
Wrong Path Events: Exploiting Illegal and Unusual Program Behavior for
Early Misprediction Recovery

David N. Armstrong Hyesoon Kim Onur Mutlu Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2004-002
June 2004

Wrong Path Events: Exploiting Illegal and Unusual Program Behavior for
Early Misprediction Recovery

David N. Armstrong Hyesoon Kim Onur Mutlu Yale N. Patt

Electrical and Computer Engineering
The University of Texas at Austin�

dna,hyesoon,onur,patt � @ece.utexas.edu

Abstract

Control and data speculation are widely used to improve processor performance. Correct speculation can reduce

execution time, but incorrect speculation can lead to increased execution time and greater energy consumption.

This paper proposes a mechanism to leverage unexpected program behavior, called wrong-path events, that occur

during periods of incorrect speculation. A wrong-path event is an instance of illegal or unusual program behavior

that is more likely to occur on the wrong path than on the correct path, such as a NULL pointer dereference. When

a wrong-path event occurs, the processor can predict that it is on the wrong path and speculatively initiate mispre-

diction recovery. The purpose of the proposed mechanism is to improve the effectiveness of speculative execution in

a processor by helping to insure that the processor remain “on the correct path” throughout periods of speculative

execution.

We describe a set of wrong-path events which can be used as strong indicators of misprediction. We find that on

average 5% of the mispredicted branches in the SPEC2000 integer benchmarks produce a wrong-path event an average

of 51 cycles before the branch is executed. We show that once a wrong-path event occurs, it is possible to accurately

predict which unresolved branch in the processor is mispredicted using a simple, novel prediction mechanism. We

discuss the advantages and shortcomings of wrong-path events and propose new areas for future research.

1. Introduction

Accurate branch prediction is an important factor in achieving high performance in modern microprocessors.

Branch predictors are used to keep the pipeline filled with instructions, before the control flow of all the in-flight

instructions is known. The branch misprediction penalty can be broken down into two stages: the time it takes to

discover that a branch was mispredicted and the time it takes to begin fetching instructions from the correct path. A

great deal of previous work has focused on increasing the accuracy of branch predictors, i.e., reducing the number

of branch mispredictions by improving the branch predictor [8]. Despite significant breakthroughs, branch predictors

remain imperfect. Recognizing that future microprocessors will likely have to contend with branch mispredictions,

this work proposes a mechanism to reduce the branch misprediction penalty by decreasing the time it takes to discover

that a branch has been mispredicted.

1

We observe that when branches are mispredicted in an out-of-order machine, the wrong-path instructions follow-

ing the branch may consume data values not properly initialized for the wrong-path instructions. This occurs when

the mispredicted branch instruction is executed later than the wrong-path instructions that follow the branch– a sce-

nario that arises when the mispredicted branch is data-flow dependent on a long-latency operation but the wrong-path

instructions are not. When this occurs, the wrong-path instructions may exhibit illegal or unusual behavior. This

behavior is interpreted to mean that a branch has been mispredicted before the mispredicted branch is executed. For

example, if the instructions following a mispredicted branch consume an integer variable containing the value 0, but

interpret this variable as a pointer, then dereferencing this variable on the wrong path causes a NULL pointer access.

Using this hint, the processor can recognize that it has mispredicted a branch before the branch is executed.

This paper describes events that occur on the wrong path and that can be used to determine a branch was mis-

predicted before the branch is executed. We call these events “wrong-path events” (WPEs). We examine how these

events can be used to increase processor performance. When a wrong-path event occurs in the processor, a recovery

mechanism is used to determine which outstanding branch was mispredicted. If the recovery mechanism is unable

to determine which branch was mispredicted, the processor can either continue on the wrong path or stop fetching

wrong-path instructions. We propose and evaluate a recovery mechanism for branches that cause wrong-path events.

Finally, we observe that wrong-path events occur in conjunction with other forms of speculation in the processor such

as value prediction. We discuss how the identification of wrong-path events can benefit value prediction and present

data showing how often wrong-path events occur following value mispredictions.

2. Motivation

The proposed mechanism addresses the branch resolution time. We demonstrate that focusing on this aspect of

the branch misprediction penalty has potential to improve processor performance. Figure 1 shows the performance

difference between a normal processor and an idealized processor running the SPEC2000 integer benchmarks. The

idealized processor models the scenario where every mispredicted branch generates a WPE as early as possible, which

in turn triggers an early branch recovery. The idealized processor works by disregarding the data dependencies of

all mispredicted branches, allowing them to resolve and initiate recovery as soon as a functional unit is available,

after the branch is placed in the out-of-order window (Section 5 describes the processor model in detail). Figure 1

demonstrates that on average 11.7% IPC improvement is available. The minimum IPC improvement is 3.3% for vortex

and the maximum IPC improvement is 36.5% for vpr.

3. Contributions

The objective of this work is to improve the efficacy of speculative execution in the processor. The contributions of

this work include the following:

1. We observe that wrong-path instructions exhibit unexpected behavior often because wrong-path instructions con-

sume uninitialized data values during execution. We call an instance of this behavior a wrong-path event and

describe how wrong-path events arise. We present examples of wrong-path events from the SPEC2000 integer

benchmark suite and quantify how often wrong-path events occur in these benchmarks.

2

0.0

1.0

2.0

3.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Baseline
Early Resolution of All Misp. Branches

gzip

33.0%

vpr

36.5%

gcc

13.5%

mcf

4.4%

crafty

16.9%

parser

17.8%

eon

8.6%

perlbmk

13.3%

gap

3.7%

vortex

3.3%

bzip2

12.1%

twolf

27.4%

hmean

11.7%

Figure 1. Performance potential when all mispredicted branches generate a WPE and resolve early.

2. We observe that a wrong-path event can be used to trigger the early recovery of a mispredicted branch. We show

that once a wrong path event occurs, it is possible to accurately predict which unresolved branch in the processor

is mispredicted using a simple, novel prediction mechanism. We propose a recovery mechanism that can be

implemented in hardware and evaluate its effectiveness. We report realistic performance improvements achieved

by the recovery mechanism. We present the limitations of the recovery mechanism based on wrong-path events.

3. We note that wrong-path events occur when using other forms of speculation such as value prediction and show

that value prediction can also benefit from the proposed recovery mechanism.

4. We analyze and discuss the shortcomings of wrong-path events and propose new research areas to address these

shortcomings.

4. Wrong Path Events

4.1. Overview

Wrong path events occur in an out-of-order machine when the instructions following a mispredicted branch are

speculatively executed before the mispredicted branch instruction is executed. We evaluate wrong-path events that

are caused by invalid memory accesses, mispredicted control flow operations and exception-generating arithmetic

instructions. Wrong path events can be further broken down into two categories: hard and soft wrong-path events. A

hard wrong-path event is an illegal operation, one that is allowed neither on the correct path nor on the wrong path.

A soft wrong-path event is not an illegal operation, but is very unlikely to occur on the correct path of the program.

Since a soft wrong-path event is unlikely to occur on the correct path of the program, when it does occur we guess that

the processor is on the wrong path.

4.2. Memory Instructions

Wrong path events that result from memory operations include: dereferences of a NULL pointer, reads or writes to

an unaligned address1, writes to a read-only page, data reads to the pages that contain the executable image, reads or

1In the Alpha ISA, unaligned addresses require an unaligned load/store opcode.

3

writes to addresses that are outside of the segment range and reads or writes that are TLB misses. A TLB miss is the

only soft wrong-path event generated by a memory access; all others are hard wrong-path events in the Alpha ISA.

Since TLB misses are soft wrong-path events, we must be careful not to mistake a TLB miss on the correct path for

a wrong-path event. In order to insure that a TLB miss originating from correct-path code is not considered a wrong-

path event, we require that the number of outstanding TLB misses surpass a threshold of three or more, before the

misses are considered a wrong-path event. Although this threshold reduces the number of wrong-path events caused

by wrong-path TLB misses, it also prevents correct-path TLB misses from incorrectly generating a wrong-path event.

The following two examples are taken from the SPEC2000 integer benchmarks and illustrate how incorrect memory

accesses occur on the wrong path.

Figure 2 is a code segment from the mrSurfaceList::shadowHit function in the eon benchmark. In this

example, the loop-terminating branch is mispredicted at the end of the loop, and the loop is incorrectly entered for an

extra iteration. During the extra iteration, the program reads past the boundary of the surfaces array and sets the

pointer variable sPtr to a non-pointer value, which in this case happens to be 0. A wrong-path event, a NULL pointer

access, occurs when sPtr is dereferenced using the non-pointer value.

for (int i=0; i < length(); i++) { // mispredict the exit branch
mrSurface *sPtr=surfaces[i]; // set sPtr to non-pointer value
if (sPtr->shadowHit(...)) // and then access that pointer
// ...

}

Figure 2. A NULL pointer access from EON.

Figure 3 shows an example based on gcc’s move operand function. The wrong-path event is an unaligned access

that occurs when a union structure, having been initialized with an integer value, is used as a pointer by the wrong-path

code. The variable op is a pointer to an rtx def structure that contains an array of unions, fld[1], and an integer

variable, code, that indicates how the union should be interpreted, i.e., keeps track of the type of the union data. The

if statement is used to check the type of the data value held in the op- � fld[0] union. When the if statement

is mispredicted, the wrong-path code interprets op- � fld[0].rtx to be a pointer and dereferences it to load a

4-byte word from memory. The value of op- � fld[0].rtx is odd and therefore generates an unaligned access, a

wrong-path event, when it is dereferenced.

4.3. Control Flow Instructions

Control flow instructions cause wrong-path events when successive mispredictions are resolved before the old-

est branch instruction is executed. If three branches are executed and resolved as mispredicts while there are older

unresolved branches in the processor, we find it is almost certain that one of the older unresolved branches was mispre-

dicted. Therefore, resolution of three mispredicted branches while there are older unresolved branches in the processor

is considered a wrong-path event, which we call the “branch under branch” event. The insight behind this wrong-path

event is that branch predictor accuracy decreases significantly on the wrong path. The average misprediction rate for

the branch predictor we use is 4.2% on the correct path and 23.5% on the wrong path. For this reason, misprediction

4

typedef union rtunion_def { // this union contains
int rtint; // both an integer
struct rtx_def *rtx; // and a pointer
// ...

} rtunion;

typedef struct rtx_def {
unsigned int code; // This variable determines whether fld is
// ... // interpreted as a pointer or an integer
rtunion fld[1];

} *rtx;

int move_operand (rtx op) {
// ...
if (op->code == L0_SUM) // mispredict taken
return ((op->fld[0].rtx)->code == REG) // wrong path and WPE

return (op->fld[0].rtint < 64 && ...); // correct path
}

Figure 3. An unaligned access from GCC.

resolutions on the wrong path are more likely than misprediction resolutions on the correct path.

A branch under branch event is a soft wrong-path event because branch mispredictions are not illegal operations and

successive branches could be executed and resolved as mispredicts while there are older unresolved branches on the

correct path as well. Therefore, branch under branch events can also occur on the correct path. However, a threshold

requiring three branches to be executed and resolved as mispredicts while there is at least one older, unresolved branch

in the processor ensures that branch under branch events rarely occur on the correct path2.

A call return stack (CRS) underflow is a soft wrong-path event. We find that a 32-entry CRS underflows on the

wrong path and not on the correct path when executing the SPEC2000 integer benchmarks. Therefore we consider the

CRS underflow condition a wrong-path event.

The Alpha ISA requires instruction addresses to be aligned. An unaligned instruction fetch address is illegal and

therefore considered a hard wrong-path event.

4.4. Arithmetic Instructions

When arithmetic instructions consume uninitialized values, they too can cause wrong-path events. Examples of

arithmetic exceptions include division by zero or taking the square root of a negative number.

5. Methodology

We use an execution-driven simulator capable of correctly fetching and executing instructions on the wrong path

and correctly recovering mispredicted branches that occur on the wrong path. The simulator models an 8-wide out-

of-order machine with an instruction window that can hold up to 256 in-flight instructions. Because a less accurate

branch predictor would provide more opportunity for early recovery from wrong-path events, a large and accurate

branch predictor is used in our experiments. The branch predictor is a hybrid branch predictor composed of a 64K-

2Less than a combined total of 150 events in all benchmarks.

5

entry gshare [18] and a 64K-entry PAs [27] predictor with a 64K-entry selector. We model a deep pipeline with a

30-cycle branch misprediction latency. The first-level data cache is 64KB, direct-mapped with a 2-cycle hit latency.

The second-level unified cache is 1MB, 8-way set associative with a 15-cycle hit latency. The instruction cache is

64KB and 4-way set associative. All caches use 64B line sizes. On a second-level cache miss, the latency to main

memory is 500 cycles. The size of the unified TLB is 512 entries.

The experiments were run using the 12 SPEC2000 integer benchmarks compiled for the Alpha ISA with the -fast

optimizations and profiling feedback enabled. The benchmarks were run to completion with a modified test input set

to reduce simulation time.

6. Experimental Evaluation

6.1. Coverage and Timing

In order to have an impact on performance, wrong-path events must occur often and they must occur early on

the wrong path. We measure both the frequency of wrong-path events and how far onto the wrong path, in cycles,

wrong-path events occur. Figure 4 shows the percentage of mispredicted branches that lead to wrong-path events.

At least 1.6% of the mispredicted branches in all of the benchmarks lead to a wrong path event and the greatest

percentage is from gcc where 10.3% of mispredicted branches lead to a wrong-path event. Figure 5 expresses the

relative significance of wrong-path events and branch mispredictions for each of the benchmarks by showing the rate

of mispredictions and wrong-path events per 1000 instructions.

0.0

2.0

4.0

6.0

8.0

10.0

M
is

pr
ed

ic
te

d
B

ra
nc

he
s

w
it

h
W

P
E

s
(%

)

gzip

1.6%

vpr

3.9%

gcc

10.3%

mcf

7.4%

crafty

2.9%

parser

6.9%

eon

4.2%

perlbmk

3.4%

gap

6.2%

vortex

4.1%

bzip2

2.1%

twolf

7.6%

amean

5.0%

Figure 4. Percentage of mispredicted branches with a WPE.

In order to find out when wrong-path events occur, we measure the average recovery time of all the branches that

cause wrong-path events and the average number of wrong-path cycles before a wrong-path event occurs. Figure 6

shows the average time it takes to generate a wrong-path event and the average recovery time of the mispredicted

branches that lead to wrong-path events. The leftmost bar for each benchmark in Figure 6 shows the average number

of cycles from the time a mispredicted branch is issued3 into the out-of-order window until the wrong-path event

3In this paper, we use the term “issue” to indicate the placement of an instruction into the instruction window, i.e. insertion of an instruction
into the reorder buffer. In our pipeline model an instruction gets fetched, decoded/renamed, issued, scheduled (when its source operands are ready),
executed, and retired (when it is the oldest completed instruction in the window). Fetch-to-issue latency is 28 cycles, issue-to-execute latency is

6

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

P
er

 1
00

0
In

st
ru

ct
io

ns

WPEs
Branch Mispredictions

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 5. Branch misprediction and WPE rate.

occurs; the rightmost bar shows the average number of cycles from the time the mispredicted branch is issued until the

branch is resolved, which is when the recovery is initiated. After a mispredicted branch is issued into the window, the

average time it takes to generate a wrong-path event is 46 cycles and the average time it takes to resolve the branch is

97 cycles. If recovery can be initiated for a mispredicted branch instantly when a wrong-path event occurs, that would

yield a potential average savings of 51 cycles. The minimum potential savings is 7 cycles for gzip and the maximum

potential savings is 176 cycles for bzip2. In bzip2 and mcf, the average time from issuing a mispredicted branch to

its resolution is very large. The reason for this is that these two benchmarks have many mispredicted branches that

depend on long-latency L2 cache misses.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

C
yc

le
s

Issue to WPE
Issue to Recovery

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 6. Wrong path cycles to WPE and recovery.

The potential savings shown in Figure 6 by the average number of cycles between the wrong-path event and re-

covery time is significant and demonstrates the merit of leveraging wrong path events in a processor. However, the

coverage of mispredicted branches that lead to wrong-path events is low, as shown in Figure 5. That is, wrong-path

minimum 1 cycle, and the execute latency for a branch instruction is 1 cycle. Hence, the 30-cycle branch misprediction latency.

7

events seem to occur fairly early4 on the wrong path but do not occur very often. To utilize this scheme in a processor

there is a need to increase the coverage of mispredicted branches by discovering additional wrong-path events.

Figure 7 shows the distribution of the different types of wrong-path events. “Branch under branch” events make

up the majority of events in all benchmarks followed by NULL pointer accesses, unaligned accesses and accesses

out of the segment range. On average, almost 30% of wrong-path events are generated by memory accesses. This

fairly high percentage indicates that using register tracking [5] to compute load addresses early may aid in discovering

wrong-path events earlier.

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 W

ro
ng

 P
at

h
E

ve
nt

s
(%

)

Br Under Br
Out Of Seg Range
NULL Ptr
Unalgnd Access
TLB Miss
Arith Excep
Write To Read Only
CRS Underflow
Read To Code Seg
Unalgnd Ftch Addr

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 7. Distribution of wrong-path events.

6.2. Performance

In order to measure the performance potential of the available wrong-path events, we augmented the simulator,

enabling it to perfectly initiate recovery for a mispredicted branch as soon as a WPE occurs. Figure 8 shows the poten-

tial for performance improvement with the perfect recovery scheme as compared with the baseline processor, which

does not recover when a wrong-path event occurs. Nine of the twelve benchmarks show some performance improve-

ment. The maximum 1.7% IPC improvement is available from perlbmk and an average of 0.6% IPC improvement is

observed over all the benchmarks.

The performance improvement is limited by both the low number of mispredicted branches with WPEs and an

insufficient savings in cycles when a WPE occurs. Figure 6 shows that triggering the resolution of a mispredicted

branch when a WPE occurs does have potential to reduce the average number of cycles on the wrong path. However,

Figure 9 provides additional insight for two benchmarks, mcf and bzip2, which are similar benchmarks in that they both

expose the long memory latency used in our simulations. Figure 9 shows the cumulative distribution of the number

of cycles after a WPE occurs until the associated mispredicted branch is resolved. The longer it takes to resolve

the branch after a WPE occurs, the more potential savings there is for a WPE-initiated recovery. Note that 30% of

bzip2’s mispredicted branches with WPEs save 425 cycles or more, as compared with only 8% of mcf’s mispredicted

branches with WPEs. This observation is reflected in the IPC results: bzip2 exhibits 1% IPC improvement and mcf

4More analysis on the time of occurrence of WPEs is provided in Section 6.2, which shows that WPEs do not occur early enough.

8

0.0

1.0

2.0

3.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Baseline
Optimal Recovery

gzip

0.0%

vpr

1.0%

gcc

0.8%

mcf

0.0%

crafty

0.5%

parser

1.0%

eon

1.3%

perlbmk

1.7%

gap

0.9%

vortex

0.7%

bzip2

1.0%

twolf

0.0%

hmean

0.6%

Figure 8. IPCs for baseline and optimal recovery.

exhibits no IPC improvement. In order to improve performance more significantly, additional wrong-path events must

be discovered and they must be uncovered earlier on the wrong path.

Figure 9. Cumulative distribution of the number of cycles between the occurrence of a WPE and the resolution
of the associated mispredicted branch.

Another factor that limits the observed performance improvement is that some useful wrong-path prefetches are

eliminated by initiating early misprediction recovery on the wrong path. As identified in previous work [7, 22, 2,

20], the prefetching benefit of wrong-path instructions can and sometimes does result in important performance gains.

We find that it is sometimes better to stay on the wrong path a little longer after the detection of a WPE in order

to start the access of a load request that misses in the L2 cache and is needed later by a correct-path instruction, as

9

opposed to initiating an early recovery and resuming execution on the correct path. This is especially true for mcf and

bzip2, which experience more L2 cache misses than other benchmarks and also benefit considerably from prefetches

generated by wrong-path instructions.

6.3. Gating Fetch

Another use for detecting wrong-path events is to prevent fetching new instructions once a wrong-path event occurs,

i.e., gating fetch. Manne et al. report the benefits of gating pipeline stages when enough low confidence branches occur

in the pipeline [16]. In a similar manner, when a wrong-path event occurs, the processor can stop fetching new wrong-

path instructions for a potential energy savings.

7. A Realistic Recovery Mechanism

When a wrong-path event is detected by the processor, the processor needs to decide which instruction was mis-

predicted. The possible candidates for the mispredicted instruction are the branches (older than the WPE-generating

instruction5) that are not yet executed when the WPE occurred6. If there is only a single unresolved branch in the

processor, misprediction recovery is initiated for that branch. However, if there are multiple unresolved branches in

the processor, we need a mechanism that decides which of these branches is mispredicted. To accomplish this, we

propose a history-based predictor. The purpose of our proposal is to demonstrate that once a WPE occurs, it is possible

to accurately predict which branch instruction was mispredicted7. We also discuss the issues involved in implementing

a realistic recovery mechanism.

The proposed predictor memorizes the relationships between the instruction that generates the WPE and the in-

struction that is mispredicted. The design of this predictor is based on the following observations we make from our

simulations (We do not include supporting data for these due to space constraints):

1. Many static instructions that cause WPEs do so repeatedly during program execution.

2. If an instruction A generates a WPE due to the misprediction of another instruction B that is N instructions older,

then the next time instruction A causes a WPE, it is likely due to the misprediction of instruction B which is N

instructions older. In other words, the “distance in instructions” between the WPE-generating instruction and the

mispredicted instruction is persistent and predictable. The concept of distance is demonstrated in Figure 10a.

A simple and initial implementation of this predictor, which we call the “distance predictor,” is shown in Figure 10b.

The predictor is indexed using a hash of the global branch history and the address of the WPE-generating instruction.

Each entry in the prediction table (distance table) has a valid bit and a distance field, which is a ���������
	��������������	������
� 	������ � ���	� �!�" -bit value. The valid bits are initialized to 0 when a process starts execution. An entry is updated as

follows: when the oldest mispredicted branch instruction in the machine retires after being resolved as a mispredict,

the processor checks if a WPE occurred on the wrong path. If no wrong-path event is detected, the distance table is

5For the rest of the descriptions and discussion in Section 7, we only consider those branches that are older than the WPE-generating instruction.
6If there are no unresolved branches that are older than the WPE-generating instruction when a WPE occurs, then no action is taken, since the

WPE must have occurred on the correct path.
7The potential performance improvement shown in Figure 8 perhaps does not currently justify the implementation cost of the proposed predictor

and the recovery mechanism, but we hope that the predictor will become more important as future research increases the performance potential by
discovering additional WPEs.

10

129

D
is

ta
nc

e
=

 1
23

6

(a) An example showing the concept of distance

Instruction Window

Oldest mispredicted branch

WPE−generating instruction

Distance Table

V Distance

Least significant n bits of the

Most recent n bits of the
Global branch history register

XOR

address of the WPE−generating
instruction

(b) The proposed distance predictor

Sequence
Number

Figure 10. Distance concept and distance predictor.

not updated. If there is a WPE, the address of the oldest WPE-generating instruction and the global branch history

associated with it are used to index the distance table. The valid bit of the entry is set to 1, meaning this entry caused a

WPE, and the distance between the WPE-generating instruction and the mispredicted branch is recorded in the distance

field. The distance is calculated using the circular sequence numbers associated with each instruction used in modern

processors [15]. The update of the distance table is very latency-tolerant and can take multiple cycles. Note that this

update mechanism requires the processor to record the PC and the sequence number of the oldest WPE-generating

instruction. Although multiple wrong-path events may occur under the same misprediction, we only record the oldest

WPE for simplicity.

When a WPE is detected, the distance table is accessed using the PC of the instruction that generated the WPE

and the global branch history associated with that instruction. If the valid bit of the accessed entry is not set, no

prediction is made. In this case, the processor can gate fetch to save energy. If the valid bit is set, the processor uses

the distance field of the entry to determine which instruction was mispredicted. The processor first checks the status of

the instruction A that is N instructions older than the WPE-generating instruction, where N is the value in the distance

field. Two cases are possible:

1. Instruction A is not a branch instruction, or it is a branch instruction that is already resolved, or Instruction

A already retired (Instruction A may have already retired if predicted distance N is too large). Therefore, the

predicted distance was incorrect. No recovery can take place, but the processor can gate fetch to save energy. We

call this case Incorrect-No-Match.

2. Instruction A is an unresolved branch instruction. The processor initiates misprediction recovery for A. There are

three distinct cases:

(a) The prediction is correct if A is the oldest mispredicted branch in the processor.

(b) If A is younger than the oldest mispredicted branch, the prediction was incorrect and the processor initiates

recovery for a branch that should not have been executed anyway (Incorrect-Younger-Match).

(c) If A is older than the oldest mispredicted branch, the prediction was incorrect and the processor flushes

instructions that are on the correct path along with those that are on the wrong path (Incorrect-Older-Match).

11

Therefore, this last case should be avoided by a good predictor. When the distance table is updated for this

case, the valid bit of the entry that generated the prediction is set to 0 so that Incorrect-Older-Matches and

possible deadlock are avoided in the future.

7.1. Evaluation of the Distance Predictor

The predictor is accessed when a WPE is detected and if there is at least one older unresolved branch in the

instruction window. There are seven possible outcomes of the prediction:

1. Correct-Only-Branch (COB): There is only one unresolved branch in the window when the WPE is detected and

this branch is the mispredicted branch. In this case, the output of the distance table is ignored. But the distance

table is still updated when the single unresolved branch is retired.

2. Correct-Prediction (CP): The mispredicted branch is correctly identified by the predictor.

3. No-Prediction (NP): The predictor did not produce a prediction, because the valid bit was 0.

4. Incorrect-No-Match (INM): Described above.

5. Incorrect-Younger-Match (IYM): Described above.

6. Incorrect-Older-Match (IOM): Described above. If a recovery is initiated when the processor is on the correct

path due to the detection of a wrong-path event on the correct path, the outcome is also considered IOM.

7. Incorrect-Only-Branch (IOB): There is only one unresolved branch in the window when the WPE is detected, but

this branch is not mispredicted and the processor is not on the wrong path. This case can occur if the detected

WPE is a soft WPE8 and the processor incorrectly decides that it is on the wrong path. Although this case is

possible, we did not see an instance of it in our simulations. Therefore, we do not discuss results related to this

case in this section.

Outcomes 1 and 2 (COB and CP) would correctly initiate early misprediction recovery. Outcomes 3 and 4 (NP

and INM) would gate fetch until the mispredicted branch is resolved, and outcomes 5 and 6 (IYM and IOM) would

initiate recovery on the incorrect branch, with outcome IOM being potentially the most harmful. Figure 11 shows that,

on average, we can correctly initiate recovery for 69% of the mispredicted branches that result in WPEs. For 18% of

these branches (outcomes 3 and 4) we can gate fetch from the time we discover the WPE until the mispredicted branch

is resolved. Only for 4% of these branches does the predictor incorrectly identify an older branch as mispredicted.

Hence, the potentially harmful mispredictions are rare. Figure 12 shows that a 1K-entry predictor achieves a correct

prediction 63% of the time, while it incorrectly identifies an older branch only 4% of the time. Reducing the size of

the predictor reduces the occurrence of CP and increases the occurrence of INM without significantly increasing the

IOM and IYM outcomes. This indicates that the smaller predictor favors gating fetch instead of correctly initiating

recovery.

8Or if it is a hard WPE and the application architecturally generates illegal behavior.

12

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 D

is
ta

nc
e

P
re

di
ct

or
 O

ut
co

m
es

 (
%

)

IOM
IYM
INM
NP
CP
COB

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 11. Accuracy of the 64K-entry predictor.

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 D

is
ta

nc
e

P
re

di
ct

or
 O

ut
co

m
es

 (
%

)

IOM
IYM
INM
NP
CP
COB

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 12. Accuracy of the 1K-entry predictor.

Using a 64K-entry distance predictor, the processor can correctly initiate early recovery for 3.6% of all mispredicted

branches9, averaged over SPEC2000 integer benchmarks. Recovery is initiated an average of 18 cycles before a

mispredicted branch is executed. The resulting IPC improvement is 1.5% for perlbmk, 1.2% for eon, and 0.5% for

gcc. IPC is not degraded for any benchmark. If instruction fetch is gated when the predictor outcome is NP or INM,

the number of fetched wrong-path instructions decreases by 1% on average compared to the baseline processor; 3%

for eon, 4% for perlbmk, 1% for gcc, mcf, vortex, gap, and bzip2.

Using a 1K-entry distance predictor, the processor can correctly initiate recovery for 3.3% of all mispredicted

branches. Recovery is initiated 15 cycles before the mispredicted branch is executed, on average. The resulting IPC

improvement is 1.1% for eon, 0.9% for perlbmk, and 0.5% for gcc, with no benchmarks showing IPC degradation. If

instruction fetch is gated when the predictor outcome is NP or INM, the number of fetched wrong-path instructions

decreases by 1% on average compared to the baseline processor.

9Recovery is incorectly initiated for an older correctly-predicted branch for 0.15% of the branch mispredictions (IOM outcome). We see no
incorrect recoveries initiated (due to soft WPEs) when there are no mispredicted branches in the processor.

13

7.2. Avoiding Deadlock

A useful recovery mechanism should guarantee forward progress when a wrong-path event is detected on the correct

path and recovery is incorrectly initiated for a correctly-predicted branch. We avoid possible deadlock situations by

invalidating the distance table entry that causes an IOM outcome.

An example deadlock situation is as follows: let’s say an arithmetic exception occurs on the correct program path

and the distance predictor initiates recovery for a branch that is not mispredicted. The branch eventually executes and

the processor finds out that it incorrectly initiated recovery due to an IOM outcome from the distance predictor. The

processor initiates recovery on the incorrectly-recovered branch and resumes execution on the correct path. Eventually,

it encounters the instruction that generated the exception. As this instruction is on the correct program path, it generates

the same exception again. If the valid bit of the entry that caused the IOM outcome was not reset the first time, the

distance predictor would again use this entry and incorrectly initiate recovery on the same branch. As long as the valid

bit is not reset, this situation could happen over and over and the program could be deadlocked.

Another example deadlock situation related to fetch gating is as follows: The processor detects a WPE on the

correct path and incorrectly predicts that it is on the wrong path and gates fetch to save energy. However, because

there are no mispredicted branches in the processor, no misprediction recovery will be initiated and instruction fetch

will not be redirected. To avoid deadlock in such a case, the processor should un-gate fetch when all branches in the

window are resolved.

7.3. Avoiding Performance Loss

If the distance predictor outcome is IOM, the processor overturns a correct prediction on the correct program path.

Hence, our mechanism causes the processor to take the wrong path. Another wrong-path event may occur on this path,

which may lead to another IOM outcome, which can put the processor on the wrong path at an even earlier point in the

program. We did not see an instance of this case in our simulations, but it can be very costly if it occurs. Therefore, a

good implementation should prevent it from happening.

To avoid this case, we allow only one outstanding distance prediction at any given time. If a wrong-path event

occurs and the distance predictor decides to initiate recovery on a branch, no other distance predictions are allowed

until that branch executes and verifies both the branch prediction and the distance prediction.

7.4. Early Recovery for Indirect Branches

If the recovery initiated by the distance predictor is for a direct branch (i.e. a branch with only one possible target

address), it is trivial to determine what address the program counter will be set to on recovery. However, if the recovery

initiated by the distance predictor is for an indirect branch, the processor needs a way of determining the new target

address to fetch from. To solve this problem, we extend the distance table entry to record the target address of an

indirect branch. This entry is updated with the correct target address when a mispredicted indirect branch that leads

to a WPE executes. When the distance predictor decides to initiate early recovery for an indirect branch using the

same distance table entry, the recorded target address is used as the new fetch address. On average, with a 64K-entry

distance predictor, this mechanism correctly predicts the target addresses of 84% of the indirect branches for which the

distance predictor initiates recovery. With a 1K-entry distance predictor, 75% of these indirect branches are correctly

14

predicted. Although costly in terms of area, this mechanism may be worthwhile to implement, because our simulations

show that 25% of all branches that lead to wrong-path events are indirect branches.

7.5. Other Prediction Methods

We find that distance in the instruction window is usually a good identifier of the mispredicted branch. We have

looked into identifying the branch using only the static branch address, i.e. by recording branch PCs in the predictor

instead of distances. Unfortunately, in many instances, multiple dynamic instances of the same static branch are

present in the instruction window when a WPE is detected. Therefore, the branch PC by itself cannot identify the

mispredicted branch in most cases. Using instruction distance can pinpoint which dynamic instance is mispredicted.

We are currently investigating predictors that use both branch PC and distance information to increase the occurrence

of correct predictions.

We have also investigated the accuracy of initiating recovery for the oldest or the youngest unresolved branch in

the processor, or initiating recovery on the oldest or the youngest non-confident branch when a WPE is detected. We

found that these mechanisms result in poor accuracy in identifying the oldest mispredicted branch.

8. Value Prediction And Wrong Path Events

We explore whether a mechanism based on wrong-path events can be used with value prediction. To this end, we

add a value predictor to our simulator and evaluate the WPEs that result from incorrect value predictions.

8.1. The Value Predictor

We model a hybrid value predictor composed of a stride predictor and a correlation predictor [23, 4]. The correlation

predictor and hybrid selector each use a 4096-entry table; the stride predictor uses a 64-entry table. The value predictor

predicts values only for load instructions and achieves an average coverage of 34% over all load instructions.

8.2. How Value Mispredictions Lead to Wrong Path Events

The value predictor is used to predict values of load instructions, which may miss in the cache. If an incorrectly

predicted load value is dereferenced by a dependent load, then the second load may generate a wrong-path event when

dereferencing the incorrect value.

Figure 13 shows an assembly code example from gcc’s gen rtx function that demonstrates this phenomenon.

The value predictor predicts the value of the first load and places that value in r23. The add instruction calculates a

subsequent load address using the incorrect value in r23. Since the value of r23 was incorrectly predicted to be an

odd value, the next load generates an unaligned access to memory, a wrong-path event.

ldl r23, 72(r30) ; r23 is predicted incorrectly
addq r21, r23, r21 ; calculate the next memory address using r23
ldq r21, -8(r21) ; an access with an unaligned memory address

Figure 13. An unaligned access from GCC

15

8.3. Results and Analysis

8.3.1. Coverage and Timing Two types of WPEs occur in a processor that uses both a branch predictor and a value

predictor: WPEs caused by branch mispredictions and WPEs caused by value mispredictions. In Figure 14 we show

the rate of occurance for both types of events in a processor with value prediction and branch prediction (Base+VP). We

also show the rate of occurrence of WPEs and branch mispredictions on the baseline processor. According to Figure 14,

value mispredictions occur less frequently than branch mispredictions. WPEs caused by value mispredictions are less

frequent than WPEs caused by branch mispredictions. Most of the time the value predictor bases its prediction for

a load on results previously seen for that load, therefore the value predictor is less likely to generate WPEs, since

wrong-path events would not have occurred previously on the correct path.

0

2

4

6

8

10

12

14

 P
er

 1
00

0
In

st
ru

ct
io

ns

Branch misprediction (Base + VP)
Branch misprediction with WPE (Base + VP)
Value misprediction (Base + VP)
Value misprediction with WPE (Base + VP)
Branch misprediction (Base)
Branch misprediction with WPE (Base)

gzip_ vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2_ twolf_ amean

Figure 14. Branch misprediction, value misprediction and WPE rate.

Figure 15 shows that the potential savings in cycles for a value misprediction that leads to a WPE is significant.

The leftmost bar for each benchmark shows the average number of cycles from when a mispredicted load instruction

is issued to the detection of the WPE, for those value mispredictions that cause a WPE. The rightmost bar for each

benchmark shows the average number of cycles from when the mispredicted load is issued to the time the load com-

pletes execution and initiates recovery. On average, a WPE occurs 64 cycles after the mispredicted load is issued into

the window, and the load completes execution 161 cycles after it is issued. Hence, we observe a potential average sav-

ings of 97 cycles, which is more than the 51 cycles of potential savings observed for branch mispredictions (Figure 6).

The potential savings is higher for value mispredictions with wrong-path events because the time it takes to resolve a

load misprediction, 161 cycles on average, is much longer than the time it takes to resolve a branch misprediction, 97

cycles (Figure 6).

8.3.2. WPEs Generated due to the Interaction of the Value and Branch Predictors When the processor uses a

value predictor together with a branch predictor, the accuracy of each predictor can be influenced by the other. We

describe a scenario where the value and branch predictors interact to generate a WPE. We observe that the accuracy of

the value predictor goes down after a branch is mispredicted. The value misprediction rate is 1% on the correct path

and 11% on the wrong path. Figure 16 shows an assembly code example from gcc’s register operand function.

After the branch instruction is mispredicted, the next load (ldq r18, 8(r10)) is value predicted incorrectly.

16

0

100

200

300

400

500

600

700

800

900

C
yc

le
s

Issue to WPE
Issue to load completion

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf amean

Figure 15. Wrong path cycles to WPE and recovery from value misprediction.

The second load instruction (ldq r18, 24(r18)) dereferences the value from the first load instruction, which is

incorrect and not necessarily a pointer value. In this case the second load generates an out of segment range WPE. This

example shows that a value predictor can increase the occurrence of wrong-path events under mispredicted branches.

bne r17, 12004c7b4 ; branch is mispredicted
ldq r18, 8(r10) ; r18 value is mispredicted
ldq r18, 24(r18) ; load address is out of segment range

Figure 16. Branch misprediction and value misprediction together generate a WPE in GCC.

9. Discussion and Future Research Directions

This paper presented the idea of wrong-path events, evaluated their occurrence and performance potential for branch

and value prediction, and proposed a realistic recovery mechanism that can take advantage of the idea. We have

analyzed both the advantages and shortcomings of wrong-path events in previous sections. In this section, we propose

several research ideas that address these three shortcomings. We also propose other areas of research that can take

advantage of wrong-path events.

9.1. Addressing the Shortcomings of Wrong Path Events

Results and analysis discussed in Section 6 indicate that there are three major shortcomings that limit the gains

obtained from a WPE-based mechanism:

1. WPEs do not occur very frequently. Hence, the percentage of mispredicted branches with WPEs is low.

2. WPEs do not occur early enough in the wrong path.

3. Staying on the wrong path a few more cycles is sometimes more useful than recovering early.

17

To address the first shortcoming, future research in wrong-path events should focus on discovering additional

WPEs. The set of WPEs proposed in this paper provides a starting point and is by no means definitive. To come

up with the “silver bullet set of WPEs,” a detailed analysis of events occurring on the wrong path may be necessary.

Microarchitectural behavior that is statistically more likely to occur on the wrong path than on the correct path can be

exploited as WPEs. A “branch under branch event” described in this paper is an example of such behavior. Future

research can target finding similar behavior using a comprehensive statistical analysis of the occurrence of various

events on the wrong path vs. on the correct path.

Another avenue of research, which we believe is promising, would leverage the compiler to increase the occur-

rence of WPEs. The compiler can insert special, non-binding10 instructions into the program that would generate a

wrong-path event if an older branch is mispredicted. For example, the compiler can insert a special, non-binding load

instruction that causes a NULL pointer dereference only when the non-binding load is executed on the wrong path. If

this special instruction is executed on the correct path, it computes a legal address and thus does not generate a WPE.

The ISA needs to be augmented with these special instructions. Care must be taken to make sure that these instructions

do not cause code bloat and do not tie up machine resources that are valuable for other instructions.

To address the second shortcoming, future research can focus on methods of rapidly executing wrong-path instruc-

tions. For example, using register tracking [5] to compute load addresses early may aid in discovering wrong-path

events earlier. Having the compiler insert instructions that generate WPEs on the wrong path can also reduce the time

it takes to detect a WPE on the wrong path.

Addressing the third shortcoming requires a better understanding of what makes a particular “wrong-path period”11

useful for correct-path execution. If the usefulness of a wrong-path period is predictable, perhaps a WPE-based

recovery mechanism should not be employed or should be employed more carefully on a wrong-path period that is

predicted to be useful. Previous research [7, 22, 13, 20] has focused on identifying the general effects of wrong-

path execution on the correct-path execution, but, to the best of our knowledge, there is no body of research on

distinguishing useful wrong-path periods from useless/harmful ones. We suggest that the usefulness of a particular

wrong-path period is an important area of research in view of a WPE-based mechanism that can take advantage of the

results.

9.2. Other Areas of Future Research

An orthogonal area of research is the exploration of situations other than early branch recovery where wrong-path

events can be employed. Section 8 explored the applicability of WPEs to value prediction. The proposed idea of

wrong-path events may apply to other methods of speculation, including but not limited to cache hit speculation [28],

memory dependence speculation [19], and thread-level speculation [24, 17, 25]. The discovery of additional WPEs

may be critical for the application of the idea of wrong-path events to other methods of speculation. If applicable to

other forms of speculation, wrong-path events have the potential to be a generalized feedback mechanism used for the

detection of misspeculation.

Finally, it is very important to accurately predict which branch was mispredicted, once a WPE occurs. Section 7

showed that although the prediction accuracy is high in general, there are downsides to inaccurate predictions. For ex-

10A non-binding instruction does not stall instruction retirement.
11Time elapsed from the fetch of a mispredicted correct-path branch until the resolution of the same branch and initiation of recovery.

18

ample, an inaccurate prediction may initiate recovery for a correct-path branch that was not mispredicted. Techniques

to improve the prediction accuracy are desirable to reduce the costly negative effects of misprediction. Hence, the

discovery of novel prediction mechanisms is an important area for future research.

10. Related Work

10.1. Motivation

Karkhanis and Smith study the bottlenecks encountered in the processor when executing instructions after a long-

latency data cache miss on a machine with a very large instruction window [14]. They find that the majority of

instructions following a long-latency cache miss are dataflow independent of the miss and can execute while the miss

is being serviced. However, a mispredicted branch that is dependent on the cache miss cannot be resolved until the

cache miss is serviced. When this occurs, useful processing ceases after the mispredicted branch. The authors report

that 25% of long-latency cache misses feed mispredicted branch instructions as described. The proposed mechanism

based on wrong-path events addresses this problem and can be used to initiate recovery for the mispredicted branch

before the long-latency cache miss is serviced. Recent work that addresses the implementation of the large out-of-order

windows [1, 21] simulated by Karkhanis and Smith demonstrates that this problem is relevant.

10.2. Related Schemes

Glew proposes the use of “bad memory addresses” and illegal instructions as strong indicators of branch mispre-

dictions [10]. Glew poses the question “What fraction of branch mispredictions lead to a bad memory address?” as a

research topic. We extend and generalize Glew’s notion of bad memory addresses to various instances of unusual and

illegal program behavior (wrong-path events) including but not limited to bad memory addresses. We also evaluate

the frequency of occurrence of these generalized set of events and analyze when they occur on the wrong path. Glew

points out that it is not clear how to take advantage of wrong-path events, because a recovery mechanism needs to

determine which unresolved branch in the processor is mispredicted. We desribe a recovery mechanism that can take

advantage of wrong-path events and show that a simple predictor can accurately predict which unresolved branch in

the processor is mispredicted, once a wrong-path event is detected.

Jacobsen et al. explore branch confidence, or the likelihood that a branch is mispredicted, based on past program

behavior [11]. They propose and evaluate mechanisms to determine branch confidence statically and dynamically.

Confidence mechanisms can be used to conserve processor resources when there is little confidence that the processor

is on the correct path. Manne et al. use branch confidence to gate low-confidence speculative instructions from the

early stages of the pipeline in order to save energy [16]. Their mechanism is called pipeline gating. The authors report

a significant energy savings with negligible performance degradation. A low-confidence branch in Manne et al. is

analogous to a highly speculative wrong-path event. These previous mechanisms use information from past program

behavior, the branch history information, to guess that a branch has been mispredicted. In contrast, a mechanism

based on wrong-path events monitors the results from speculative instructions and, based on this feedback, determines

whether the processor is on the correct path.

Jimenez et al. observe that access time is an important design point in a branch predictor [12]. To address this design

point, they propose an overriding predictor scheme, where a larger, slower, and more accurate predictor overrides the

19

prediction from a smaller, faster, less accurate predictor. Wrong path events provide a mechanism to override a

previous prediction similar to the larger, more accurate predictor. However, in the case of wrong-path events, the

overriding prediction is made based on program behavior exhibited after the branch is predicted, and is not based

solely on branch history information.

Falcón et al. propose the use of predictions made for younger branches to re-evaluate the prediction made for an

older branch [9]. Initially, a branch is predicted using a traditional branch predictor, the “prophet,” which uses past

history. Later, bits from the branch’s global history and predictions made for younger branches are together used to

index an overriding “critic” predictor to generate a more accurate prediction for the branch. This mechanism uses

future speculation information (predictions made for younger branches) to refine the prediction made for an older

branch. In contrast, the mechanism we propose utilizes many pieces of wrong-path information (called wrong-path

events), including the results of the wrong-path instructions, to identify that the processor is on the wrong path.

10.3. Schemes to Reduce the Branch Misprediction Penalty

Bondi et al. propose a misprediction recovery cache for deep, superscalar pipelines [6]. The misprediction recovery

cache reduces the recovery time of mispredicted branches by caching the decoded instructions that follow the most

frequently mispredicted branches. When a misprediction is discovered, the pipeline is flushed. While the fetch and

decode stages of the pipeline are warmed with correct-path instructions, the execution stage of the pipeline draws

decoded instructions from the misprediction recovery cache. Whereas a misprediction recovery cache addresses the

time it takes to recover from a misprediction after the branch is executed, a wrong-path event mechanism addresses

the time it takes to discover the misprediction.

Aragón et al. propose a mechanism that fetches, decodes and renames, but does not execute instructions from the

alternative paths of low-confidence branches [3]. Once a misprediction is detected, the instructions from the correct

path are immediately available to the execution core. This scheme is also intended to reduce the penalty after the

mispredicted branch is discovered. This mechanism is different from that of a wrong-path events mechanism, which

is intended to reduce the time it takes to discover that the branch is mispredicted. Therefore, an approach based on

wrong-path events and the schemes proposed by Bondi et al. and Aragón et al. are orthogonal and can be combined

for greater performance gains.

10.4. Other Work Related to the Wrong Path

Pierce and Mudge use a simulator that models wrong-path instructions in order to examine the effects of speculative

execution on instruction and data cache prefetching [22]. In the description of their simulator, they enumerate a list of

conditions that cause their simulator to stop execution on the wrong path. These conditions include exit calls, system

calls, data segment faults and execution faults. We build on this set of conditions and propose additional events that

can be used to identify the wrong path, analyze why they occur and propose a recovery mechanism to re-start execution

on the correct path when they do occur.

Wang et al. observe that about 40% of the dynamic branches in the SPEC2000 integer suite do not affect the

architectural state of the machine when mispredicted, but not recovered [26]. This observation is relevant to our

scheme because it potentially sets an upper bound on the number of branches that can exhibit wrong-path events: if

20

a branch is mispredicted and the instructions on the wrong path do not change the architectural state of the machine,

then the mispredicted branch cannot lead to certain wrong-path events.

Akkary et al. propose a method to reuse the outcomes of the branches executed on the wrong path in the prediction

of correct path branches, recognizing that the outcomes of many wrong-path branches match the outcomes of correct

path branches due to control independence [2]. Instead of trying to reduce the time a processor spends on the wrong

path like the mechanism we propose, their mechanism tries to extract useful information from wrong-path instructions

to speed up execution on the correct path.

Jourdan et. al. analyze the effects of wrong-path execution on the branch prediction structures [13]. They find that

mechanisms need to be provided to recover the state of the return address stack and the global branch history register

upon a branch misprediction recovery. We find that some wrong-path events occur more frequently if these recovery

mechanisms are not provided and therefore we use the return address stack and branch history register checkpointing

schemes proposed in [13].

Mutlu et al. analyze the effects of wrong-path memory references on processor performance [20]. They report that

the prefetching benefits of wrong-path memory references outweigh the negative effects of these references, such as

cache pollution. As discussed earlier in this paper, we find that the prefetching benefits of wrong-path execution limit

the performance potential of misprediction recovery with wrong-path events, because recovering early from the wrong

path is not always optimal for performance.

11. Conclusion

In this paper, we propose and evaluate a novel mechanism to resolve mispredicted branches before they are executed

in the processor. The purpose of this mechanism is to improve processor performance by helping to insure that the

processor remain “on the correct path” as as much of the time as possible. We observe that wrong-path instructions can

exhibit unexpected or illegal behavior. We call an instance of this behavior a wrong-path event and use it as a trigger

to initiate a branch resolution before the mispredicted branch executes. We show that wrong-path events affect an

average of 5% of the mispredicted branches in the SPEC2000 integer benchmarks and occur an average of 51 cycles

before the mispredicted branch is executed. This mechanism has potential for performance benefit for nine of the

twelve SPEC2000 integer benchmarks, but is limited by three factors: the coverage of mispredicted branches affected

by WPEs, how far onto the wrong path the WPE occurs and finally by negating potentially beneficial prefetching

effects generated by wrong-path instructions. In light of these limitations, we propose new ideas to explore.

We propose a recovery mechanism that utilizes the concept of distance between a wrong-path event and the mis-

predicted branch and achieves a low misprediction rate. We demonstrate that a wrong-path events based recovery

mechanism may benefit other forms of speculation by quantifying the wrong-path events that occur when using a

value predictor. Finally, we summarize the shortcomings of wrong-path events and propose future areas of research to

address these shortcomings in order to exploit the potential of the idea. Although we have not found the “silver bullet”

set of wrong-path events, our results show that the idea of wrong-path events does provide a significant opportunity

for performance improvement, which we hope will be exploited with future research.

21

12. References

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and recovery: Towards scalable large instruc-
tion window processors. In Proceedings of the 36th Annual ACM/IEEE International Symposium on Microarchi-
tecture, pages 423–434, 2003.

[2] H. Akkary, S. T. Srinivasan, and K. Lai. Recycling waste: Exploiting wrong-path execution to improve branch
prediction. In Proceedings of the 17th International Conference on Supercomputing, 2003.

[3] J. L. Aragón, J. González, A. González, and J. E. Smith. Dual path instruction processing. In Proceedings of the
2002 International Conference on Supercomputing, 2002.

[4] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport, A. Yoaz, and U. Weiser. Correlated load-
address predictors. In Proceedings of the 26th Annual International Symposium on Computer Architecture, pages
54–63, 1999.

[5] M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev, and R. Ronen. Early load address resolution via
register tracking. In Proceedings of the 27th Annual International Symposium on Computer Architecture, pages
306–315, 2000.

[6] J. O. Bondi, A. K. Nanda, and S. Dutta. Integrating a misprediction recovery cache (MRC) into a superscalar
pipeline. In Proceedings of the 29th Annual ACM/IEEE International Symposium on Microarchitecture, pages
14–23, Dec. 1996.

[7] M. G. Butler. Aggressive Execution Engines for Surpassing Single Basic Block Execution. PhD thesis, University
of Michigan, 1993.

[8] M. Evers and T.-Y. Yeh. Understanding branches and designing branch predictors for high-performance micro-
processors. Proceedings of the IEEE, 89(11):1610–1620, Nov. 2001.

[9] A. Falcón, J. Stark, A. Ramirez, K. Lai, and M. Valero. Prophet-critic hybrid branch prediction. In Proceedings
of the 31st Annual International Symposium on Computer Architecture, 2004.

[10] A. Glew. Branch and computation refinement. Unpublished Manuscript, University of Wisconsin, Jan. 2000.

[11] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confidence to conditional branch predictions. In Proceed-
ings of the 29th Annual ACM/IEEE International Symposium on Microarchitecture, pages 142–152, 1996.

[12] D. A. Jiménez, S. W. Keckler, and C. Lin. The impact of delay on the design of branch predictors. In Proceedings
of the 33rd Annual ACM/IEEE International Symposium on Microarchitecture, pages 67–76, 2000.

[13] S. Jourdan, T.-H. Hsing, J. Stark, and Y. N. Patt. The effects of mispredicted-path execution on branch predic-
tion structures. In Proceedings of the 1996 ACM/IEEE Conference on Parallel Architectures and Compilation
Techniques, pages 58–67, 1996.

[14] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss. In Second Workshop on Memory Performance
Issues, 2002.

[15] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24–36, 1999.

[16] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating: Speculation control for energy reduction. In Proceed-
ings of the 25th Annual International Symposium on Computer Architecture, pages 132–141, 1998.

[17] P. Marcuello, A. González, and J. Tubella. Speculative multithreaded processors. In Proceedings of the 1998
International Conference on Supercomputing, pages 77–84, 1998.

[18] S. McFarling. Combining branch predictors. Technical Report TN-36, Digital Western Research Laboratory, June
1993.

[19] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. Dynamic speculation and synchronization of data
dependences. In Proceedings of the 24th Annual International Symposium on Computer Architecture, 1997.

[20] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Understanding the effects of wrong-path memory references
on processor performance. In Third Workshop on Memory Performance Issues, 2004.

[21] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An alternative to very large instruc-
tion windows for out-of-order processors. In Proceedings of the Ninth IEEE International Symposium on High
Performance Computer Architecture, pages 129–140, 2003.

22

[22] J. Pierce and T. Mudge. The effect of speculative execution on cache performance. In Proceedings of the Inter-
national Parallel Processing Symposium, pages 172–179, 1994.

[23] Y. Sazeides and J. E. Smith. The predictability of data values. In Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, pages 248–257, 1997.

[24] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 414–425, 1995.

[25] G. S. Sohi and A. Roth. Speculative multithreaded processors. IEEE Computer, 34(4):66–73, Apr. 2001.

[26] N. Wang, M. Fertig, and S. J. Patel. Y-branches: When you come to a fork in the road, take it. In Proceedings of
the 12th International Conference on Parallel Architectures and Compilation Techniques, 2003.

[27] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch prediction. In Proceedings of
the 19th Annual International Symposium on Computer Architecture, pages 124–134, 1992.

[28] A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation techniques for improving load related instruction
scheduling. In Proceedings of the 26th Annual International Symposium on Computer Architecture, pages 42–
53, 1999.

23

