
..

AÉRGIA: A NETWORK-ON-CHIP
EXPLOITING PACKET LATENCY SLACK

..

A TRADITIONAL NETWORK-ON-CHIP (NOC) EMPLOYS SIMPLE ARBITRATION STRATEGIES,

SUCH AS ROUND ROBIN OR OLDEST FIRST, WHICH TREAT PACKETS EQUALLY REGARDLESS

OF THE SOURCE APPLICATIONS’ CHARACTERISTICS. THIS IS SUBOPTIMAL BECAUSE

PACKETS CAN HAVE DIFFERENT EFFECTS ON SYSTEM PERFORMANCE. WE DEFINE SLACK

AS A KEY MEASURE FOR CHARACTERIZING A PACKET’S RELATIVE IMPORTANCE. AÉRGIA

INTRODUCES NEW ROUTER PRIORITIZATION POLICIES THAT EXPLOIT INTERFERING PACKETS’

AVAILABLE SLACK TO IMPROVE OVERALL SYSTEM PERFORMANCE AND FAIRNESS.

......Network-on-Chips (NoCs) are
widely viewed as the de facto solution for
integrating many components that will com-
prise future microprocessors. It’s therefore
foreseeable that on-chip networks will
become a critical shared resource in many-
core systems, and that such systems’ perfor-
mance will depend heavily on the on-chip
networks’ resource sharing policies. Devising
efficient and fair scheduling strategies is par-
ticularly important (but also challenging)
when diverse applications with potentially
different requirements share the network.

An algorithmic question governing appli-
cation interactions in the network is the
NoC router’s arbitration policy—that is,
which packet to prioritize if two or more
packets arrive at the same time and want to
take the same output port. Traditionally,
on-chip network router arbitration policies
have been simple heuristics such as round-
robin and age-based (oldest first) arbitration.
These arbitration policies treat all packets
equally, irrespective of a packet’s underlying
application’s characteristics. In other words,
these policies arbitrate between packets as if

each packet had exactly the same impact on
application-level performance. In reality,
however, applications can have unique and
dynamic characteristics and demands. Differ-
ent packets can have a significantly different
importance to their applications’ perfor-
mance. In the presence of memory-level
parallelism (MLP),1,2 although the system
might have multiple outstanding load misses,
not every load miss causes a bottleneck (or is
critical).3 Assume, for example, that an appli-
cation issues two concurrent network
requests, one after another, first to a remote
node in the network and then to a close-by
node. Clearly, the packet going to the
close-by node is less critical; even if it’s
delayed for several cycles in the network, its
latency will be hidden from the application
by the packet going to the distant node,
which would take more time. Thus, each
packet’s delay tolerance can have a different
impact on its application’s performance.

In our paper for the 37th Annual Interna-
tional Symposium on Computer Architec-
ture (ISCA),4 we exploit packet diversity in
criticality to design higher performance and

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 29

Chita R. Das

Pennsylvania State

University

Onur Mutlu

Carnegie Mellon

University

Thomas Moscibroda

Microsoft Research

Reetuparna Das

Pennsylvania State

University

0272-1732/11/$26.00 �c 2011 IEEE Published by the IEEE Computer Society

...

29

more application-fair NoCs. We do so by
differentiating packets according to their
slack, a measure that captures the packet’s
importance to the application’s performance.
In particular, we define a packet’s slack as the
number of cycles the packet can be delayed
in the network without affecting the applica-
tion’s execution time. So, a packet is rela-
tively noncritical until its time in the
network exceeds the packet’s available slack.
In comparison, increasing the latency of
packets with no available slack (by depriori-
tizing them during arbitration in NoC
routers) will stall the application.

Building off of this concept, we develop
Aérgia, an NoC architecture that contains
new router prioritization mechanisms to ac-
celerate the critical packets with low slack
values by prioritizing them over packets
with larger slack values. (We name our archi-
tecture after Aérgia, the female spirit of lazi-
ness in Greek mythology, after observing
that some packets in NoC can afford to
slack off.) We devise techniques to efficiently
estimate a packet’s slack dynamically. Before
a packet enters the network, Aérgia tags the
packet according to its estimated slack.
We propose extensions to routers to priori-
tize lower-slack packets at the contention
points within the router (that is, buffer allo-
cation and switch arbitration). Finally, to en-
sure forward progress and starvation freedom
from prioritization, Aérgia groups packets
into batches and ensures that all earlier-
batch packets are serviced before later-batch
packets. Experimental evaluations on a
cycle-accurate simulator show that our pro-
posal effectively increases overall system
throughput and application-level fairness in
the NoC.

Motivation
The premise of our research is the exis-

tence of packet latency slack. We thus moti-
vate Aérgia by explaining the concept of
slack, characterizing diversity of slack in appli-
cations, and illustrating the advantages of
exploiting slack with a conceptual example.

The concept of slack
Modern microprocessors employ several

memory latency tolerance techniques (such
as out-of-order execution5 and runahead

execution2,6) to hide the penalty of load
misses. These techniques exploit MLP1 by
issuing several memory requests in parallel
with the hope of overlapping future load
misses with current load misses. In the pres-
ence of MLP in an on-chip network, the ex-
istence of multiple outstanding packets leads
to packet latency overlap, which introduces
slack cycles (the number of cycles a packet
can be delayed without significantly affecting
performance). We illustrate the concept of
slack cycles with an example. Consider the
processor execution timeline in Figure 1a.
In the instruction window, the first load
miss causes a packet (Packet0) to be sent
into the network to service the load miss,
and the second load miss generates the next
packet (Packet1). In Figure 1a’s execution
timeline, Packet1 has lower network latency
than Packet0 and returns to the source ear-
lier. Nonetheless, the processor can’t commit
Load0 and stalls until Packet0 returns. Thus,
Packet0 is the bottleneck packet, which
allows the earlier-returning Packet1 some
slack cycles. The system could delay Packet1
for the slack cycles without causing signifi-
cant application-level performance loss.

Diversity in slack and its analysis
Sufficient diversity in interfering packets’

slack cycles is necessary to exploit slack. In
other words, it’s only possible to benefit
from prioritizing low-slack packets if the net-
work has a good mix of both high- and low-
slack packets at any time. Fortunately, we
found that realistic systems and applications
have sufficient slack diversity.

Figure 1b shows a cumulative distribution
function of the diversity in slack cycles for
16 applications. The x-axis shows the num-
ber of slack cycles per packet. The y-axis
shows the fraction of total packets that
have at least as many slack cycles per packet
as indicated by the x-axis. Two trends are vis-
ible. First, most applications have a good
spread of packets with respect to the number
of slack cycles, indicating sufficient slack di-
versity within an application. For example,
17.6 percent of Gems’s packets have, at
most, 100 slack cycles, but 50.4 percent of
them have more than 350 slack cycles. Sec-
ond, applications have different slack charac-
teristics. For example, the packets of art

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 30

..

30 IEEE MICRO

...

TOP PICKS

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 31

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

A
ll

p
ac

ke
ts

 (
%

)

Slack in cycles

Gems
omnet
tpcw
mcf

bzip2
sjbb
sap
sphinx

deal
barnes
astar
calculix

art
libquantum
sjeng
h264ref

Instruction window

causes Packet0

causes

(a)

(b)

Packet1Load miss 1

Load miss 0

Latency of Packet0

Latency of Packet1

Packet1 (sent)

E
xe

cu
tio

n
tim

el
in

e

Packet0 (sent)

Compute

Packet1
(returns)

Slack

Slack of Packet1

Stall of Packet0

Packet0
(returns)

Figure 1. Processor execution timeline demonstrating the concept of slack (a); the resulting

packet distribution of 16 applications based on slack cycles (b).

..

JANUARY/FEBRUARY 2011 31

and libquantum have much lower slack
in general than tpcw and omnetpp. We
conclude that each packet’s number of
slack cycles varies within application phases
as well as between applications.

Advantages of exploiting slack
We show that a NoC architecture that’s

aware of slack can lead to better system
performance and fairness. As we mentioned
earlier, a packet’s number of slack cycles indi-
cates that packet’s importance or criticality to
the processor core. If the NoC knew about a
packet’s remaining slack, it could make arbi-
tration decisions that would accelerate pack-
ets with a small slack, which would improve
the system’s overall performance.

Figure 2 shows a motivating example.
Figure 2a depicts the instruction window of
two processor cores—Core A at node (1, 2)
and Core B at node (3, 7). The network con-
sists of an 8 � 8 mesh (see Figure 2b). Core
A generates two packets (A-0 and A-1). The
first packet (A-0) isn’t preceded by any other
packet and is sent to node (8, 8)—therefore,
its latency is 13 hops and its slack is 0 hops.
In the next cycle, the second packet (A-1) is
injected toward node (3, 1). This packet has
a latency of 3 hops, and because it’s preceded
(and thus overlapped) by the 13-hop packet
(A-0), it has a slack of 10 hops (13 hops
minus 3 hops). Core B also generates two
packets (B-0 and B-1). We can calculate
Core B’s packets’ latency and slack similarly.
B-0 has a latency of 10 hops and slack of
0 hops, while B-1 has a latency of 4 hops
and slack of 6 hops.

We can exploit slack when interference
exists between packets with different slack
values. In Figure 2b, for example, packets
A-0 and B-1 interfere. The critical question
is which packet the router should prioritize
and which it should queue (delay).

Figure 2c shows the execution timeline of
the cores with the baseline slack-unaware pri-
oritization policy that possibly prioritizes
packet B-1, thereby delaying packet A-0. In
contrast, if the routers knew the packets’
slack, they would prioritize packet A-0 over
B-1, because the former has a smaller slack
(see Figure 2d). Doing so would reduce
Core A’s stall time without significantly
increasing Core B’s stall time, thereby

improving overall system throughput (see
Figure 2). The critical observation is that
delaying a higher-slack packet can improve
overall system performance by allowing a
lower-slack packet to stall its core less.

Online estimation of slack
Our goal is to identify critical packets

with low slack and accelerate them by
deprioritizing packets with high-slack cycles.

Defining slack
We can define slack locally or globally.7

Local slack is the number of cycles a packet
can be delayed without delaying any subse-
quent instruction. Global slack is the num-
ber of cycles a packet can be delayed
without delaying the last instruction in
the program. Computing a packet’s global
slack requires critical path analysis of the
entire program, rendering it impractical in
our context. So, we focus on local slack.
A packet’s ideal local slack could depend on
instruction-level dependencies, which are
hard to capture in the NoC. So, to keep
the implementation in the NoC simple,
we conservatively consider slack only with
respect to outstanding network transac-
tions. We define the term predecessor pack-
ets, or simply predecessors for a given
packet P, as all packets that are still out-
standing and that have been injected by
the same core into the network earlier
than P. We formally define a packet’s avail-
able local network slack (in this article,
simply called ‘‘slack’’) as the difference
between the maximum latency of its prede-
cessor packets (that is, any outstanding
packet that was injected into the network
earlier than this packet) and its own
latency:

Slack(Packeti) ¼
maxkLatency(Packetk 8k¼0 toNumberofPredecessors)
� Latency(Packeti) (1)

The key challenge in estimating slack is to
accurately predict latencies of predecessor
packets and the current packet being
injected. Unfortunately, it’s difficult to ex-
actly predict network latency in a realistic
system. So, instead of predicting the exact
slack in terms of cycles, we aim to categorize

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 32

..

32 IEEE MICRO

...

TOP PICKS

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 33

Core A

Core B

B-1
(Latency = 4 hops, Slack = 6 hops)

B-0
(Latency = 10 hops, Slack = 0 hops)

In
te

rf
er

en
ce

(3
 h

op
s)

A-0
(Latency = 13 hops, Slack = 0 hops)

A-1
(Latency = 3 hops, Slack = 10 hops)

Instruction window
(Core A)

causes
Packet A-0
causes
Packet A-1

Instruction window
(Core B)

causes
Packet B-0
causes
Packet B-1

Load miss 0

Load miss 1

Load miss 1

Load miss 0

(a) (b)

Latency of B-1 Latency of B-1

Slack

Latency of A-0

Latency of A-1

Core A

Core B

Slack aware (Aérgia)

Slack

Interference

Latency of A-0

Latency of A-1

Core A

Core B

Slack unaware

P
ac

ke
t i

nj
ec

tio
n/

ej
ec

tio
n

P
ac

ke
t i

nj
ec

tio
n/

ej
ec

tio
n

Saved cycles

Latency of B-0

StallCompute

ComputeStall

Core A

Core B

Saved cycles

Latency of B-0

StallCompute

Stall Compute

Core A

Core B

(c) (d)

Figure 2. Conceptual example showing the advantage of incorporating slack into

prioritization decisions in the Network-on-Chip (NoC). The instruction window for two

processor cores (a); interference between two packets with different slack values (b);

the processor cores’ slack-unaware execution timeline (c); prioritization of the packets

according to slack (d).

..

JANUARY/FEBRUARY 2011 33

and quantize slack into different priority lev-
els according to indirect metrics that corre-
late with the latency of predecessors and
the packet being injected. To accomplish
this, we characterize slack as it relates to var-
ious indirect metrics. We found that the
most important factors impacting packet
criticality (hence, slack) are the number of
predecessors that are level-two (L2) cache
misses, whether the injected packet is an L2
cache hit or miss, and the number of a pack-
et’s extraneous hops in the network (com-
pared to its predecessors).

Number of miss predecessors. We define a
packet’s miss predecessors as its predecessors
that are L2 cache misses. We found that a
packet is likely to have high slack if it has
high-latency predecessors or a large number
of predecessors; in both cases, there’s a high
likelihood that its latency is overlapped (that
is, that its slack is high). This is intuitive be-
cause the number of miss predecessors tries
to capture the first term of the slack equa-
tion (that is, Equation 1).

L2 cache hit/miss status. We observe that
whether a packet is an L2 cache hit or
miss correlates with the packet’s criticality
and, thus, the packet’s slack. If the packet
is an L2 miss, it likely has high latency
owing to dynamic RAM (DRAM) access
and extra NoC transactions to and from
memory controllers. Therefore, the packet
likely has a smaller slack because other pack-
ets are less likely to overlap its long latency.

Slack in terms of number of hops. Our third
metric captures both terms of the slack

equation, and is based on the distance trav-
ersed in the network. Specifically:

Slackhops(Packeti) ¼
maxkHops(Packetk 8k¼0 to NumberofPredecessors)
� Hops(Packeti) (2)

Slack priority levels
We combine these three metrics to form

the slack priority level of a packet in Aérgia.
When a packet is injected, Aérgia computes
these three metrics and quantizes them to
form a three-tier priority (see Figure 3).
Aérgia tags the packet’s head flit with
these priority bits. We use 2 bits for the
first tier, which is assigned according to
the number of miss predecessors. We use
1 bit for the second tier to indicate if the
packet being injected is (predicted to be) an
L2 hit or miss. And we use 2 bits for the
third tier to indicate a packet’s hop-based
slack. We then use the combined slack-
based priority level to prioritize between
packets in routers.

Slack estimation
In Aérgia, assigning a packet’s slack prior-

ity level requires estimation of the three
metrics when the packet is injected.

Estimating the number of miss predecessors.
Every core maintains a list of the outstand-
ing L1 load misses (predecessor list). The
miss status handling registers (MSHRs)
limit the predecessor list’s size.8 Each L1
miss is associated with a corresponding L2
miss status bit. At the time a packet is
injected into the NoC, its actual L2 hit/miss
status is unknown because the shared L2
cache is distributed across the nodes. There-
fore, an L2 hit/miss predictor is consulted
and sets the L2 miss status bit accordingly.
We compute the miss predecessor slack pri-
ority level as the number of outstanding L1
misses in the predecessor list whose L2 miss
status bits are set (to indicate a predicted or
actual L2 miss). Our implementation
records L1 misses issued in the last 32 cycles
and sets the maximum number of miss
predecessors to 8. If a prediction error
occurs, the L2 miss status bit is updated
to the correct value when the data response

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 34

No. of miss predecessors (2 bits)

No. of slack in hops (2 bits)

Is L2 cache hit or miss? (1 bit)

Figure 3. Priority structure for estimating

a packet’s slack. A lower priority level

corresponds to a lower slack value.

..

34 IEEE MICRO

...

TOP PICKS

packet returns to the core. In addition, if a
packet that is predicted to be an L2 hit actu-
ally results in an L2 miss, the corresponding
L2 cache bank notifies the requesting core
that the packet actually resulted in an L2
miss so that the requesting core updates
the corresponding L2-miss-status bit ac-
cordingly. To reduce control packet over-
head, the L2 bank piggy-backs this
information to another packet traveling
through the requesting core as an intermedi-
ate node.

Estimating whether a packet will be an L2
cache hit or miss. At the time a packet is
injected, it’s unknown whether it will hit
in the remote L2 cache bank it accesses.
We use an L2 hit/miss predictor in each
core to guess each injected packet’s cache
hit/miss status, and we set the second-tier
priority bit accordingly in the packet
header. If the packet is predicted to be an
L2 miss, its L2 miss priority bit is set to
0; otherwise, it is set to 1. This priority
bit within the packet header is corrected
when the actual L2 miss status is known
after the packet accesses the L2.

We developed two types of L2 miss pre-
dictors. The first is based on the global
branch predictor.9 A shift register records
the hit/miss values for the last M L1 load
misses. We then use this register to index a
pattern history table (PHT) containing
2-bit saturating counters. The accessed
counter indicates whether the prediction for
that particular pattern history was a hit or a
miss. The counter is updated when a packet’s
hit/miss status is known. The second predic-
tor, called the threshold predictor, uses the in-
sight that misses occur in bursts. This
predictor updates a counter if the access is
a known L2 miss. The counter resets after
every M L1 misses. If the number of
known L2 misses in the last M L1 misses
exceeds a threshold T, the next L1 miss is
predicted to be an L2 miss.

The global predictor requires more stor-
age bits (for the PHT) and has marginally
higher design complexity than the threshold
predictor. For correct updates, both predic-
tors require an extra bit in the response
packet indicating whether the transaction
was an L2 miss.

Estimating hop-based slack. We calculate any
packet’s hops per packet by adding the X and
Y distance between source and destination.
We then calculate a packet’s hop-based
slack using Equation 2.

Aérgia NoC architecture
Our NoC architecture, Aérgia, uses the

slack priority levels that we described for
arbitration. We now describe the architec-
ture. Some design challenges accompany
the prioritization mechanisms, including
starvation avoidance (using batching) and
mitigating priority inversion (using multiple
network interface queues).

Baseline
Figure 4 shows a generic NoC router

architecture. The router has P input channels
connected to P ports and P output channels
connected to the crossbar; typically P ¼ 5 for
a 2D mesh (one from each direction and one
from the network interface). The routing
computation unit determines the next router
and the virtual channel (V) within the next
router for each packet. Dimension-ordered

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 35

Switch arbiter

VC arbiter

Routing
computation

Output
channel

1

Output
channel

P
Crossbar

(P x P)

Scheduler

Input port P

Input port 1

VC v

VC 1
VC identifier

In
p

ut
ch

an
ne

l
1

In
p

ut
ch

an
ne

l
P

C
re

d
it

ou
t

Figure 4. Baseline router microarchitecture. The figure shows the different

parts of the router: input channels connected to the router ports; buffers

within ports organized as virtual channels; the control logic, which performs

routing and arbitration; and the crossbar connected to the output channels.

..

JANUARY/FEBRUARY 2011 35

routing (DOR) is the most common routing
policy because of its low complexity and
deadlock freedom. Our baseline assumes
XY DOR, which first routes packets in X di-
rection, followed by Y direction. The virtual
channel arbitration unit arbitrates among all
packets requesting access to the same output
virtual channel in the downstream router and
decides on winners. The switch arbitration
unit arbitrates among all input virtual chan-
nels requesting access to the crossbar and
grants permission to the winning packets
and flits. The winners can then traverse the
crossbar and be placed on the output links.
Current routers use simple, local arbitration
policies (such as round-robin or oldest-
first arbitration) to decide which packet to
schedule next (that is, which packet wins
arbitration). Our baseline NoC uses the
round-robin policy.

Arbitration
In Aérgia, the virtual channel arbitration

and switch arbitration units prioritize pack-
ets with lower slack priority levels. Thus,
low-slack packets get first preference for buf-
fers as well as the crossbar and, thus, are
accelerated in the network. In wormhole
switching, only the head flit arbitrates for
and reserves the virtual channel; thus, only
the head flit carries the slack priority value.
Aérgia uses this header information during
virtual channel arbitration stage for priority
arbitration. In addition to the state that
the baseline architecture maintains, each vir-
tual channel has an additional priority field,
which is updated with the head flit’s slack
priority level when the head flit reserves
the virtual channel. The body flits use this
field during switch arbitration stage for pri-
ority arbitration.

Without adequate countermeasures, pri-
oritization mechanisms can easily lead to
starvation in the network. To prevent starva-
tion, we combine our slack-based prioritiza-
tion with a ‘‘batching’’ mechanism similar to
the one from our previous work.10 We divide
time into intervals of T cycles, which we call
batching intervals. Packets inserted into the
network during the same interval belong to
the same batch (that is, they have the same
batch priority value). We prioritize packets
belonging to older batches over those from

younger batches. Only when two packets be-
long to the same batch do we prioritize them
according to their available slack (that is, the
slack priority levels). Each head flit carries a
5-bit slack priority value and a 3-bit batch
number. We use adder delays to estimate
the delay of an 8-bit priority arbiter (P ¼ 5,
V ¼ 6) to be 138.9 picoseconds and a
16-bit priority arbiter to be 186.9 picosec-
onds at 45- nanometer technology.

Network interface
For effectiveness, prioritization is neces-

sary not only within the routers but also at
the network interfaces. We split the mono-
lithic injection queue at a network interface
into a small number of equal-length queues.
Each queue buffers packets with slack prior-
ity levels within a different programmable
range. Packets are guided into a particular
queue on the basis of their slack priority lev-
els. Queues belonging to higher-priority
packets take precedence over those belong-
ing to lower-priority packets. Such prioriti-
zation reduces priority inversion and is
especially needed at memory controllers,
where packets from all applications are buf-
fered together at the network interface and
where monolithic queues can cause severe
priority inversion.

Comparison to application-aware
scheduling and fairness policies

In our previous work,10 we proposed Stall
Time Criticality (STC), an application-aware
coordinated arbitration policy to accelerate
network-sensitive applications. The idea is
to rank applications at regular intervals
based on their network intensity (L1-MPI,
or L1 miss rate per instruction), and to
prioritize all packets of a nonintensive appli-
cation over all packets of an intensive
application. Within applications belonging
to the same rank, STC prioritizes packets
using the baseline round-robin order in a
slack-unaware manner. Packet batching is
used for starvation avoidance. STC is a
coarse-grained approach that identifies criti-
cal applications (from the NoC perspective)
and prioritizes them over noncritical ones.
By focusing on application-level intensity,
STC can’t capture fine-grained packet-level

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 36

..

36 IEEE MICRO

...

TOP PICKS

criticality that a slack-aware mechanism like
Aérgia exploits at the individual packets’
granularity. However, we find that STC
and Aérgia are complementary, and we can
combine them to exploit both algorithms’
strengths. The combined STCþAérgia ar-
chitecture prioritizes higher-ranked applica-
tions over lower-ranked applications (as
STC does) and, within the same ranking
class, it uses slack-based prioritization (as
Aérgia does).

We quantitatively compare Aérgia to a
state-of-art fairness scheme called Globally
Synchronized Frames (GSF).11 GSF provides
prioritization mechanisms within the net-
work to ensure guarantees on minimum
bandwidth and minimum network delay
that each application experiences and to en-
sure that each application achieves equal net-
work throughput. To accomplish this, GSF
employs the notion of frames, which is sim-
ilar to our concept of batches. Within a
frame, GSF doesn’t distinguish between dif-
ferent applications; in fact, it doesn’t specify
a prioritization policy. In contrast, Aérgia
employs a slack-aware prioritization policy
within packets of the same batch. As a result,
Aérgia provides better system-level through-
put by prioritizing those packets that would
benefit more from network service. Of
course, GSF and Aérgia have different
goals: GSF aims to provide network-level
quality of service (QoS), whereas Aérgia opti-
mizes system throughput by exploiting
packet slack.

Performance evaluation
We evaluated our scheme on 35 applica-

tions consisting of SPLASH, SPEC
CPU2006, SPEC-OMP, Commercial
Workloads, and Windows applications on a
64-core system with an 8 � 8 mesh NoC
using an integrated x86 CMP/NoC simula-
tor. We comprehensively compare our pro-
posed substrate to existing local scheduling
policies (round-robin and age-based arbiters)
and the state-of-the-art fairness-oriented pol-
icy (GSF11) and application-aware prioritiza-
tion policy (STC10). Our ISCA 2010 paper4

provides insight into why our proposal
improves system performance and fairness
via detailed case studies and analyses. In
this article, we provide the overall results.
Figure 5 summarizes our main results aver-
aged across 56 workload mixes consisting
of 8 homogenous workloads and 48 hetero-
genous workloads, with applications picked
randomly from different categories. Aérgia
improves average system throughput by
10.3 percent and 11.6 percent (weighted
and harmonic, respectively) compared to
the baseline (round robin), while also
improving network fairness by 30.8 percent.
Aérgia combined with STC improves average
system throughput by 6.5 percent and
5.2 percent (weighted and harmonic, respec-
tively) compared to STC alone, while also
improving network unfairness (in terms
of maximum network slowdown any appli-
cation experiences) by 18.1 percent. Thus,
we conclude that Aérgia provides the best

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 37

0.0

(a) (b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Weighted Harmonic

S
p

ee
d

up

Base GSF STC Aérgia STC + Aérgia

0

3

6

9

12

Arithmetic Harmonic

U
nf

ai
rn

es
s

Base GSF STC Aérgia STC + Aérgia

Figure 5. Aggregate results across 56 workloads: system speedup (a) and network unfairness (maximum network

slowdown of any application) (b).

..

JANUARY/FEBRUARY 2011 37

system performance and network fairness
over various workloads, whether used
independently or with application-aware
prioritization techniques.

T o our knowledge, our ISCA 2010
paper4 is the first work to make use of

the criticality of memory accesses for packet
scheduling within NoCs. We believe our
proposed slack-aware NoC design can
influence many-core processor implementa-
tions and future research in several ways.

Other work has proposed and explored
the instruction slack concept7 (for more
information, see the ‘‘Research related to
Aérgia’’ sidebar). Although prior research
has exploited instruction slack to improve
performance-power trade-offs for single-
threaded uniprocessors, instruction slack’s
impact on shared resources in many-
core processors provides new research oppor-
tunities. To our knowledge, our ISCA 2010
paper4 is the first work that attempts to

exploit and understand how instruction-
level slack impacts the interference of appli-
cations within a many-core processor’s
shared resources, such as caches, memory
controllers, and on-chip networks. We de-
fine, measure, and devise easy-to-implement
schemes to estimate slack of memory accesses
in the context of many-core processors.
Researchers can use our slack metric for bet-
ter management of other shared resources,
such as request scheduling at memory con-
trollers, managing shared caches, saving en-
ergy in the shared memory hierarchy, and
providing QoS. Shared resource manage-
ment will become even more important in
future systems (including data centers,
cloud computing, and mobile many-core sys-
tems) as they employ a larger number of in-
creasingly diverse applications running
together on a many-core processor. Thus,
using slack for better resource management
could become more beneficial as the pro-
cessor industry evolves toward many-core

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 38

...

Research related to Aérgia

To our knowledge, no previous work has characterized slack in packet

latency and proposed mechanisms to exploit it for on-chip network

arbitration. Here, we discuss the most closely related previous work.

Instruction criticality and memory-level parallelism (MLP)
Much research has been done to predict instruction criticality or

slack1-3 and to prioritize critical instructions in the processor core and

caches. MLP-aware cache replacement exploits cache-miss criticality dif-

ferences caused by differences in MLP.4 Parallelism-aware memory

scheduling5 and other rank-based memory scheduling algorithms6 reduce

application stall time by improving each thread’s bank-level parallelism.

Such work relates to ours only in the sense that we also exploit critical-

ity to improve system performance. However, our methods (for comput-

ing slack) and mechanisms (for exploiting it) are very different owing to

on-chip networks’ distributed nature.

Prioritization in on-chip and multiprocessor networks
We’ve extensively compared our approach to state-of-the-art local ar-

bitration, quality-of-service-oriented prioritization (such as Globally-

Synchronized Frames, or GSF7), and application-aware prioritization

(such as Stall-Time Criticality, or STC8) policies in Networks-on-Chip

(NoCs). Bolotin et al. prioritize control packets over data packets in

the NoC but don’t distinguish packets on the basis of available slack.9

Other researchers have also proposed frameworks for quality of service

(QoS) in on-chip networks,10-12 which can be combined with our

approach. Some other work proposed arbitration policies for multichip

multiprocessor networks and long-haul networks.13-16 They aim to pro-

vide guaranteed service or fairness, while we aim to exploit slack in

packet latency to improve system performance. In addition, most of

the previous mechanisms statically assign priorities and bandwidth to

different flows in off-chip networks to satisfy real-time performance

and QoS guarantees. In contrast, our proposal dynamically computes

and assigns priorities to packets based on slack.

Batching
We use packet batching in NoC for starvation avoidance, similar to

our previous work.8 Other researchers have explored using batching

and frames in disk scheduling,17 memory scheduling,5 and QoS-aware

packet scheduling7,12 to prevent starvation and provide fairness.

References

1. S.T. Srinivasan and A.R. Lebeck, ‘‘Load Latency Tolerance in Dy-

namically Scheduled Processors,’’ Proc. 31st Ann. ACM/IEEE

Int’l Symp. Microarchitecture, IEEE CS Press, 1998, pp. 148-159.

2. B. Fields, S. Rubin, and R. Bodı́k, ‘‘Focusing Processor Policies

via Critical-Path Prediction,’’ Proc. 28th Ann. Int’l Symp. Com-

puter Architecture (ISCA 01), ACM Press, 2001, pp. 74-85.

3. B. Fields, R. Bodı́k, and M. Hill, ‘‘Slack: Maximizing Performance

under Technological Constraints,’’ Proc. 29th Ann. Int’l Symp.

..

38 IEEE MICRO

...

TOP PICKS

processors. We hope that our work inspires
such research and development.

Managing shared resources in a highly
parallel system is a fundamental challenge.
Although application interference is relatively
well understood for many important shared
resources (such as shared last-level caches12

or memory bandwidth13-16), less is known
about application interference behavior in
NoCs or how this interference impacts appli-
cations’ execution times. One reason why
analyzing and managing multiple applica-
tions in a shared NoC is challenging is that
application interactions in a distributed sys-
tem can be complex and chaotic, with nu-
merous first- and second-order effects (such
as queueing delays, different MLP, bursti-
ness, and the effect of spatial location of
cache banks) and hard-to-predict interfer-
ence patterns that can significantly impact
application-level performance.

We attempt to understand applications’
complex interactions in NoCs using

application-level metrics and systematic
experimental evaluations. Building on this
understanding, we’ve devised low-cost,
simple-to-implement, and scalable policies
to control and reduce interference in NoCs.
We’ve shown that employing coarse-grained
and fine-grained application-aware prioritiza-
tion can significantly improve performance.
We hope our techniques inspire other
novel approaches to reduce application-level
interference in NoCs.

Finally, our work exposes the instruction
behavior inside a processor core to the
NoC. We hope this encourages future re-
search on the integrated design of cores and
NoCs (as well as other shared resources).
This integrated design approach will likely
foster future research on overall system per-
formance instead of individual components’
performance: by codesigning NoC and
the core to be aware of each other, we
can achieve significantly better performance
and fairness than designing each alone.

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 39

Computer Architecture, IEEE Press, 2002, pp. 47-58,

doi:10.1109/ISCA.2002.1003561.

4. M. Qureshi et al., ‘‘A Case for MLP-Aware Cache Replace-

ment,’’ Proc. 33rd Ann. Int’l Symp. Computer Architecture

(ISCA 06), IEEE CS Press, 2006, pp. 167-178.

5. O. Mutlu and T. Moscibroda, ‘‘Parallelism-Aware Batch

Scheduling: Enhancing Both Performance and Fairness of

Shared DRAM Systems,’’ Proc. 35th Ann. Int’l Symp. Com-

puter Architecture (ISCA 08), IEEE CS Press, 2008, pp. 63-74.

6. Y. Kim et al., ‘‘ATLAS: A Scalable and High-Performance Sched-

uling Algorithm for Multiple Memory Controllers,’’ Proc. IEEE

16th Int’l Symp. High Performance Computer Architecture

(HPCA 10), IEEE Press, 2010, doi:10.1109/HPCA.2010.5416658.

7. J.W. Lee, M.C. Ng, and K. Asanovic, ‘‘Globally-Synchronized

Frames for Guaranteed Quality-of-Service in On-Chip Net-

works,’’ Proc. 35th Ann. Int’l Symp. Computer Architecture

(ISCA 08), IEEE CS Press, 2008, pp. 89-100.

8. R. Das et al., ‘‘Application-Aware Prioritization Mechanisms

for On-Chip Networks,’’ Proc. 42nd Ann. IEEE/ACM Int’l

Symp. Microarchitecture, ACM Press, 2009, pp. 280-291.

9. E. Bolotin et al., ‘‘The Power of Priority: NoC Based Distrib-

uted Cache Coherency,’’ Proc. 1st Int’l Symp. Networks-

on-Chip (NOCS 07), IEEE Press, 2007, pp. 117-126,

doi:10.1109/NOCS.2007.42.

10. E. Bolotin et al., ‘‘QNoC: QoS Architecture and Design Pro-

cess for Network on Chip,’’ J. Systems Architecture,

vol. 50, nos. 2-3, 2004, pp. 105-128.

11. E. Rijpkema et al., ‘‘Trade-offs in the Design of a Router with

Both Guaranteed and Best-Effort Services for Networks on

Chip,’’ Proc. Conf. Design, Automation and Test in Europe

(DATE 03), vol. 1, IEEE CS Press, 2003, pp. 10350-10355.

12. B. Grot, S.W. Keckler, and O. Mutlu, ‘‘Preemptive Virtual

Clock: A Flexible, Efficient, and Cost-effective QOS Scheme

for Networks-on-Chip,’’ Proc. 42nd Ann. IEEE/ACM Int’l

Symp. Microarchitecture, ACM Press, 2009, pp. 268-279.

13. K.H. Yum, E.J. Kim, and C. Das, ‘‘QoS Provisioning in Clus-

ters: An Investigation of Router and NIC Design,’’ Proc.

28th Ann. Int’l Symp. Computer Architecture (ISCA 01),

ACM Press, 2001, pp. 120-129.

14. A.A. Chien and J.H. Kim, ‘‘Rotating Combined Queueing (RCQ):

Bandwidth and Latency Guarantees in Low-Cost, High-

Performance Networks,’’ Proc. 23rd Ann. Int’l Symp. Computer

Architecture (ISCA 96), ACM Press, 1996, pp. 226-236.

15. A. Demers, S. Keshav, and S. Shenker, ‘‘Analysis and Simu-

lation of a Fair Queueing Algorithm,’’ Symp. Proc. Comm.

Architectures & Protocols (Sigcomm 89), ACM Press, 1989,

pp. 1-12, doi:10.1145/75246.75248.

16. L. Zhang, ‘‘Virtual Clock: A New Traffic Control Algorithm for

Packet Switching Networks,’’ Proc. ACM Symp. Comm.

Architectures & Protocols (Sigcomm 90), ACM Press, 1990,

pp. 19-29, doi:10.1145/99508.99525.

17. H. Frank, ‘‘Analysis and Optimization of Disk Storage Devices

for Time-Sharing Systems,’’ J. ACM, vol. 16, no. 4, 1969,

pp. 602-620.

..

JANUARY/FEBRUARY 2011 39

We therefore hope Aérgia opens new
research opportunities beyond packet-
scheduling in on-chip networks. M I CR O

Acknowledgments
This research was partially supported by

National Science Foundation (NSF) grant
CCF-0702519, NSF Career Award CCF-
0953246, the Carnegie Mellon University
CyLab, and GSRC.

..
References

1. A. Glew, ‘‘MLP Yes! ILP No! Memory Level

Parallelism, or Why I No Longer Care about

Instruction Level Parallelism,’’ ASPLOS

Wild and Crazy Ideas Session, 1998; http://

www.cs.berkeley.edu/~kubitron/asplos98/

abstracts/andrew_glew.pdf.

2. O. Mutlu, H. Kim, and Y.N. Patt, ‘‘Efficient

Runahead Execution: Power-Efficient Mem-

ory Latency Tolerance,’’ IEEE Micro, vol. 26,

no. 1, 2006, pp. 10-20.

3. B. Fields, S. Rubin, and R. Bodı́k, ‘‘Focusing

Processor Policies Via Critical-Path Predic-

tion,’’ Proc. 28th Ann. Int’l Symp. Computer

Architecture (ISCA 01), ACM Press, 2001,

pp. 74-85.

4. R. Das et al., ‘‘Aérgia: Exploiting Packet

Latency Slack in On-Chip Networks,’’

Proc. 37th Ann. Int’l Symp. Computer Archi-

tecture (ISCA 10), ACM Press, 2010,

pp. 106-116.

5. R.M. Tomasulo, ‘‘An Efficient Algorithm for

Exploiting Multiple Arithmetic Units,’’ IBM

J. Research and Development, vol. 11,

no. 1, 1967, pp. 25-33.

6. O. Mutlu et al., ‘‘Runahead Execution: An

Alternative to Very Large Instruction Win-

dows for Out-of-Order Processors,’’ Proc.

9th Int’l Symp. High-Performance Computer

Architecture (HPCA 03), IEEE Press, 2003,

pp. 129-140.

7. B. Fields, R. Bodı́k, and M. Hill, ‘‘Slack:

Maximizing Performance under Technologi-

cal Constraints,’’ Proc. 29th Ann. Int’l

Symp. Computer Architecture, IEEE Press,

2002, pp. 47-58, doi:10.1109/ISCA.2002.

1003561.

8. D. Kroft, ‘‘Lockup-Free Instruction Fetch/

Prefetch Cache Organization,’’ Proc. 8th

Ann. Symp. Computer Architecture (ISCA

81), IEEE CS Press, 1981, pp. 81-87.

9. T.Y. Yeh and Y.N. Patt, ‘‘Two-Level Adap-

tive Training Branch Prediction,’’ Proc. 24th

Ann. Int’l Symp. Microarchitecture, ACM

Press, 1991, pp. 51-61.

10. R. Das et al., ‘‘Application-Aware Prioritiza-

tion Mechanisms for On-Chip Networks,’’

Proc. 42nd Ann. IEEE/ACM Int’l Symp.

Microarchitecture, ACM Press, 2009,

pp. 280-291.

11. J.W. Lee, M.C. Ng, and K. Asanovic, ‘‘Glob-

ally-Synchronized Frames for Guaranteed

Quality-of-Service in On-Chip Networks,’’

Proc. 35th Ann. Int’l Symp. Computer Archi-

tecture (ISCA 08), IEEE CS Press, 2008,

pp. 89-100.

12. L.R. Hsu et al., ‘‘Communist, Utilitarian, and

Capitalist Cache Policies on CMPS: Caches

as a Shared Resource,’’ Proc. 15th Int’l

Conf. Parallel Architectures and Compilation

Techniques (PACT 06), ACM Press, 2006,

pp. 13-22.

13. O. Mutlu and T. Moscibroda, ‘‘Stall-Time

Fair Memory Access Scheduling for Chip

Multiprocessors,’’ Proc. 40th Ann. IEEE/

ACM Int’l Symp. Microarchitecture, IEEE

CS Press, 2007, pp. 146-160.

14. O. Mutlu and T. Moscibroda, ‘‘Parallelism-

Aware Batch Scheduling: Enhancing Both

Performance and Fairness of Shared

DRAM Systems,’’ Proc. 35th Ann. Int’l

Symp. Computer Architecture (ISCA 08),

IEEE CS Press, 2008, pp. 63-74.

15. Y. Kim et al., ‘‘ATLAS: A Scalable and High-

Performance Scheduling Algorithm for Mul-

tiple Memory Controllers,’’ Proc. IEEE 16th

Int’l Symp. High Performance Computer

Architecture (HPCA 10), IEEE Press, 2010,

doi:10.1109/HPCA.2010.5416658.

16. Y. Kim et al., ‘‘Thread Cluster Memory

Scheduling: Exploiting Differences in Mem-

ory Access Behavior,’’ Proc. 43rd Ann.

IEEE/ACM Int’l Symp. Microarchitecture,

ACM Press, 2010.

Reetuparna Das is a research scientist at
Intel Labs. Her research interests include
computer architecture, especially intercon-
nection networks. She has a PhD in
computer science and engineering from
Pennsylvania State University.

Onur Mutlu is an assistant professor in
the Electrical and Computer Engineering

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 40

..

40 IEEE MICRO

...

TOP PICKS

Department at Carnegie Mellon University.
His research interests include computer
architecture and systems. He has a PhD in
electrical and computer engineering from the
University of Texas at Austin. He’s a
member of IEEE and the ACM.

Thomas Moscibroda is a researcher in the
distributed systems research group at Microsoft
Research. His research interests include dis-
tributed computing, networking, and algorith-
mic aspects of computer architecture. He has a
PhD in computer science from ETH Zürich.
He’s a member of IEEE and the ACM.

Chita R. Das is a distinguished professor in
the Department of Computer Science and

Engineering at Pennsylvania State Univer-
sity. His research interests include parallel
and distributed computing, performance
evaluation, and fault-tolerant computing.
He has a PhD in computer science from
the University of Louisiana, Lafayette. He’s a
fellow of IEEE.

Direct questions and comments to Reetu-
parna Das, Intel Labs, Intel Corp., SC-12,
3600 Juliette Ln., Santa Clara, CA; reetuparna.
das@intel.com.

[3B2-14] mmi2011010029.3d 20/1/011 14:3 Page 41

..

JANUARY/FEBRUARY 2011 41

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.002400
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

