
Transparent Offloading and Mapping
(TOM)

Enabling Programmer-Transparent
Near-Data Processing in GPU Systems

Kevin Hsieh

Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,

Mike O’Connor, NanditaVijaykumar,

Onur Mutlu, Stephen W. Keckler

Motivation

2

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

SM

Main GPU

3D-stacked memory

(memory stack)

Processing data directly in 3D-stacked

memories is a promising direction

Motivation

3

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

Main GPU

3D-stacked memory

(memory stack)

However, it requires significant

programmer effort

SM

Key Challenge 1

4

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

SM

Main GPU

3D-stacked memory

(memory stack)

Key Challenge 1

5

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

?

Main GPU

3D-stacked memory

(memory stack)

• Challenge 1: Which operations should be executed
on the logic layer SMs?

?
SM

Key Challenge 2

6

Logic layer

SM

Crossbar switch

Vault

Ctrl

…. Vault

Ctrl

Logic layer

Main GPU SMs

Main GPU

3D-stacked memory

(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

Our Approach: TOM

• A new mechanism to identify and decide what
code portions to offload.
• The compiler identifies code portions to potentially

offload based on memory profile.

• The runtime system decides whether or not to
offload each code portion based on runtime
characteristics.

7

Our Approach: TOM

• A new mechanism to identify and decide what
code portions to offload.
• The compiler identifies code portions to potentially

offload based on memory profile.

• The runtime system decides whether or not to
offload each code portion based on runtime
characteristics.

• A new, simple, programmer-transparent data
mapping mechanism to maximize code/data co-
location.

8

Our Approach: TOM

• A new mechanism to identify and decide what
code portions to offload.
• The compiler identifies code portions to potentially

offload based on memory profile.

• The runtime system decides whether or not to
offload each code portion based on runtime
characteristics.

• A new, simple, programmer-transparent data
mapping mechanism to maximize code/data co-
location.

• Key Results: 30% average (76% max)
performance improvement in GPU workloads.

9

Transparent Offloading and Mapping
(TOM)

Kevin Hsieh

Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee,

Mike O’Connor, NanditaVijaykumar,

Onur Mutlu, Stephen W. Keckler

Talk at Monday 2:50pm (Session 3B)

