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Processing data directly in 3D-stacked 

memories is a promising direction
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Key Challenge 1
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• Challenge 1: Which operations should be executed 
on the logic layer SMs?
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Key Challenge 2
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• Challenge 2: How should data be mapped to 
different 3D memory stacks? 



Our Approach:  TOM

• A new mechanism to identify and decide what 
code portions to offload.
• The compiler identifies code portions to potentially 

offload based on memory profile.

• The runtime system decides whether or not to 
offload each code portion based on runtime 
characteristics.
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Our Approach:  TOM

• A new mechanism to identify and decide what 
code portions to offload.
• The compiler identifies code portions to potentially 

offload based on memory profile.

• The runtime system decides whether or not to 
offload each code portion based on runtime 
characteristics.

• A new, simple, programmer-transparent data 
mapping mechanism to maximize code/data co-
location.

• Key Results: 30% average (76% max) 
performance improvement in GPU workloads.
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