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ABSTRACT
Emerging byte-addressable nonvolatile memories (NVMs)
promise persistent memory, which allows processors to di-
rectly access persistent data in main memory. Yet, persist-
ent memory systems need to guarantee a consistent mem-
ory state in the event of power loss or a system crash (i.e.,
crash consistency). To guarantee crash consistency, most
prior works rely on programmers to (1) partition persistent
and transient memory data and (2) use specialized software
interfaces when updating persistent memory data. As a re-
sult, taking advantage of persistent memory requires signifi-
cant programmer effort, e.g., to implement new programs as
well as modify legacy programs. Use cases and adoption of
persistent memory can therefore be largely limited.

In this paper, we propose a hardware-assisted
DRAM+NVM hybrid persistent memory design, Transpar-
ent Hybrid NVM (ThyNVM), which supports software-
transparent crash consistency of memory data in a hybrid
memory system. To efficiently enforce crash consistency,
we design a new dual-scheme checkpointing mechanism,
which efficiently overlaps checkpointing time with app-
lication execution time. The key novelty is to enable
checkpointing of data at multiple granularities, cache block
or page granularity, in a coordinated manner. This design
is based on our insight that there is a tradeoff between the
application stall time due to checkpointing and the hardware
storage overhead of the metadata for checkpointing, both
of which are dictated by the granularity of checkpointed
data. To get the best of the tradeoff, our technique adapts
the checkpointing granularity to the write locality char-
acteristics of the data and coordinates the management
of multiple-granularity updates. Our evaluation across a
variety of applications shows that ThyNVM performs within
4.9% of an idealized DRAM-only system that can provide
crash consistency at no cost.
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1. INTRODUCTION
Byte-addressable nonvolatile memory (NVM) technolo-

gies, such as STT-RAM [33, 36], PCM [64, 39], and
ReRAM [2], promise persistent memory [77, 57, 4, 29],
which is emerging as a new tier in the memory and stor-
age stack. Persistent memory incorporates attributes from
both main memory (fast byte-addressable access) and stor-
age (data persistence), blurring the boundary between them.
It offers an essential benefit to applications: applications can
directly access persistent data in main memory through a
fast, load/store interface, without paging them in/out of stor-
age devices, changing data formats in (de)serialization, or
executing costly system calls [45].

Persistent memory introduces an important requirement
to memory systems: it needs to protect data integrity against
partial/reordered writes to NVM in the presence of system
failures (e.g., due to power loss and system crashes). Con-
sider an example where two data structures A and B stored
in NVM are updated to complete an atomic operation, and
one of these updates to A or B reach the NVM first. If the
system crashes or loses power after only one update com-
pletes, the in-memory structure can be left in an inconsis-
tent state, containing partially updated data. With volatile
memory, this is not an issue because the in-memory data is
cleared each time the software program restarts. Unfortu-
nately, with NVM, such inconsistent states persist even after
a system restart. Consequently, persistent memory systems
need to ensure that the data stored in the NVM can be re-
covered to a consistent version during system recovery or
reboot after a crash, a property referred to as crash consis-
tency [37, 15, 71]. Maintaining crash consistency used to
be a requirement of solely the storage subsystem. Yet, by
introducing data persistence in main memory, it becomes a
challenge also faced by the memory subsystem.

Most prior persistent memory designs rely on program-
mers’ manual effort to ensure crash consistency [77, 13, 76,
29, 83, 57]. Application developers need to explicitly ma-
nipulate data storage and movement in persistent memory,
following particular programming models and software in-
terfaces to protect data against write reordering and partial
updates. This approach offers programmers full control over
which pieces of data they would like to make persistent. Un-
fortunately, requiring all programmers to manage persistent
memory via new interfaces is undesirable in several ways.
First, significant effort is imposed on programmers: they
need to implement new programs or modify legacy code
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using new APIs, with clear declaration and partitioning of
persistent and transient data structures. Second, applications
with legacy code deployed in various systems will not be
able to take advantage of the persistent memory systems.
Third, as most previous persistent memory designs require
transactional semantics to enable version control and write
ordering for consistency, use cases of persistent memory be-
comes limited to transactional memory applications, which
face challenges in scalability [10, 55, 17]. Fourth, persist-
ent memory application implementations depend on specific
software interfaces and runtime systems, which vary from
one computer system to another [77, 13, 76, 29, 72]. This
substantially degrades the portability of persistent memory
programs across different systems.

Our goal, in this paper, is to devise an efficient software-
transparent mechanism to ensure crash consistency in
persistent memory systems. The hope is that such a de-
sign can enable more use cases of persistent memory (e.g.,
for unmodified legacy programs and non-transactional pro-
grams) and allow more programmers to use persistent mem-
ory without making modifications to applications to ensure
crash consistency.

To this end, we propose Transparent hybrid Non-
Volatile Memory, ThyNVM, a persistent memory design with
software-transparent crash consistency support for a hybrid
DRAM+NVM system. ThyNVM allows both transaction-
based and non-transactional applications to directly execute
on top of the persistent memory hardware with full sup-
port for crash consistency. ThyNVM employs a periodic
hardware-assisted checkpointing mechanism to recover to a
consistent memory state after a system failure. However,
naive checkpointing can stall applications while it persists all
the memory updates in the NVM. Reducing the application
stall time due to the use of checkpointing is a critical chal-
lenge in such a system.

ThyNVM reduces checkpointing overhead in two ways.
First, it overlaps checkpointing time with application execu-
tion time. Second, to do this efficiently, it dynamically deter-
mines checkpointing granularity of data by making the new
observation that there is a tradeoff between the application
stall time and metadata storage overhead of checkpointing.
Checkpointing data at a small granularity incurs short stall
time, yet generates a large amount of metadata that requires
excessive hardware space. Checkpointing data at a large
granularity, in contrast, yields a much smaller amount of
metadata, yet incurs a long latency for creating checkpoints,
potentially leading to longer application stall times. As a re-
sult, any single checkpointing scheme with a uniform gran-
ularity (either small or large) is suboptimal. To address this,
we propose a dual-scheme checkpointing mechanism, which
synchronously checkpoints sparse (low spatial locality) and
dense (high spatial locality) persistent memory updates at
cache block and page granularities, respectively. Compared
to previous persistent memory designs that use logging [77,
13] or copy-on-write (CoW) [14, 76] to provide crash consis-
tency, ThyNVM either significantly reduces metadata stor-
age overhead (compared to logging) or greatly increases ef-
fective memory bandwidth utilization (compared to CoW).

This paper makes the following contributions:
(1) We propose a new persistent memory design with

software-transparent crash consistency support. Our design
allows both transaction-based and unmodified legacy appli-

cations to leverage persistent memory through the load/store
interface.

(2) We identify a new, important tradeoff between app-
lication stall time and metadata storage overhead due to
checkpointing of data at different granularities. Checkpoint-
ing data with a uniform granularity (e.g., cache block or page
granularity) is suboptimal.

(3) We devise a new dual-scheme checkpointing mech-
anism which substantially outperforms a single-granularity
checkpointing scheme. We observe that updates with low
spatial locality are better checkpointed at cache block granu-
larity, but updates with high spatial locality are better check-
pointed at page granularity. Our design reduces stall time by
up to 86.2% compared to uniform page-granularity check-
pointing, while incurring only 26% of the hardware over-
head (in the memory controller) of uniform cache-block-
granularity checkpointing.

(4) We implement ThyNVM (with a formally-proven con-
sistency protocol) and show that it guarantees crash consis-
tency of memory data while providing high performance by
efficiently overlapping checkpointing and program execu-
tion. Our solution achieves 95.1% of performance of an ide-
alized DRAM-only system that provides crash consistency
support at no cost.

2. MOTIVATION AND OBSERVATIONS
ThyNVM incorporates three essential design choices:

(1) Crash consistency support is software-transparent, in-
stead of software-based; (2) The crash consistency mecha-
nism is based on checkpointing, instead of logging or copy-
on-write; (3) Memory updates are checkpointed at two gran-
ularities, instead of a single granularity. This section dis-
cusses the reasons that result in these design choices.

2.1 Inefficiency of Software-based Crash
Consistency Support

Most prior persistent memory designs [14, 77, 13, 83, 76]
require application developers to explicitly define persistent
data and use particular libraries. Crash consistency support
is closely coupled with software semantics in these models.
We illustrate the inefficiencies of such persistent memory de-
signs with an example program shown in Figure 1. The fig-
ure compares two implementations of a function that updates
an entry in a persistent hash table (the code is adapted from
STAMP [47]). Figure 1(a) demonstrates an implementation
that involves software transactions similar to previous de-
signs [14, 77] and Figure 1(b) shows the code with software-
transparent ThyNVM. The figures show that involving soft-
ware in supporting crash consistency is undesirable and in-
efficient from several perspectives.

First, manually partitioning transient and persistent data is
both burdensome for the programmer and error-prone. Fig-
ure 1(a) shows various indispensable program annotations:
programmers need to carefully determine what data struc-
tures need to be persistent and how to manipulate them. For
example, Line 3 in Figure 1(a), which reads a chain from
the hash table, is correct only if the hash table implements
a fixed number of chains. Otherwise, another concurrent
thread can relocate the chains and the result of Line 3 would
be incorrect. To avoid this, the programmer needs to use
transactions, for example, to protect the chain addresses (ac-
cessed in Line 3) from updates of concurrent threads.
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1 void TMhashtable_update(TM_ARGDECL hashtable_t* hashtablePtr,
2                         void* keyPtr, void* dataPtr) {
3    list_t* chainPtr = get_chain(hashtablePtr, keyPtr);
4    pair_t* pairPtr;
5    pair_t updatePair;
6    updatePair.firstPtr = keyPtr;
7    pairPtr = (pair_t*)TMLIST_FIND(chainPtr, &updatePair);
8    pairPtr->secondPtr = dataPtr;
9 }

1 void hashtable_update(hashtable_t* hashtablePtr, 
2                       void* keyPtr, void* dataPtr) {
3    list_t* chainPtr = get_chain(hashtablePtr, keyPtr);
4    pair_t* pairPtr;
5    pair_t updatePair;
6    updatePair.firstPtr = keyPtr;
7    pairPtr = (pair_t*)list_find(chainPtr, &updatePair);
8    pairPtr->secondPtr = dataPtr;
9 }Prohibited operation, 

will cause a runtime error

Transactional interface 
for third-party libraries

Unmodified syntax and semantics

Valid operation,  persistent
memory will ensure crash consistency

Manually declaring transactional/persistent components

(a) (b)
Figure 1: Code examples of updating an entry in a persistent hash table, implemented by (a) adopting a transactional memory
interface or (b) employing software-transparent ThyNVM to ensure crash consistency.

Second, references between transient and persistent data
in a unified memory space require careful management.
However, software support for this issue is suboptimal. For
example, NV-to-V pointers (nonvolatile pointers to volatile
data, Line 8 in Figure 1(a)) can leave the NV pointer as a
dangling pointer after a system failure, because the volatile
data it points to is lost. NV-heaps [13] simply raises a run-
time error that prohibits such pointers; this can impose sub-
stantial performance overhead by program halt or complex
error handling.

Third, applications need to employ transactions to up-
date persistent data, typically through a transactional
memory (TM) interface (e.g., TinySTM [18] used by
Mnemosyne [77]), as shown in Line 7 in Figure 1(a). Un-
fortunately, transactional memory, either hardware-based or
software-based, has various scalability issues [10, 55, 17].
Furthermore, application developers need to implement or
reimplement libraries and programs using new APIs, with
nontrivial implementation effort. Programmers who are not
familiar with such APIs require training to use them.

Finally, applications need to be written on top of spe-
cialized libraries, such as libmnemosyne [77] and NV-
heaps [13]. This can substantially degrade the portability
of persistent memory applications: an application imple-
mented on top of one library will need to be reimplemented
to adapt to another library. Compilers can mitigate program-
mers’ burden on annotating/porting code to support persist-
ent memory. However, without manual annotations, compil-
ers instrument all (or most) memory reads and writes, impos-
ing significant performance overhead. We evaluated STAMP
transactional benchmarks [47] with GCC libitm [79] and
found that the runtime overhead due to instrumentation alone
can incur 8% performance degradation.

We adopt a usage model that allows software programs to
directly access persistent memory without a special interface
for crash consistency support. As illustrated in Figure 1(b),
data structures can persist without any code modification.

2.2 Inefficiency of Logging and Copy-on-Write
Most previous software-based persistent memory designs

adopt logging [77, 13] or copy-on-write (CoW) [14, 76] to
ensure crash consistency: Logging-based systems maintain
alternative copies of original data in a log, which stores new
data updates (redo logging) or old data values (undo log-
ging). CoW-based systems always create a new copy of
data on which the updates are performed. Unfortunately,
both techniques can impose undesirable overhead towards
developing software-transparent crash consistency support.
Logging can consume a much larger NVM capacity than the
original data, because each log entry is a tuple consisting of

both data and the corresponding metadata (e.g., the address
of the data), and typically every memory update has to be
logged [77, 13].1 In addition, log replay increases the recov-
ery time on system failure, reducing the fast recovery benefit
of using NVM in place of slow block devices. CoW has two
drawbacks. First, the copy operation is costly and incurs a
long stall time [69]. Second, it inevitably copies unmodified
data and thus consumes extra NVM bandwidth, especially
when updates are sparse [70].

In contrast, checkpointing [78] is a more flexible method.
In checkpointing, volatile data is periodically written to
NVM to form a consistent snapshot of the memory data. We
adopt it to overcome inefficiencies associated with logging
and copy-on-write. However, it is critical to minimize the
overheads of checkpointing, and to this end, we develop new
mechanisms in this work.

2.3 Tradeoff between Checkpointing Latency
and Metadata Storage Overhead

Checkpointing involves taking a snapshot of the working
copy of data (i.e., the copy of data that is actively updated)
and persisting it in NVM (as a checkpoint). There are two
concerns in checkpointing: (1) latency of checkpointing the
working copy of data, and (2) metadata overhead to track
where the working copy and checkpoint of data are. Ideally,
we would like to minimize both. However, there are com-
plex tradeoffs between these two that one should consider
when designing an efficient checkpointing mechanism.

First, the metadata overhead is determined by the gran-
ularity at which we keep track of the working/checkpoint
data, which we call the checkpointing granularity. By using
a large checkpointing granularity (e.g., page granularity), we
can keep track of the location of large amounts of data with
only a small amount of metadata.2

Second, checkpointing latency is affected by the location
of the working copy of data. In a hybrid memory system,
the working copy can be stored in either DRAM or NVM.
We analyze the two options. (1) DRAM. Because DRAM
writes are faster than NVM writes, “caching” the working
copy in DRAM can improve the performance of write opera-
tions coming from the application. However, if we cache the
working copy in DRAM, this working copy has to be written
back to NVM during checkpointing, resulting in long check-
pointing latency. (2) NVM. We can significantly reduce the

1An improved variant of logging [73] uses an indexing structure to
coalesce updates.
2One can think of this similar to tag overhead in CPU caches: small
blocks (small granularity) have large tag overhead, and large blocks
(large granularity) have small tag overhead.
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checkpointing latency by storing the working copy in NVM
and updating it in-place in NVM when a memory write is
received. Because the working copy in NVM is already
persistent, checkpointing becomes fast: we only need to per-
sist the metadata during checkpointing. However, keeping
the working copy in NVM and updating it in-place requires
that we remap the working copy to a new location in NVM
that is different from the checkpoint data, upon a write oper-
ation from the application, such that the application can op-
erate on the new working copy without corrupting the check-
point. The speed of this remapping depends on the granular-
ity of data tracking (i.e., checkpointing granularity): a small
granularity leads to fast remapping, enabling the application
to quickly update the data, yet a large granularity leads to
slow remapping (because it requires copying a significant
amount of data, e.g., an entire page), which can delay the
write operation and thus stall the application for a long time.

Table 1 summarizes the impact of checkpointing granu-
larity and location of working copy of data on the tradeoff
between metadata overhead and checkpointing latency.

Checkpointing granularity
Small (cache block) Large (page)

Lo
ca
tio

n
of

w
or
kin

g
co
py

DRAM
(based	on
writeback)

❶ Inefficient
� Largemetadata overhead
� Long checkpointing latency

❷ Partially	efficient
� Small metadata	overhead
� Long checkpointing	 latency

NVM
(based	on
remapping)

❸ Partially	efficient
� Large metadata	overhead
� Short checkpointing	latency
� Fast remapping

❹ Inefficient
� Small metadata	overhead
� Short checkpointing	 latency
� Slow	remapping
(on	the	critical	path)

Table 1: Tradeoff space of options combining checkpointing
granularity choice and location choice of the working copy
of data. The table shows four options and their pros and
cons. Boldfaced text indicates the most critical pro or con
that determines the efficiency of an option.

We consider the combination of small checkpointing
granularity and storing working copy in DRAM (Ê) inef-
ficient because this incurs large metadata overhead (as ap-
posed to using large granularity to track data Ë) while also
leading to long checkpointing latency (as opposed to keep-
ing the working copy directly in NVM Ì).

We consider the combination of large checkpointing gran-
ularity and storing working copy in NVM (Í) inefficient
because it incurs prohibitive latency for remapping in-the-
flight updates in NVM, which is on the critical path of app-
lication’s execution. For example, if we track data at the
page granularity, to remap a cache-block-sized update in
NVM, we have to copy all other cache blocks in the page
as well into a new working copy, before the application can
perform a write to the page. This remapping overhead is on
the critical path of a store instruction from the application.

Based on these complex tradeoffs, we conclude that no
single checkpoint granularity or location of working copy is
best for all purposes. In the schemes we introduce in §3,
we design a multiple-granularity checkpointing mechanism
to achieve the best of multiple granularities and different lo-
cations of working copy. In particular, we aim to take advan-
tage of the two partially efficient combinations from Table 1
that have complementary tradeoffs: (1) Small granularity
checkpointing that keeps working data in NVM by remap-
ping writes in NVM (Ì). This motivates our block remap-
ping scheme (§3.2). (2) Large granularity checkpointing that

keeps working data in DRAM and writes back updated pages
into NVM (Ë). This motivates our page writeback scheme
(§3.3). We design judicious cooperation mechanisms to ob-
tain the best of both schemes (§3.4), thereby achieving both
small metadata overhead and short checkpointing latency.

3. ThyNVM DESIGN
ThyNVM provides software-transparent crash consistency

of DRAM+NVM hybrid persistent memory by adopting
hardware-based mechanisms. ThyNVM enforces crash con-
sistency over all memory data transparently to application
programs. To address the tradeoffs of persisting data at diff-
erent granularities, we propose a novel dual-scheme check-
pointing mechanism, which checkpoints memory data up-
dates at two granularities simultaneously: sparse writes
are checkpointed at cache block granularity using a block
remapping scheme (§3.2); dense writes are checkpointed
at page granularity using a page writeback scheme (§3.3).
In addition, we devise mechanisms to coordinate the two
checkpointing schemes (§3.4).
Architecture. Figure 2 depicts an overview of the ThyNVM
architecture. DRAM and NVM are deployed on the memory
bus and mapped to a single physical address space exposed
to the OS. We modify the memory controller to incorporate a
checkpointing controller and two address translation tables,
the block translation table (BTT) and the page translation
table (PTT), which maintain metadata of memory access at
respectively cache block and page granularities.

Shared LLC

Memory
Controller

CPU
Core

CPU
Core

CPU
Core

...

DRAM

Address Translation Tables
BTT PTT

DRAM Read Queue

NVM Write Queue

NVM Read Queue

DRAM Write Queue
NVM

Figure 2: Architecture overview of ThyNVM.

3.1 Assumptions and Definitions
Failure model. ThyNVM allows software applications to
resume CPU execution from a consistent checkpoint of
memory data after system failures, such as system crashes
or power loss. To this end, we periodically checkpoint mem-
ory data updates and the CPU state, including registers, store
buffers and dirty cache blocks. Our checkpointing schemes
protect persistent memory data and CPU states from corrup-
tion on system failures.
Epoch model. We logically divide program execution time
into successive time periods, called epochs (Figure 3). Each
epoch has an execution phase and a checkpointing phase.
The execution phase updates the working copy of memory
data and CPU state, while the checkpointing phase creates a
checkpoint of memory data and CPU state.

Alternating execution and checkpointing phases without
overlap (Figure 3 (a)) incurs significant performance degra-
dation, as checkpointing can consume up to 35.4% of the
entire program execution time with memory-intensive work-
loads (§5.3). Therefore, ThyNVM adopts an epoch model
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execution checkpointing 
execution checkpointing execution checkpointing 

Epoch 0 (Next-to-last Epoch) Epoch 2 (Active Epoch) 

Epoch 1 (Last Epoch) 
t 

Wactive 

Cnext2last Clast Cactive 

execution checkpointing execution checkpointing 

Epoch 0 Epoch 1 

time 

time 

Stall Stall 

(a) An epoch model with “stop-the-world” checkpointing.

execution checkpointing 
execution checkpointing execution checkpointing 

Epoch 0 (Penultimate Epoch) Epoch 2 (Active Epoch) 

Epoch 1 (Last Epoch) 
t 

Wactive 

Cpenult. Clast 

execution checkpointing execution checkpointing 

Epoch 0 Epoch 1 

time 

time 

Stall Stall 

(b) ThyNVM epoch model which overlaps checkpointing and execu-
tion. The model maintains three versions of data from the last three
epochs: active working copy (Wactive), last checkpoint data (Clast ),
and penultimate checkpoint data (Cpenult ).

Figure 3: Epoch models in checkpointing systems: stop-the-
world vs. ThyNVM.

that overlaps the checkpointing and the execution phases of
consecutive epochs [73] to mitigate such performance degra-
dation. We define three consecutive epochs as active, last,
and penultimate epochs. As Figure 3 (b) shows, in order
to eliminate the stall time due to checkpointing, the active
epoch (Epoch 2) starts its execution phase as soon as the
last epoch (Epoch 1) starts its checkpointing phase. The last
epoch (Epoch 1) can start its checkpointing phase only after
the checkpointing phase of the penultimate epoch (Epoch 0)
finishes. If the checkpointing phase of an epoch is smaller
than the overlapping execution phase of the next epoch, then
the checkpointing phase is not on the critical path of pro-
gram execution (as is the case in Figure 3 (b)). However, the
execution phase should locate and update the correct version
of data in each epoch (which we discuss next).
Data versions. The overlapping of execution and check-
pointing allows two consecutive epochs to concurrently ac-
cess the same piece of data. This imposes two challenges in
maintaining crash consistency: (1) the overlapping check-
pointing and execution phases can overwrite data updates
performed by each other, so we need to isolate data up-
dates of different epochs; (2) a system failure can corrupt
data of both the active and the last epochs, so we need to
maintain a safe copy of data from the penultimate epoch.
To address both challenges, ThyNVM maintains three ver-
sions of data across consecutive epochs: the active working
copy Wactive, the last checkpoint Clast , and the penultimate
checkpoint Cpenult (Clast and Cpenult include checkpoints of
both memory data and CPU states). For instance, as shown
in Figure 3 (b), ThyNVM preserves the checkpoints made in
Epoch 0 (Cpenult ) and Epoch 1 (Clast ), while the system is ex-
ecuting Epoch 2 (which updates Wactive). ThyNVM discards
the checkpoints made in Epoch 0 only after the checkpoint-
ing phase of Epoch 1 completes. A system failure at time t
can corrupt both the working copy updated in Epoch 2 and
the checkpoint updated in Epoch 1. This is exactly why we
need to maintain Cpenult , the checkpoint updated in Epoch 0.
ThyNVM can always roll back to the end of Epoch 0 and use
Cpenult as a safe and consistent copy.

3.2 Checkpointing with Block Remapping
The block remapping scheme checkpoints data updates in

NVM at cache block granularity. This scheme enables up-
date of the working copy of a block directly in NVM dur-

ing the execution phase. It does so by remapping the new
working copy (of the active epoch) to another address in
NVM and persisting only the metadata needed to locate the
last checkpoint in the checkpointing phase. Hence, there
is no need to move the data of the block when it is be-
ing checkpointed. Instead, during checkpointing, the block
that is already updated directly in NVM simply transitions
from being the working copy to being the last checkpoint.
Therefore, the block remapping scheme significantly re-
duces the checkpointing latency. In our work, we propose
to checkpoint data updates with low spatial locality using
the block remapping scheme. These updates are mostly ran-
dom, sparse and of small sizes (i.e., they usually touch a sin-
gle block or few blocks in a page). Therefore, it is efficient
to checkpoint them individually at cache block granularity.
In contrast, checkpointing such updates at page granularity
would be very inefficient, as they typically dirty only a small
portion of each page, and writing back the entire page to
NVM even though it is mostly unchanged can greatly ham-
per performance.

In this scheme, the working copy Wactive is directly written
into NVM during the execution phase of each epoch. Basi-
cally, ThyNVM records the mappings between data blocks
and the addresses of their Wactive in the block translation ta-
ble (BTT). A read request can identify the valid address of
the working copy by looking up the BTT. In an active epoch,
updates to the same block are directed to a new address allo-
cated for the block for the epoch, i.e., the address of the new
working copy Wactive. These updates are coalesced at the
new address. This working copy becomes the checkpointed
copy Clast by simply persisting the corresponding BTT map-
ping during the checkpointing phase. ThyNVM persists the
BTT in NVM at the beginning of each checkpointing phase.

3.3 Checkpointing with Page Writeback
The page writeback scheme checkpoints data updates at

page granularity. It caches hot pages in DRAM during the
execution phase of an epoch and writes back dirty pages
to NVM during the checkpointing phase. In this work, we
propose to checkpoint data updates with high spatial local-
ity using the page writeback scheme, because those updates
are typically sequential or clustered, occupying (almost) full
pages. Managing such updates at page granularity, instead of
at cache block granularity, reduces the amount of metadata
storage that the hardware needs to keep track of to manage
such updates (as described in §2.3).

The management of DRAM using the page writeback
scheme is different from the management of a conventional
writeback CPU cache in two ways. First, memory accesses
during the execution phase do not trigger any page replace-
ment or eviction; instead, dirty pages are written back to
NVM only during checkpointing. Second, while ThyNVM
writes back a dirty page from DRAM to NVM during the
checkpointing phase, in-flight updates to the same page from
the execution phase of the next epoch cannot directly over-
write the same physical page (in order to maintain isolation
of updates from different epochs). Thus, ThyNVM directs
each dirty page to a different address during checkpointing.
It employs the page translation table, PTT, to track the ad-
dress mappings for pages that are in DRAM. At the end of
the checkpointing phase, ThyNVM atomically persists the
PTT to NVM. This denotes the end of an epoch.
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3.4 Coordinating the Two Schemes
We devise mechanisms to coordinate the two schemes,

i.e., block remapping and page writeback, in order to (1) re-
duce application stall time due to page writeback based
checkpointing and (2) adapt checkpointing schemes to ap-
plications’ dynamically changing memory access behavior.
Reducing application stall time due to page writeback.
Block remapping allows the system to persist only metadata
in each checkpointing phase. Therefore, it typically com-
pletes much faster than page writeback in the checkpointing
phase of an epoch. In this case, page writeback based check-
pointing can potentially block the execution of the program,
because the subsequent epochs cannot update the DRAM
pages that are not yet checkpointed in NVM. To mitigate this
issue, ThyNVM allows the system to proactively start exe-
cuting the next epoch by using the block remapping scheme
to temporarily accommodate incoming writes (from the next
epoch) that should have otherwise been managed by page
writeback. By switching to block remapping when page
writeback blocks progress, we hide the stall time of check-
pointing due to page writeback, write to DRAM and NVM
in parallel, and increase memory bandwidth utilization.
Switching between the two schemes. ThyNVM adapts the
checkpointing scheme dynamically to match changing spa-
tial locality and write intensity characteristics of the data.
The memory controller determines whether a page needs to
switch its checkpointing scheme from one to the other at the
beginning of each epoch, based on spatial locality of updates
to the page. Switching checkpointing schemes involves both
metadata updates and data migration. To switch from page
writeback to block remapping, we discard the corresponding
entry in the PTT, and move the page in DRAM to the NVM
region managed by block remapping. As a result, the next
time any block of this physical page is updated, the block
remapping scheme handles the block and adds its metadata
to the BTT accordingly. To switch from block remapping
to page writeback, we need to add an entry to the PTT to
store the metadata of the page, combine all blocks of the
page from potentially different locations (using the BTT to
locate them), and copy the entire page to the corresponding
newly-allocated location in the DRAM. The memory con-
troller handles all these operations, whose overheads can be
hidden by the execution phase.

4. IMPLEMENTATION
This section describes our implementation of ThyNVM.

We first describe the address space layout and address space
management (§4.1) and metadata management (§4.2) mech-
anisms. We then discuss how ThyNVM services loads and
stores (§4.3) and how it flushes data during checkpointing
(§4.4). We finally describe how ThyNVM handles memory
data during system recovery (§4.5).

4.1 Address Space Layout and Management
Our ThyNVM implementation has a particular address

space layout to store and manage multiple versions of data.
The software’s view of the physical address space is diff-
erent from the memory controller’s view of the hardware
address space, as shown in Figure 4. Portions of the hard-
ware address space, which is larger than the physical address
space, are visible only to the memory controller such that it

can store checkpoints of data and processor states. We de-
scribe different regions of the hardware address space and
their purposes below.

Working Data 
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Physical address space 

Processor’s view
(software visible)

Physical pages 
and blocks

0x0

Hardware address space 

BTT/PTT/CPU
Backup Region

Checkpoint 
Region A

Home Region 
(Checkpoint
Region B)

Memory controller’s view

DRAM

NVM

0x0

0xf…f 0xf…f

Scheme Page Writeback Block Remapping
Phase of the 
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page
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Physical 
Block/Page Index

Version
ID
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Counter
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(")' , !"#$%&'
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Figure 4: ThyNVM address space layout.

Our address space management mechanisms have two key
goals: (1) store different versions of data in different mem-
ory locations in the hardware address space and (2) expose
a single consistent version of the data to the processor upon
a load/store access or during system recovery. We discuss
how ThyNVM achieves these goals in this section.
Data regions in memory and version storage. There are
two types of data in ThyNVM. The first type is data that is
not subject to checkpointing, i.e., data that is not updated in
any of the last three epochs. This type of data has only a
single version as it is not subject to updates. As such, it is
not kept track of by the BTT/PTT tables. When this data is
accessed by the processor, the physical address of the data
is directly used, without being remapped by the BTT/PTT,
to locate the data in memory. We call the portion of mem-
ory where such data is stored as Home Region (as shown in
Figure 4). For example, read-only data always stays in the
Home Region of the hardware address space.

The second type is data that is subject to checkpointing,
i.e., data that is updated in at least one of the last three
epochs. This data can have multiple versions, e.g., Wactive,
Clast , or Cpenult (as explained in §3.1). Metadata in the
BTT/PTT tables keeps track of the location of this data.
BTT/PTT tables map the physical address of this data to a
hardware address that is potentially different from the phys-
ical address. Thus, when this data is accessed by the pro-
cessor, ThyNVM’s mechanisms direct the processor to the
appropriate version of the data.

ThyNVM maintains three data regions in DRAM and
NVM, each storing one version of such data that is sub-
ject to checkpointing: Wactive, Clast , or Cpenult . As shown
in Figure 4, these regions include a Working Data Region
in DRAM3, and two Checkpoint Regions in NVM. Working
Data Region stores the active working copy of data managed
by page writeback, W page

active. Note that, in the checkpointing

3In the implementation we describe, we assume that the Working
Data Region is mapped to DRAM to obtain the performance ben-
efits of DRAM for data that is actively updated. Other implemen-
tations of ThyNVM can distribute this region between DRAM and
NVM or place it completely in NVM. We leave the exploration of
such choices to future work.
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phase of an epoch, such data managed by page writeback can
be temporarily handled by block remapping to avoid stalling
the program execution as described in §3.4. In that case, up-
dates to such data are kept track of by the BTT and remapped
also to this Working Data Region.

Checkpoint Regions A and B store checkpoint data Clast
and Cpenult in an interleaved manner: if Cpenult is stored in
Checkpoint Region A, ThyNVM writes Clast into Check-
point Region B, and vice versa. Note that Checkpoint Re-
gion B is the same as the Home Region to save memory
space as well as entries in BTT/PTT: if the data is not sub-
ject to checkpointing, this region stores the only copy of the
data so that it does not require any address mapping in BTT
or PTT; if the data is subject to checkpointing, this region
stores the appropriate checkpoint version, and its metadata
is stored in BTT or PTT accordingly.

Storage of W block
active. We now discuss where the data man-

aged by the block remapping scheme is stored. This data
may reside in either one of the Checkpoint Regions or the
Working Data Region, depending on whether or not the last
epoch has completed its checkpointing phase, as we describe
in the next two paragraphs.

As described in §3.2, the block remapping scheme aims
to write the working copy of data (W block

active) directly to NVM,
in order to reduce the checkpointing latency of data updates
with low spatial locality. Our ThyNVM implementation re-
alizes this by overwriting Cblock

penult in one of the Checkpoint
Regions with W block

active, during the execution phase of an epoch,
when it is safe to do so. As long as the last epoch has com-
pleted its checkpointing phase (i.e., the Clast version of data
is safe to recover to), we can overwrite Cpenult of data (recall
this from the epoch model and data versions in §3.1). Thus,
Checkpoint Regions also contain W block

active of data written by
the block remapping scheme.4

However, when the last epoch has not yet completed its
checkpointing phase, i.e., when Cpenult is unsafe to over-
write, ThyNVMcannot update W block

active directly in NVM. This
is because overwriting Cpenult would result in loss of the con-
sistent system state to recover to, as we discussed in §3.1. In
this case, our ThyNVM implementation temporarily stores
W block

active in the Working Data Region. When the active epoch
starts its checkpointing phase, the W block

active that is temporarily
stored in the Working Data Region is written to one of the
Checkpoint Regions in NVM (and becomes Clast ).

Storage for BTT/PTT and CPU state backups. Fi-
nally, ThyNVM hardware address space dedicates part of
the NVM area, BTT/PTT/CPU Backup Region, to store
BTT/PTT and CPU state backups.
Mapping of physical and hardware address spaces. To
provide a single consistent software-visible version of the

4Note that we do not have a separate region in NVM for storing
only W block

active because W block
active simply becomes Clast after the meta-

data associated with it is checkpointed during the checkpointing
phase of the active epoch. Thus, checkpointing the active epoch
automatically results in the turning of the working copy of a block
into a checkpointed copy, without requiring any data movement. If
there were to be a separate region that stored the working copy of
blocks managed by block remapping, checkpointing them would
require the movement of each block to one of the separate Check-
point Regions, not only requiring data movement, hence increasing
checkpointing latency, but also wasting memory capacity.

data,5ThyNVM creates a mapping between the physical and
hardware address spaces, managed by, respectively, the op-
erating system and the memory controller. The hardware
address space comprises the actual DRAM and NVM de-
vice addresses, which are visible only to the memory con-
troller. The physical address space, exposed to the soft-
ware (through the operating system), is mapped by the mem-
ory controller to the appropriate portions of the hardware
address space. We discuss what constitutes the software-
visible version of data.

For data that is not subject to checkpointing, the software-
visible version is in the Home Region of the hardware ad-
dress space. The hardware address of this data is simply the
physical address concatenated with some constant bits (to
accommodate the larger hardware address space).

For data that is subject to checkpointing, the software-
visible version is as follows (the BTT/PTT tables ensure that
the physical address is mapped to the appropriate location in
the hardware address space).{

Wactive, if Wactive exists
Clast , if Wactive does not exist

Hence, software can read or write to the location that stores
either the working copy (Wactive) or the last checkpoint copy
(Clast ) via loads and stores, for data that is subject to check-
pointing, depending on whether or not the working copy ex-
ists. Recall that when the data is not modified in the active
epoch, we don not have a working copy (Wactive) for it, and
the last checkpoint (Clast ) actually houses the latest copy of
data that can be safely accessed by the software.

Upon recovery from a system crash, Wactive stored in
DRAM is lost. The following version becomes restored, i.e.,
software visible after recovery (depending on the state of the
checkpointed BTT/PTT entries).{

Clast , if the last checkpoint has completed
Cpenult , if the last checkpoint is incomplete

During recovery, ThyNVM uses the checkpointed BTT/PTT
tables to perform the restoration of Clast or Cpenult .

4.2 Metadata Management
ThyNVM maintains metadata in two address translation

tables, BTT and PTT. These tables contain information that
enables three things: (1) translation of the physical address
of each memory request issued by the processor into the
appropriate hardware address, (2) steering of the data up-
dates for checkpointing to appropriate hardware addresses,
and (3) determination of when to migrate data between the
two checkpointing schemes.

Both BTT and PTT have five columns (Figure 5): (1) a
block/page index consisting of the higher-order bits of the
physical address, which has 42 bits in BTT and 36 bits in
PTT; (2) a two-bit Version ID denoting Wactive, Clast , or
Cpenult ; (3) a two-bit Visible Memory Region ID denoting
which memory region the software-visible version is located
in; (4) a one-bit Checkpoint Region ID denoting the check-
point region for Clast (which implies that Cpenult is located in
the other checkpoint region); (5) a six-bit store counter that

5The software-visible version of data is the data version that can be
read or written to by the software via load and store instructions.
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Figure 5: Fields in BTT and PTT.6

records the number of writes performed on the block/page
during the current epoch to determine its write locality.6

To translate a requested physical address to the hardware
address, the required information includes (a) the memory
region that a request should be serviced from and (b) the
mapping between physical and hardware addresses in that
region. The memory controller uses the Visible Memory Re-
gion ID to identify the memory region where the software-
visible version of the requested data is located. To determine
the hardware address with simple logic, we enforce that the
offset of each table entry from the first entry is the same as
the offset of each block/page from the first block/page in the
corresponding memory region. Therefore, we can use the
offset of a table entry to calculate the hardware address of
the block/page within the memory region.

To steer the data updates for checkpointing to appropriate
hardware addresses, the memory controller uses the Check-
point Region ID. We use the offset of the table entry to de-
termine the hardware address the same way as mentioned in
the above paragraph.

To determine when to migrate data between the two
checkpointing schemes tailored for different amounts of spa-
tial locality, the memory controller identifies the spatial lo-
cality of data based on the values of the store counters in
BTT/PTT. The memory controller collects the counter val-
ues at the beginning of each epoch, and resets them after
deciding the checkpointing scheme for the pages. A large
number of stores to the same physical page within one
epoch, beyond a predefined threshold, indicates that the page
has high spatial locality and high write intensity. As such,
we employ page writeback for checkpointing this page in a
new epoch. A store counter value that is lower than another
predefined threshold indicates low spatial locality, i.e., that
we need to adopt block remapping in the new epoch. We
empirically determined these threshold values and set them
to 22 and 16 for switching from block remapping to page
writeback and the other way around, respectively.
Checkpointing BTT and PTT. The metadata identifies the
latest consistent checkpoint. Hence, BTT and PTT need to
persist across system failures. In each checkpointing phase,
we checkpoint BTT and PTT entries in the BTT/PTT/CPU
Backup Region of the NVM (Figure 4). One challenge is
to atomically persist BTT/PTT into NVM. To accomplish
this, we use a single bit (stored in the BTT/PTT/CPU Backup
Region) that indicates the completion of the checkpointing
of BTT/PTT.
Size of BTT and PTT. The number of BTT entries depends
on the write intensity of the working set (as a BTT entry is
created upon the first write to a block). The number of PTT
entries depends on the size of DRAM (as the PTT needs to
have an entry for each page in DRAM to enable maximum

6Because not all combinations of fields (Version ID, Visible
Memory Region ID, Checkpoint Region ID) exist, they can be
compressed into seven states, as articulated in our online docu-
ment [65]. The state machine protocol saves hardware space and
simplifies hardware logic.

utilization of DRAM). In case certain workloads require gi-
gabytes of DRAM, large PTT storage overhead can be tol-
erated by virtualizing the PTT in DRAM and caching hot
entries in the memory controller [44, 80, 8]. We perform
a sensitivity study of system performance to various BTT
sizes (Figure 12). The total size of the BTT and PTT we
use in our evaluations is approximately 37KB. Note that as
memory controllers become more sophisticated to manage
hybrid memories and incorporate new features, a trend in
both academia (e.g., [74, 35, 81, 75, 51, 50, 1, 82, 34]) and
industry (e.g., the logic layer of HMC [56] and the media
controller of HP’s The Machine [27]), the hardware cost of
our proposal will be even more affordable.

4.3 Servicing Loads and Stores
To service a load request, ThyNVM identifies the software-

visible data by querying the BTT/PTT using the physical ad-
dress of the request. If the physical address misses in both
BTT and PTT, the corresponding visible data is in the Home
Region of NVM. To service a store request, as illustrated
in Figure 6 (a), ThyNVM first uses the PTT to determine
whether to use block remapping or page writeback. Thy-
NVM performs block remapping for all requests that miss
in the PTT, regardless of whether or not the physical address
hits in the BTT. A physical address that misses in both tables
indicates that the corresponding data block is in the Home
Region. In that case, a new entry is added to the BTT for the
physical address to record the metadata update of the store
request. In the case of BTT/PTT overflow, where no entry is
either available or can be replaced, ThyNVM starts check-
pointing the current epoch and begins a new epoch. This
enables the BTT/PTT entries belonging to the penultimate
checkpoint to be freed.
Accommodating initial data accesses. Initially, when the
system starts to execute, both address translation tables are
empty; all visible data is in the Home Region of NVM. As
the PTT is empty, we employ block remapping to checkpoint
the data updates of the first epoch. Over time, ThyNVM
identifies and switches data with high spatial locality to use
the page writeback scheme.
Checkpointing. When checkpointing the memory data,
ThyNVM ensures that the associated metadata is check-
pointed after the corresponding data. In particular, we adopt
the following checkpointing order, as illustrated in Figure 6
(b): (1) write W block

active from DRAM to NVM (if it is temporar-
ily stored in DRAM, as discussed in §4.1); (2) checkpoint
BTT in NVM; (3) write back W page

active from DRAM to NVM;
(4) checkpoint PTT in NVM.

4.4 Data Flush
To guarantee consistent checkpoints, ThyNVM flushes

data out of the processor into the NVM during the check-
pointing phase of each epoch. We adopt a hardware-based
mechanism to perform the data flush. The memory con-
troller notifies the processor when an execution phase is
completed. After receiving the notification, the processor
stalls its execution and issues a flush operation. This op-
eration writes all register values into a special NVM re-
gion, flushes store buffers, and cleans the dirty cache blocks
by initiating writebacks without invalidating the data in the
cache (to preserve locality of future accesses, as described
in [68] and similarly to the functionality of Intel’s CLWB
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Figure 6: Control flow of (a) servicing a store request
in the execution phase of an epoch and (b) checkpointing
memory data in the checkpointing phase of the epoch. To
show the relationship between the stored data in (a) and
the checkpointed data in (b), we draw three background
frames denoting both checkpointing schemes and their co-
operation: within each background frame, the data stored in
(a) goes through the corresponding processes in (b) when
being checkpointed.

instruction [28]). At the end of a checkpointing phase, Thy-
NVM also flushes the NVM write queue of the memory con-
troller to ensure that all updates to the NVM are complete
(the last step of checkpointing in Figure 6 (b)). Once the
flush of the NVM write queue is complete, the checkpoint is
marked as complete (by atomically setting a single bit in the
BTT/PTT/CPU Backup Region of NVM).

4.5 System Recovery
With a system that employs ThyNVM to maintain crash

consistency, recovery involves three major steps to roll back
the persistent memory and the processor state to the latest
checkpoint. First, the memory controller reloads the check-
pointed BTT and PTT, by copying their latest valid backup
stored in NVM. As such, we recover the metadata informa-
tion that will be used to recover the data from the latest con-
sistent checkpoint (i.e., the software-visible version defined
in §4.1). Second, the memory controller restores software-
visible data managed by page writeback. As the software-
visible version of such pages should be stored in the Work-
ing Data Region (i.e., DRAM, in our implementation), the
memory controller copies the corresponding checkpointed
data in NVM to the Working Data Region of the hardware
address space. Third, after both metadata and memory data
are recovered, the system reloads the checkpointed processor
registers from their dedicated memory space in the NVM.

A formal verification of the correctness of our consistency

protocol and recoverability of memory data is provided on-
line [66].

Once the memory data and the processor state are re-
stored, system execution resumes. Because we do not record
external device states (e.g., in the network card), the resumed
program may face device errors due to loss of these states.
Therefore, ThyNVM exposes system failure events to soft-
ware programs as device errors upon system recovery. We
rely on existing exception/error handling code paths of pro-
grams to deal with these errors. It is important to note that
ThyNVM provides mechanisms for consistent memory state
recovery, and it is not our goal to recover from external de-
vice state failures, which can be handled via other exception
handling and recovery mechanisms. We discuss this issue in
more detail in §6.

5. EVALUATION
5.1 Experimental Setup

In this section, we describe our simulation infrastruc-
ture, processor and memory configurations, and bench-
marks. Our experiments are conducted using the cycle-level
micro-architectural simulator gem5 [7]. We use gem5’s de-
tailed timing model for the processor and extend its mem-
ory model [26] to implement ThyNVM mechanisms as de-
scribed in §4. Table 2 lists the detailed parameters and ar-
chitectural configuration of the processor and the memory
system in our simulations. We model DRAM and NVM
with the DDR3 interface. We simulated a 16 MB DRAM
and 2048/4096 BTT/PTT entries. The epoch length is lim-
ited to 10 ms (comparable to [61, 73]). The source code
of our simulator and our simulation setup are available at
http://persper.com/thynvm.

Processor 3 GHz, in-order
L1 I/D Private 32KB, 8-way, 64B block; 4 cycles hit
L2 cache Private 256KB, 8-way, 64B block; 12 cycles hit
L3 cache Shared 2MB/core, 16-way, 64B block; 28 cycles hit
Memory DDR3-1600
Timing DRAM: 40 (80) ns row hit (miss).

NVM: 40 (128/368) ns row hit (clean/dirty miss).
BTT/PTT: 3 ns lookup

Table 2: System configuration and parameters. NVM timing
parameters are from [81, 38, 45].

Evaluated Systems. We compare ThyNVM with four diff-
erent systems.
(1) Ideal DRAM: A system with only DRAM as main mem-
ory, which is assumed to provide crash consistency without
any overhead. DRAM is of the same size as ThyNVM’s
physical address space.
(2) Ideal NVM: A system with only NVM as main memory,
which is assumed to provide crash consistency without any
overhead. NVM is of the same size as ThyNVM’s physical
address space.
(3) Journaling: A hybrid NVM system using journaling [16,
41] to provide the crash consistency guarantee. Journaling
is one possible implementation of the general logging tech-
nique [77, 13] (§2.2). Our implementation follows [3]. A
journal buffer is located in DRAM to collect and coalesce
updated blocks. At the end of each epoch, the buffer is writ-
ten back to NVM in a backup region, before it is committed
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in-place. This mechanism uses a table to track buffered dirty
blocks in DRAM. The size of the table is the same as the
combined size of the BTT and the PTT in ThyNVM. This
system is denoted as Journal in the figures.
(4) Shadow paging. A hybrid NVM system using shadow
paging [6] to provide the crash consistency guarantee.
Shadow paging is one possible implementation of the gen-
eral copy-on-write (CoW) technique [14, 76] (§2.2). It
performs copy-on-write on NVM pages and creates buffer
pages in DRAM. When DRAM buffer is full, dirty pages are
flushed to NVM, without overwriting data in-place. The size
of DRAM in this configuration is the same as ThyNVM’s
DRAM. This system is denoted as Shadow in the figures.
Benchmarks. We evaluate three sets of workloads.
(1) Micro-benchmarks with different memory access pat-
terns. In order to test the adaptivity of ThyNVM to different
access patterns, we evaluate three micro-benchmarks with
typical access patterns. (i) Random: Randomly accesses a
large array. (ii) Streaming: Sequentially accesses a large ar-
ray. (iii) Sliding: Simulates a working set that slides through
a large array. At every step, it randomly accesses a certain
region of the array, and then moves to the next consecutive
region. Each of these workloads has 1:1 read to write ratios.
(2) Storage-oriented in-memory workloads. Persistent mem-
ory can be used to optimize disk-based storage applications
by placing storage data in memory. In order to evaluate such
applications, we construct two benchmarks with key-value
stores that represent typical in-memory storage applications
(similar to prior work [13, 83]). These benchmarks perform
search, insert, and delete operations on respectively hash ta-
bles and red-black trees.
(3) SPEC CPU2006. As ThyNVM is designed for hosting
legacy applications of various types, we also evaluate SPEC
benchmarks. A process with such a workload can benefit
from ThyNVM by safely assuming a persistent and crash-
consistent address space. We select the eight most memory-
intensive applications from the SPEC CPU2006 suite and
run each for one billion instructions. For the remaining
SPEC CPU2006 applications, we verified that ThyNVM has
negligible effect compared to the Ideal DRAM.

5.2 Micro-Benchmarks
Overall Performance. Figure 7 shows the execution time of
our evaluated systems compared to the Ideal DRAM/NVM
systems. We make three observations from this figure.
(1) ThyNVM consistently performs better than other con-
sistency mechanisms for all access patterns. It outperforms
journaling and shadow paging by 10.2% and 14.8% on av-
erage. (2) Unlike prior consistency schemes, ThyNVM can
adapt to different access patterns. For example, shadow pag-
ing performs poorly with the random access pattern, because
even if only few blocks of a page are dirty in DRAM, it
checkpoints the entire page in NVM. On the other hand,
shadow paging performs better than journaling in the other
two access patterns, as a larger number of sequential writes
in these workloads get absorbed in DRAM and the check-
pointing cost is reduced. ThyNVM can adapt to different
access patterns and does not show any pathological behav-
ior, outperforming both journaling and shadow paging on all
workloads. (3) ThyNVM performs within 14.3% of the Ideal
DRAM and 5.9% better than the Ideal NVM, on average.

We draw two major conclusions: (1) ThyNVM can flex-
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Figure 7: Execution time of micro-benchmarks.

ibly adapt to different access patterns, and outperforms
journaling and shadow paging in every micro-benchmark;
(2) ThyNVM introduces an acceptable overhead to achieve
its consistency guarantee, performing close to a system that
provides crash consistency without any overhead.
NVM Write Traffic. Figure 8 shows the total amount of
NVM write traffic across different workloads, for three com-
ponents: (1) Last-level cache writeback to NVM, which is
the direct NVM write traffic from the CPU; (2) NVM writes
due to checkpointing; and (3) NVM writes due to page mi-
gration (described in §3.4). We make three observations.
First, journaling and shadow paging exhibit large amounts
of write traffic in at least one workload because they cannot
adapt to access patterns (e.g., Random for shadow paging).
In contrast, ThyNVM does not lead to an extremely large
amount of NVM writes in any workload. On average, Thy-
NVM reduces the NVM write traffic by 10.8%/14.4% com-
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(c) Sliding

Figure 8: NVM write traffic and checkpointing de-
lay (% of execution time spent on checkpointing) of
micro-benchmarks on different memory systems. “CPU”
represents writes from CPU to NVM, and “Check-
point.”/“Migration” represents NVM writes due to check-
pointing/migration.
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pared to journaling and shadow paging, respectively. Sec-
ond, although ThyNVM reduces NVM write traffic across
all access patterns on average, it incurs more NVM write
traffic than the consistency mechanism that has the lowest
NVM write traffic for each individual access pattern. The
reason is that, as it overlaps checkpointing with execution,
ThyNVM stores more versions and therefore can checkpoint
more data than the traditional checkpointing mechanisms.
Third, we observe that based on the access pattern, ThyNVM
can result in different amounts of NVM write traffic due to
page migration. For example, Streaming results in a large
amount of migration traffic, as pages are moved in and out
of DRAM without coalescing any write. In contrast, in the
Sliding workload, pages that are migrated to DRAM can co-
alesce substantial amounts of writes before they are migrated
back to NVM as the working set gradually moves.

We draw two conclusions: (1) Adaptivity of ThyNVM to
different access patterns reduces overall NVM write traffic
across various patterns; (2) By overlapping execution with
checkpointing, ThyNVM reduces execution time, but intro-
duces more NVM write traffic than the best performing tra-
ditional checkpointing system for each individual workload.
Checkpointing Delay. Figure 8 also includes the percent-
age of time each workload spends on checkpointing. Jour-
naling/shadow paging spend 18.9%/15.2% time on check-
pointing, while ThyNVM reduces this overhead to 2.5% on
average. We conclude that ThyNVM can effectively avoid
stalling by overlapping checkpointing with execution.

5.3 Storage Benchmarks
The results with our storage benchmarks represent the

performance of ThyNVM under realistic workloads.
Throughput Performance. Figure 9 shows the transaction
throughput of our in-memory storage workloads, where we
vary the size of requests sent to the two key-value stores
from 16B to 4KB. We make two observations from this
figure. (1) ThyNVM consistently provides better trans-
action throughput than the traditional consistency mecha-
nisms. Overall, averaged across all request sizes, Thy-
NVM provides 8.8%/4.3% higher throughput than jour-
naling and 29.9%/43.1% higher than shadow paging with
the hash table/red-black tree data structures. (2) Thy-
NVM’s transaction throughput is close to that of the ideal
DRAM-based and NVM-based systems. ThyNVM achieves
95.1%/96.2% throughput of Ideal DRAM with the hash
table/red-black tree workloads, respectively. We conclude
that ThyNVM outperforms traditional consistency mecha-
nisms, and incurs little throughput reduction compared to the
Ideal DRAM/NVM systems, for realistic in-memory storage
workloads.
Memory Write Bandwidth. Figure 10 shows the NVM
write bandwidth consumption of our storage workloads
across different request sizes. We make two observations.
(1) ThyNVM uses less NVM write bandwidth than shadow
paging in most cases. These workloads exhibit relatively
random write behavior, so shadow paging causes high band-
width consumption during checkpointing because it fre-
quently copies entire pages with small number of dirty
blocks. In contrast, ThyNVM reduces NVM write band-
width consumption by 43.4%/64.2% compared to shadow
paging with hash table/red-black tree by adapting its check-
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Figure 9: Transaction throughput for two key-value stores:
(a) hash table based, (b) red-black tree based.
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(b) Red-black tree based key-value store

Figure 10: Write bandwidth consumption of the key-value
stores based on the hash table and the red-black tree, re-
spectively. “Write bandwidth” refers to DRAM writes in the
Ideal DRAM, and NVM writes for the rest.

pointing granularity to access locality. (2) ThyNVM intro-
duces more NVM writes than journaling under these work-
loads (journaling has 19.0%/14.0% less NVM writes), be-
cause ThyNVM has to maintain more versions to overlap
checkpointing and execution. This observation confirms a
tradeoff between memory write bandwidth and performance:
ThyNVM consumes more NVM write bandwidth to main-
tain multiple versions but improves performance by reduc-
ing stall time due to checkpointing. Overall, we can see
that the NVM write bandwidth consumption of ThyNVM
approaches that of journaling and is much smaller than that
of shadow paging.

5.4 Compute-Bound Benchmarks
Figure 11 shows the IPC (Instructions Per Cycle) perf-

ormance of memory-intensive SPEC CPU2006 workloads
normalized to the ideal DRAM-based system. We make two
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Figure 11: Performance of SPEC CPU2006 benchmarks
(normalized to Ideal DRAM).

observations. (1) ThyNVM slows down these benchmarks
on average by only 3.4% compared to the ideal DRAM-
based system. (2) ThyNVM speeds up these benchmarks on
average by 2.7% compared to the ideal NVM-based system,
thanks to the presence of DRAM. We conclude that Thy-
NVM significantly reduces the overhead of checkpointing
and provides almost on par performance with idealized sys-
tems that provide crash consistency at no cost.

5.5 Sensitivity Analysis
Figure 12 depicts the sensitivity of ThyNVM to the num-

ber of BTT entries while running in-memory storage work-
loads using hash tables. We draw two conclusions. (1) The
NVM write traffic reduces with a larger BTT, which reduces
the number of checkpoints and in turn writes to NVM. (2)
Transaction throughput generally increases with the BTT
size. This is mainly because a larger BTT reduces the write
bandwidth into NVM, alleviating memory bus contention.
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Figure 12: Effect of BTT size on storage benchmarks.

6. DISCUSSION
Comparison with Whole-System Persistence (WSP) [52].
Our model and goal are different from the Whole-System
Persistence model and goal. WSP aims to support recovery
of the whole system state, including device states, whereas
our goal in ThyNVM is to support crash consistency of only
memory data. ThyNVM does not deal with device states,
leaving the recovery of any external device state to the sys-
tem software (as discussed below). WSP assumes a pure
NVM configuration so that it needs to flush only CPU states
upon power failures and does not deal with volatile DRAM
state. ThyNVM assumes a DRAM+NVM hybrid memory
that can offer better performance than NVM alone [62, 81],
but requires periodic checkpointing of both CPU states and
memory data to provide crash consistency. Unlike WSP,
ThyNVM provides crash consistency of memory data with-
out requiring or assuming purely nonvolatile memory.
Loss of external states on system failures. ThyNVM does
not protect external states (e.g., in the network card). These

states are lost after system reboots, leading to device errors
during recovery. As such, system failure events are visible
to programs in the form of device errors. Device errors are
common in computer systems [24, 20]. Commodity systems
already incorporate mechanisms to handle such errors [9, 67,
53]. This failure model we assume is inline with many pre-
vious works, e.g., [73, 61, 25, 21].
Software bug tolerance. Software bugs can lead to system
crashes by corrupting memory states. Yet, crash consistency
and bug tolerance are two different problems. Any system
that maintains crash consistency, including databases and
file systems that do so, is susceptible to software bugs; Thy-
NVM is not different. For example, bugs in commonly-used
software, e.g., Eclipse (a widely used development suite) and
Chromium (a popular browser), have caused data corruption
in databases and file systems [59, 5]. ThyNVM provides
crash consistency, and it cannot (and is not designed to) pre-
vent such software bugs. However, it can be extended to help
enhance bug tolerance, e.g., by copying checkpoints to sec-
ondary storage periodically and devising mechanisms to find
and recover to past bug-free checkpoints. Studies of such
mechanisms can open up attractive new research directions
for future work building upon ThyNVM.
Explicit interface for persistence. Our checkpointing
mechanism can be seamlessly integrated in a system with
a configurable persistence guarantee [60, 12, 46]. Such a
system is only allowed to lose data updates that happened
in the last n ms, where n is configurable. ThyNVM can be
configured to checkpoint data every n ms and roll back to the
last consistent checkpoint after a crash. Persistence of data
can also be explicitly triggered by the program via a new in-
struction added to the ISA that forces ThyNVM to end an
epoch.

7. RELATED WORK
To our knowledge, ThyNVM is the first persistent mem-

ory design that can execute unmodified, legacy applications
transparently without requiring (1) programmer effort to
modify software or (2) special power management. Most
other persistent memory designs [77, 13, 76, 29, 72, 83, 49,
32, 42, 57] require programmers to rewrite their code fol-
lowing new APIs developed for manipulating data updates
in persistent memory.

We have already compared ThyNVM in detail to major
software mechanisms to guarantee crash consistency, log-
ging [77, 13] and copy-on-write (CoW) [14, 76], and shown
that ThyNVM outperforms both approaches. We now briefly
discuss other related works.
APIs in software-based persistent memory de-
sign. Persistent memory has been extensively studied
in the software community [77, 13, 76, 29, 72, 71, 11, 4].
Most previous works developed application-level or system-
level programming interfaces to provide crash consistency.
For example, Mnemosyne [77] and NV-heaps [13] adopt
application-level programming interfaces for managing
persistent regions; programmers need to explicitly declare,
allocate, and deallocate persistent objects. Consistent
and Durable Data Structures [76] require application
developers to modify existing data structures to achieve
high-performance persistent data updates. EROS [71] and
Rio file cache [11] require system developers to reimple-
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ment operating system components to perform efficient
management of persistence. The APIs introduced by
Intel [29] and SNIA [72] require programmers to explicitly
declare persistent objects [77, 13], reimplement in-memory
data structures [76], or modify legacy programs to use
transactional interfaces [77, 13].
APIs in hardware-based persistent memory design. Hard-
ware support for persistent memory is receiving increasing
attention [45, 14, 83, 49, 58, 32, 42, 57, 43, 84]. Most of
these studies employ similar APIs in software-based persist-
ent memory systems. For example, Kiln [83] adopts a
transaction-based API to obtain hints on critical data up-
dates from software. Moraru et al. [49] propose a design
that requires programmers to explicitly allocate persistent
objects. The relaxed persistence model proposed by Pelley
et al. [57] employs a new API to support their special persis-
tence model. BPFS [14] uses the persistent memory through
a file system, incurring significant software overhead.

ThyNVM does not require any new APIs at the app-
lication or system level. Hence, it offers an attractive way for
users to take advantage of persistent memory without chang-
ing programs.
Crash consistency with special power management.
Whole-System Persistence [52] can provide crash consis-
tency without programmer effort, but relies on the residual
energy provided by the system power supply to flush CPU
caches and CPU state on system/power failure. This model
is limited by the data size that can be flushed with the resid-
ual energy and thus inapplicable for hybrid main memory
that contains volatile DRAM. Auto-commit memory [19]
uses a secondary power supply to commit volatile data into
flash memory on system failure. Such extra power supplies
increase the total cost of ownership of the system and add
potential sources of unreliability.
Checkpointing and granularity choice. Checkpointing is
a widely used technique in different domains [78, 48]. For
example, ReVive [61], SafetyNet [73], Mona [22], and the
checkpointing schemes for COMA [23] checkpoint memory
data at the fine granularity of cache lines in order to improve
availability of data for updates; while other works [30, 54,
63] use coarse granularity. In contrast, our mechanism em-
ploys two different granularities to form one checkpoint to
get the best of multiple granularities (as explained in §2.3).
To our knowledge, this is the first work that adapts check-
pointing granularity to access pattern locality (and thereby
achieves high performance at low overhead). Note that the
flash translation layer can leverage two granularities [31, 40]
but does not provide crash consistency as ThyNVM, and it
is specific to flash memory.

8. CONCLUSION
We introduce a software-transparent mechanism that pro-

vides crash consistency of memory data for persistent and
hybrid memory systems. Our design, ThyNVM, is based on
automatic periodic checkpointing of the main memory state
in a manner that minimally impacts application execution
time. To this end, we introduce a new dual-scheme check-
pointing mechanism that efficiently overlaps checkpointing
and application execution by (1) adapting the granularity
of checkpointing to the spatial locality of memory updates
and (2) providing mechanisms to coordinate memory up-

dates with two different granularities of checkpointing. Our
evaluations using multiple different access patterns, realis-
tic storage workloads, and compute-bound workloads show
that ThyNVM provides crash consistency of memory data
at low overhead, with performance close to an ideal sys-
tem that provides crash consistency at no performance over-
head. We believe ThyNVM’s efficient support for software-
transparent crash consistency can enable (1) easier and more
widespread adoption of persistent memory, and (2) more ef-
ficient software stack support for exploiting persistent mem-
ory. We hope that our work encourages more research in
providing automatic and programmer-friendly mechanisms
for managing persistent and hybrid memories. To foster
such research, we have open sourced ThyNVM at http:
//persper.com/thynvm.
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