D. Wouters, P. Roussel, G. Kar, G. Pourtois, S. Cosemans, J. Kittl,
G. Groeseneken, M. Jurczak, and L. Altimime, “Dynamic hourglass
model for SET and RESET in HfO2 RRAM,” in Proceedings of the
Symposium on VLSI Technology, 2012.

[11] Viking Technology, “Understanding non-
volatile memory technology whitepaper,” 2012,
http://www.vikingtechnology.com/uploads/nv whitepaper.pdf.

[12] E. Kultursay, M. Kandemir, S. A., and O. Mutlu, “Evaluating STT-RAM
as an energy-efficient main memory alternative,” in IEEE International
Symposium on Performance Analysis of Systems and Software, ser.
ISPASS, 2013.

[13] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture, ser. ISCA,
2009.

[14] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using PCM technology,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture,
ser. ISCA, 2009.

[15] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proceedings
of the 36th annual international symposium on Computer architecture,
ser. ISCA, 2009.

[16] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and
dram main memory system,” in Proceedings of the 46th Annual Design
Automation Conference, ser. DAC, 2009.

[17] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hybrid
memory systems,” in Proceedings of the International Conference on
Supercomputing, ser. ICS, 2011.

[18] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu,
“Row buffer locality aware caching policies for hybrid memories,” in
IEEE 30th International Conference on Computer Design, ser. ICCD,
2012.

[19] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, “Better i/o through byte-addressable, persistent memory,”
in Proceedings of the ACM SIGOPS 22nd symposium on Operating
systems principles, ser. SOSP, 2009.

[20] X. Wu and A. L. N. Reddy, “SCMFS:a file system for storage class
memory,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC,
2011.

[21] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge, “Storage manage-
ment in the NVRAM era,” VLDB Endowment, vol. 7, no. 2, 2013.

[22] A. Wang, P. Reiher, G. Popek, and G. Kuenning, “Conquest: Better
performance through a disk/persistent-ram hybrid file system,” in Pro-
ceedings of the 2002 USENIX Annual Technical Conference, ser. ATC,
2002.

[23] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta, and
S. Swanson, “Moneta: A high-performance storage array architecture
for next-generation, non-volatile memories,” in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO, 2010.

[24] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “Nv-heaps: making persistent objects fast
and safe with next-generation, non-volatile memories,” in Proceedings
of the sixteenth international conference on Architectural support for
programming languages and operating systems, ser. ASPLOS, 2011.

[25] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: lightweight persis-
tent memory,” in Proceedings of the sixteenth international conference
on Architectural support for programming languages and operating
systems, ser. ASPLOS, 2011.

[26] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing
the performance gap between systems with and without persistence
support,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO, 2013.

[27] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, “Con-
sistent and durable data structures for non-volatile byte-addressable
memory,” in Proceedings of the 9th USENIX conference on File and
stroage technologies, ser. FAST, 2011.

[28] J.-Y. Jung and S. Cho, “Memorage: Emerging persistent ram based
malleable main memory and storage architecture,” in Proceedings of
the 27th International ACM Conference on International Conference
on Supercomputing, ser. ICS, 2013.

[29] S. Baek, J. Choi, D. Lee, and S. H. Noh, “Energy-efficient and high-
performance software architecture for storage class memory,” ACM
Transactions on Embedded Computing Systems, vol. 12, no. 3, 2013.

[30] S. Oikawa, “Integrating memory management with a file system on a
NVM,” in Proceedings of the 28th Annual ACM Symposium on Applied
Computing, ser. SAC, 2013.

[31] D. Narayanan and O. Hodson, “Whole-system persistence,” in Pro-
ceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS, 2012.

[32] M. Rasquinha, D. Choudhary, S. Chatterjee, S. Mukhopadhyay, and
S. Yalamanchili, “An energy efficient cache design using STT RAM,”
in ACM/IEEE International Symposium on Low-Power Electronics and
Design, ser. ISLPED, 2010.

[33] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and
D. C. R., “Cache revive: Architecting volatile STT-RAM caches for
enhanced performance in cmps,” in Proceedings of the 49th Annual
Design Automation Conference, ser. DAC, 2012.

[34] Y. Joo, D. Niu, X. Dong, G. Sun, N. Chang, and Y. Xie, “Energy-
and endurance-aware design of phase change memory caches,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE, 2010.

[35] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and
journaling layers with non-volatile memory,” in Proceedings of the 11th
USENIX Conference on File and Storage Technologies, ser. FAST, 2013.

[36] Z. Fan, D. H. C. Du, and D. Voigt, “H-ARC: A non-volatile memory
based cache policy for solid state drives,” in IEEE 30th Symposium on
Mass Storage Systems and Technologies, ser. MSST, 2014.

[37] Z. Liu, B. Wang, P. Carpenter, J. S. Li, Dongand Vetter, and W. Yu,
“PCM-based durable write cache for fast disk I/O,” in IEEE 20th
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, ser. MASCOTS, 2012.

[38] K. Lee, I. Doh, J. Choi, D. Lee, and S. H. Noh, “H-ARC: A non-volatile
memory based cache policy for solid state drives,” in Proceedings of
Advances in Computer Science and Technology, ser. ACTA, 2007.

[39] C. Albrecht, A. Merchant, M. Stokely, M. Waliji, F. Labelle, N. Coehlo,
X. Shi, and C. E. Schrock, “Janus: Optimal flash provisioning for
cloud storage workloads,” in Proceedings of the 2013 USENIX Annual
Technical Conference, ser. ATC, 2013.

[40] D. A. Holland, E. Angelino, G. Wald, and M. I. Seltzer, “Flash caching
on the storage client,” in Proceedings of the 2013 USENIX Annual
Technical Conference, ser. ATC, 2013.

[41] H. Kim, S. Seshadri, C. L. Dickey, and L. Chui, “Evaluating PCM for
enterprise storage systems: A study of caching and tiering approach,”
in Proceedings of the 12th USENIX conference on File and stroage
technologies, ser. FAST, 2014.

[42] R.-s. Lui, C. Yang, and W. Wu, “Optimizing NAND flash-based
SSDs via retention relaxation,” in Proceedings of the 10th USENIX
Conference on File and Storage Technologies, ser. FAST, 2012.

[43] S. Kang, S. Park, H. Jung, H. Shim, and J. Cha, “Performance trade-offs
in using nvram write buffer for flash memory-based storage devices,”
IEEE Transactions on Computers, vol. 6, no. 58, 2009.

[44] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transactions
on Storage, vol. 3, no. 4, 2008.

[45] JESD218A:, “Solid-state drive (SSD) requirements and
endurance test method,” 2011, http://www.jedec.org/standards-
documents/docs/jesd218a.

[46] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware intel-
ligent dram refresh”,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA, 2012.

[47] L. Jiang, B. Zhao, Y. Zhang, Y. Jun, and B. R. Childers, “Improving
write operations in MLC phase change memory,” in Proceedings of the
18th IEEE Symposium on High Performance Computer Architecture,
ser. HPCA, 2012.

[48] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO, 2013.

[49] Z. Sun, X. Bi, H. H. Li, W. F. Wong, O. Z. L., X. Zhu, and W. Wu,
“Multi retention level STT-RAM cache designs with a dynamic refresh

scheme,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO, 2011.

[50] D. Qin, A. D. Brown, and A. Goel, “Reliable writeback
for client-side flash caches,” in 2014 USENIX Annual
Technical Conference (USENIX ATC 14). Philadelphia,
PA: USENIX Association, Jun. 2014, pp. 451–462. [On-
line]. Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/qin

[51] R. H. Patternson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Ze-
lenka, “Informed prefetching and caching,” in Proceedings of the ACM
SIGOPS 15nd symposium on Operating systems principles, ser. SOSP,
1995.

[52] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 31, no. 7, 2012.

[53] B. Yoo, Y. Won, S. Cho, S. Kang, J. Choi, and S. Yoon, “SSD charac-
terization: From energy consumption’s perspective,” in Proceedings of
the USENIX Hot Storage, 2011.

[54] A. Verma, R. Koller, L. Useche, and R. Rangaswami, “SRCMap: energy
proportional storage using dynamic consolidation,” in Proceedings of
the 10th USENIX Conference on File and Storage Technologies, ser.
FAST, 2010.

[55] UMASS trace, http://traces.cs.umass.edu/index.php/Storage/Storage.
[56] F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani,

E. C. Buda, F. Pellizzer, D. W. Chow, A. Cabrini, G. Calvi, R. Faravelli,
A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A
Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell
Storage,” Solid-State Circuits, IEEE Journal of, vol. 44, no. 1, pp. 217–
227, 2009.

[57] N. H. Seong, S. Yeo, and H.-H. S. Lee, “Tri-level-cell phase change
memory:toward an efficient and reliable memory system,” in Pro-
ceedings of the 40th Annual International Symposium on Computer
Architecture, ser. ISCA, 2013.

[58] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-nonvolatile ssd: Trading
flash memory nonvolatility to improve storage system performance for
enterprise applications,” in Proceedings of the 18th IEEE Symposium
on High Performance Computer Architecture, ser. HPCA, 2012.

[59] P. Huang, P. Subedi, X. He, S. He, and K. Zhou, “FlexECC: Partially
relaxing ecc of mlc ssd for better cache performance,” in Proceedings
of the 2014 USENIX Annual Technical Conference, ser. ATC, 2014.

