
IEEE COMPUTER ARCHITECTURE LETTERS 1

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory
Amirali Boroumand†, Saugata Ghose†, Minesh Patel†, Hasan Hassan†§, Brandon Lucia†,

Kevin Hsieh†, Krishna T. Malladi?, Hongzhong Zheng?, and Onur Mutlu‡†

†Carnegie Mellon University ?Samsung Semiconductor, Inc. §TOBB ETÜ ‡ETH Zürich

Abstract—Processing-in-memory (PIM) architectures cannot use traditional approaches to cache coherence due to the high off-chip
traffic consumed by coherence messages. We propose LazyPIM, a new hardware cache coherence mechanism designed specifically
for PIM. LazyPIM uses a combination of speculative cache coherence and compressed coherence signatures to greatly reduce the
overhead of keeping PIM coherent with the processor. We find that LazyPIM improves average performance across a range of PIM
applications by 49.1% over the best prior approach, coming within 5.5% of an ideal PIM mechanism.

1 INTRODUCTION

Memory bandwidth continues to be a limiting factor for many
applications today. In 3D-stacked DRAM architectures, vertical
through-silicon vias provide very high bandwidth within mem-
ory, much higher than the bandwidth available to the processor.
To exploit the high internal bandwidth, several recent works
explore processing-in-memory (PIM), also known as near-data
processing (e.g., [1, 2, 9, 10, 11, 13, 26, 27, 35]), where the proces-
sor dispatches parts of the application (which we refer to as
PIM kernels) for execution at compute units (PIM cores) within
DRAM. PIM architectures have been proposed for decades (e.g.,
[17,23,28,31]), but the greater bandwidth in 3D-stacked DRAM
has made PIM much more appealing and easier to adopt.

Cache coherence is a major system challenge for PIM
architectures. If PIM cores are coherent with the processor,
the PIM programming model remains similar to conventional
multithreaded programming, facilitating the wide adoption of
PIM. However, it is impractical for PIM to perform traditional
coherence, as this forces a large number of coherence messages
to traverse a narrow off-chip bus, potentially undoing the
benefits of high-bandwidth PIM execution. Most prior works
assume a limited amount of sharing between the PIM kernels
and the processor threads of an application. Thus, they sidestep
coherence by employing solutions that restrict PIM to execute
on non-cacheable data (e.g., [1, 9, 35]) or force processor cores
to flush or not access any data that could potentially be used by
PIM (e.g., [2, 9, 10, 11, 26, 27]).

We make two key observations based on our analysis of
several data-intensive applications: (1) some portions of the
applications are better suited for execution in processor threads,
and these portions often concurrently access the same region of
data as the PIM kernels, leading to significant data sharing; and
(2) poor handling of coherence eliminates a significant portion
of the performance benefits of PIM. As a result, we find that
a good coherence mechanism is required to ensure the correct
execution of the program while maintaining the benefits of
PIM (see Sec. 3). Our goal in this work is to propose a cache
coherence mechanism for PIM architectures that logically behaves
like traditional coherence, but retains all of the benefits of PIM.

To this end, we propose LazyPIM, a new cache coherence
mechanism that efficiently batches coherence messages sent
by the PIM cores. During PIM kernel execution, a PIM core
speculatively assumes that it has acquired coherence permissions
without sending a coherence message, and maintains all data
updates speculatively in its cache. Only when the kernel fin-
ishes execution, the processor receives compressed information
from the PIM core, and checks if any coherence conflicts oc-
curred. If a conflict exists (see Sec. 4.1), the dirty cache lines
in the processor are flushed, and the PIM core rolls back
and re-executes the kernel. Our execution model for the PIM
cores is similar to chunk-based execution [6] (i.e., each batch of
consecutive instructions executes atomically), which prior work
has harnessed for various purposes [6,7,12]. Unlike past works,
however, the processor in LazyPIM executes conventionally
and never rolls back, which can make it easier to enable PIM.

Manuscript submitted 15 February 2016; revised 25 April 2016; accepted 18
May 2016. Final manuscript received 3 June 2016.
This work was supported by Google, Intel, NVIDIA, Samsung, Seagate, the
Intel Science and Technology Center for Cloud Computing, the Semiconductor
Research Corporation, and NSF grants 1212962, 1320531, and 1409723.

We make the following key contributions in this work:
• We propose a new hardware coherence mechanism for PIM.

Our approach (1) reduces the off-chip traffic between the PIM
cores and the processor, (2) avoids the costly overheads of
prior approaches to provide coherence for PIM, and (3) re-
tains the same logical coherence behavior as architectures
without PIM to keep programming simple.

• LazyPIM improves average performance by 49.1% (coming
within 5.5% of an ideal PIM mechanism), and reduces off-
chip traffic by 58.8%, over the best prior coherence approach.

2 BASELINE PIM ARCHITECTURE
A number of 3D-stacked DRAM architectures [18, 19], such
as HBM [15] and HMC [14], include a logic layer, where ar-
chitects can implement functionality that interacts with both
the processor and the DRAM cells [14]. Recent PIM proposals
(e.g., [1, 2, 9, 10, 11, 35]) add compute units to the logic layer
to exploit the high bandwidth available. In our evaluation, we
assume that the compute units consist of simple in-order cores.
These cores, which are ISA-compatible with the out-of-order
processor cores, are much weaker in terms of performance, as
they lack large caches and sophisticated ILP techniques, but are
more practical to implement within the DRAM logic layer.

Each PIM core has private L1 I/D caches, which are kept
coherent using a MESI directory within the DRAM logic layer.
A second directory in the processor acts as the main coherence
point for the system, interfacing with both the processor cache
and the PIM coherence directory. Like prior PIM works [1, 9],
we assume that direct segments [3] are used for PIM data, and
that PIM kernels operate only on physical addresses.

3 MOTIVATION
Applications benefit the most from PIM execution when their
memory-intensive parts, which often exhibit poor locality and
contribute to a large portion of execution time, are dispatched
to the PIM cores. On the other hand, compute-intensive parts or
those parts that exhibit high locality must remain on the processor
cores to maximize performance [2, 13].

Prior work mostly assumes that there is only a limited
amount of sharing between the PIM kernels and the processor.
However, this is not the case for many important applications,
such as graph and database workloads. For example, in mul-
tithreaded graph frameworks, each thread performs a graph
algorithm (e.g., connected components, PageRank) on a shared
graph [29, 34]. We study a number of these algorithms [29],
and find that (1) only certain portions of each algorithm are
well suited for PIM, and (2) the PIM kernels and processor
threads access the shared graph and intermediate data struc-
tures concurrently. Another example is modern in-memory
databases that support Hybrid Transactional/Analytical Pro-
cessing (HTAP) workloads [20,24,32]. The analytical portions of
these databases are well suited for PIM execution [16,21,33]. In
contrast, even though transactional queries access the same data,
they perform better if they are executed on the processor, as
they are short-lived and latency sensitive, accessing only a few
rows each. Thus, concurrent accesses from both PIM kernels
(analytics) and processor threads (transactions) are inevitable.

The shared data needs to remain coherent between the pro-
cessor and PIM cores. Traditional, or fine-grained, coherence pro-
tocols (e.g., MESI) have several qualities well suited for pointer-
intensive data structures, such as those in graph workloads



IEEE COMPUTER ARCHITECTURE LETTERS 2

and databases. Fine-grained coherence allows the processor or
PIM to acquire permissions for only the pieces of data that
are actually accessed. In addition, fine-grained coherence can
ease programmer effort when developing PIM applications, as
multithreaded programs already use this programming model.
Unfortunately, if a PIM core participates in traditional coher-
ence, it would have to send a message for every cache miss to
the processor over a narrow bus (we call this PIM coherence
traffic). Fig. 1 shows the speedup of PIM with different coher-
ence mechanisms for certain graph workloads, normalized to
a CPU-only baseline (where the whole application runs on the
processor).1 To illustrate the impact of inefficient mechanisms,
we also show the performance of an ideal mechanism where
there is no performance penalty for coherence (Ideal-PIM). As
shown in Fig. 1, PIM with fine-grained coherence (FG) always
performs worse than CPU-only execution.

0.0

0.5

1.0

1.5

2.0

PageRank Radii Connected
Components

PageRank Radii Connected
Components

Facebook Gnutella

Sp
e
ed

u
p CPU-only

FG

CG

NC

Ideal-PIM

Fig. 1. PIM speedup with 16 threads, normalized to CPU-only.1

To reduce the impact of PIM coherence traffic, there are three
general alternatives to fine-grained coherence for PIM execu-
tion: (1) coarse-grained coherence, (2) coarse-grained locks, and
(3) making PIM data non-cacheable in the processor.
Coarse-Grained Coherence. One approach to reduce PIM co-
herence traffic is to maintain a single coherence entry for all of
the PIM data. Unfortunately, this can still incur high overheads,
as the processor must flush all of the dirty cache lines within the
PIM data region every time the PIM core acquires permissions,
even if the PIM kernel may not access most of the data. For example,
with just four processor threads, the number of cache lines
flushed for PageRank is 227x the number of lines actually
required by the PIM kernel.1 Coherence at a smaller granularity,
such as page-granularity [10], does not cause flushes for pages
not accessed by the PIM kernel. However, many data-intensive
applications perform pointer chasing, where a large number of
pages are accessed non-sequentially, but only a few lines in each
page are used, forcing the processor to flush every dirty page.
Coarse-Grained Locks. Another drawback of coarse-grained
coherence is that data can ping-pong between the processor
and the PIM cores whenever the PIM data region is concur-
rently accessed by both. Coarse-grained locks avoid ping-ponging
by having the PIM cores acquire exclusive access to a region
for the duration of the PIM kernel. However, coarse-grained
locks greatly restrict performance. Our applicaton study shows
that PIM kernels and processor threads often work in parallel
on the same data region, and coarse-grained locks frequently
cause thread serialization. PIM with coarse-grained locks (CG
in Fig. 1) performs 8.4% worse, on average, than CPU-only
execution. We conclude that using coarse-grained locks is not
suitable for many important applications for PIM execution.
Non-Cacheable PIM Data. Another approach sidesteps co-
herence, by marking the PIM data region as non-cacheable in
the processor [1], so that DRAM always contains up-to-date
data. For applications where PIM data is almost exclusively
accessed by the PIM cores, this incurs little penalty, but for
many applications, the processor also accesses PIM data of-
ten. For our graph applications with a representative input
(arXiV),1 the processor cores generate 42.6% of the total number
of accesses to PIM data. With so many processor accesses,
making PIM data non-cacheable results in high performance
and bandwidth overhead. As shown in Fig. 1, though marking
PIM data as non-cacheable (NC) sometimes performs better
than CPU-only, it still loses up to 62.7% (on average, 39.9%) of
the improvement of Ideal-PIM. Therefore, while this approach

1. See Sec. 5 for our methodology.

avoids the overhead of coarse-grained mechanisms, it is a poor
fit for applications that rely on processor involvement, and thus
restricts when PIM is effective.

We conclude that prior approaches to PIM coherence elim-
inate a significant portion of the benefits of PIM when data
sharing occurs, due to their high coherence overheads. In fact,
they sometimes cause PIM execution to consistently degrade
performance. Thus, an efficient alternative to fine-grained co-
herence is necessary to retain PIM benefits across a wide range
of applications.

4 LAZYPIM MECHANISM
Our goal is to design a coherence mechanism that maintains
the logical behavior of traditional coherence while retaining the
large performance benefits of PIM. To this end, we propose
LazyPIM, a new coherence mechanism that lets PIM kernels
speculatively assume that they have the required permissions
from the coherence protocol, without actually sending off-chip
messages to the main (processor) coherence directory during
execution. Instead, coherence states are updated only after the
PIM kernel completes, at which point the PIM core transmits a
single batched coherence message (i.e., a compressed signature
containing all addresses that the PIM kernel read from or wrote
to) back to the processor coherence directory. The directory
checks to see whether any conflicts occurred. If a conflict exists,
the PIM kernel rolls back its changes, conflicting cache lines
are written back by the processor to DRAM, and the kernel
re-executes. If no conflicts exist, speculative data within the
PIM core is committed, and the processor coherence directory
is updated to reflect the data held by the PIM core. Note that in
LazyPIM, the processor always executes non-speculatively, which
ensures minimal changes to the processor design, thereby en-
abling easier adoption of PIM.

LazyPIM avoids the pitfalls of the mechanisms discussed in
Sec. 3. With its compressed signatures, LazyPIM causes much
less PIM coherence traffic than traditional coherence. Unlike
coarse-grained coherence and coarse-grained locks, LazyPIM
checks coherence only after it completes PIM execution, avoid-
ing the need to unnecessarily flush a large amount of data.
LazyPIM also allows for efficient concurrent execution of pro-
cessor threads and PIM kernels: by executing speculatively, the
PIM cores do not invoke coherence requests during concurrent
execution, avoiding data ping-ponging and allowing processor
threads to continue using their caches.

4.1 Conflicts
In LazyPIM, a PIM kernel speculatively assumes during execu-
tion that it has coherence permissions on a cache line, without
checking the processor coherence directory. In the meantime,
the processor continues to execute non-speculatively. To resolve
PIM kernel speculation without violating the memory consis-
tency model, LazyPIM provides coarse-grained atomicity, where
all PIM memory updates are treated as if they all occur at the
moment that a PIM kernel finishes execution. (We explain how
LazyPIM enables this in Sec. 4.2.) At this point, a conflict may
be detected on a cache line read by the PIM kernel, where the
processor cache contains an newer copy of the line.

Fig. 2 (left) shows an example timeline, where a PIM kernel
is launched on PIM core PIM0 while execution continues on
processor cores CPU0 and CPU1. Due to the use of coarse-
grained atomicity, PIM kernel execution behaves as if the entire
kernel’s memory accesses take place at the moment coherence is
checked (i.e., at the end of kernel execution), regardless of the
actual time at which the kernel’s accesses are performed. Therefore,
for every cache line read by PIM0, if CPU0 or CPU1 modify
the line before the coherence check occurs, PIM0 unknowingly
uses stale data, leading to incorrect execution. Fig. 2 (left)
shows two examples of this: (1) CPU0’s write to line C during
kernel execution; and (2) CPU0’s write to line A before kernel
execution, which was not written back to DRAM. To detect such
conflicts, we record the addresses of processor writes and PIM
kernel reads into two signatures, and then check to see if any
addresses in them match after the kernel finishes (see Sec. 4.2.2).



IEEE COMPUTER ARCHITECTURE LETTERS 3

Wr(A)

Rd(A)
Wr(C)

...

Wr(E)
Rd(B)

...

Wr(A)

Wr(B)

Rd(A)
Wr(D)

...

Wr(F)
Rd(D)

...

Wr(D)

tim
e

CPU0 CPU1 PIM0

Rd(C)
Wr(B)
Rd(A)

Rd(C)
Wr(B)
Rd(A)

(1) Send PIM kernel

(2) Send PIMReadSet

and PIMWriteSet
(3) Roll back PIM,restart kernel

CONFLICT DETECTION
CPUs flush A, C

(4) Send PIMReadSet

and PIMWriteSet
(5) Commit PIM data

CONFLICT DETECTION
no conflicts

Processor

through-silicon via

DRAM Logic Layer

DRAM Cell Layer

DRAM Cell Layer

Core 0

Core N

...

Shared Last-Level Cache
Conflict

Detect HW CPUWriteSet

PIM Core 0

L1 Cache

speculative write bits

PIMWriteSet
PIMReadSet

PIM Core M

L1 Cache

PIMWriteSet
PIMReadSet

. . .

Fig. 2. Example timeline of LazyPIM coherence sequence (left); high-
level additions (in bold) to PIM architecture to support LazyPIM (right).

If the PIM kernel writes to a cache line that is subsequently
read by the processor before the kernel finishes (e.g., the second
write by PIM0 to line B in Fig. 2), this is not a conflict. With
coarse-grained atomicity, any read by the processor during PIM
execution is ordered before the PIM kernel’s write. LazyPIM
ensures that the processor cannot read the kernel’s writes,
by marking them as speculative until the kernel finishes (see
Sec. 4.2.2). This is also the case when the processor and a PIM
kernel write to the same cache line. Note that this ordering does
not violate consistency models, such as sequential consistency.

4.2 LazyPIM Architectural Support
4.2.1 Program Interface
We provide a simple interface to port applications to LazyPIM.
First, the programmer selects the portion(s) of the code to
execute on PIM cores, using two macros (PIM_begin and
PIM_end). The compiler converts the macros into instructions
that we add to the ISA, which trigger and end PIM kernel
execution. Second, we assume either the programmer or the
compiler can annotate all of the PIM data. This information is
saved in the page table using per-page flag bits.

4.2.2 Speculative Execution
When an application reaches a PIM kernel trigger instruction,
the processor dispatches the kernel’s starting PC to a free
PIM core. The PIM core checkpoints the starting PC, and starts
executing the kernel. The kernel speculatively assumes that it
has coherence permissions for every line it accesses, without
actually checking the processor directory. We add a one-bit flag
to each line in the PIM core cache, to mark all data updates as
speculative. If a speculative line is selected for eviction, the core
rolls back to the starting PC and discards the updates.

LazyPIM tracks three sets of addresses during PIM kernel
execution. These are recorded into three signatures, as shown in
Fig. 2 (right): (1) the CPUWriteSet (all CPU writes to the PIM
data region), (2) the PIMReadSet (all PIM reads), and (3) the
PIMWriteSet (all PIM writes). When the kernel starts, the dirty
lines in the processor cache containing PIM data are recorded in
the CPUWriteSet, by scanning the tag store (potentially using a
Dirty-Block Index [25]). The processor uses the page table flag
bits from Sec. 4.2.1 to identify which writes need to be added to
the CPUWriteSet during kernel execution. The PIMReadSet and
PIMWriteSet are updated for every read and write performed by
the PIM kernel. When the kernel finishes execution, the three
signatures are used to resolve speculation (see Sec. 4.2.3)

To reduce coherence overheads, the signatures use parallel
Bloom filters [5], which employ simple Boolean logic to hash
multiple addresses into a single (256B) fixed-length register.
Addresses can be extracted and compared from the regis-
ter [5, 6]. The hashing introduces a limited number of false
positives. To store more addresses, we use multiple filters.

4.2.3 Handling Conflicts
As Fig. 2 (left) shows, we need to detect conflicts that occur
during PIM kernel execution. In LazyPIM, when the kernel
finishes executing, both the PIMReadSet and PIMWriteSet are
sent back to the processor.

If no matches are detected between the PIMReadSet and
the CPUWriteSet (i.e., no conflicts have occurred), PIM ker-
nel commit starts. Any addresses (including false positives) in
the PIMWriteSet are invalidated from the processor cache. A
message is then sent to the PIM core, allowing it to write its
speculative cache lines back to DRAM. During the commit, all
coherence directory entries for the PIM data region are locked
to ensure atomicity. Finally, all signatures are erased.

If an overlap is found between the PIMReadSet and the
CPUWriteSet, a conflict may have occurred. Only the dirty lines
in the processor that match in the PIMReadSet are flushed back
to DRAM. During this flush, all PIM data directory entries are
locked to ensure atomicity. Once the flush completes, a message
is sent to the PIM core, telling it to invalidate all speculative
cache lines, and to roll back the PC to the checkpointed value.
Now that all possibly conflicting cache lines are written back
to DRAM, all signatures are erased, and the PIM core restarts
the kernel. After re-execution finishes, conflict detection is
performed again. LazyPIM guarantees forward progress by
acquiring a lock for each line in the PIMReadSet after a number
of rollbacks (we set this number, empirically, to 3 rollbacks).

4.2.4 Hardware Overhead
LazyPIM’s overhead consists mainly of (1) 1 bit per page
(0.003% of DRAM capacity) and 1 bit per TLB entry for the page
table flag bits (Sec. 4.2.1); (2) a 0.2% increase in PIM core L1 size
to mark speculative data (Sec. 4.2.2); and (3) in the worst case,
12KB for the signatures per PIM core (Sec. 4.2.2). This overhead
can be greatly optimized (as part of future work): for PIM
kernels that need multiple signatures, we could instead divide
the kernel into smaller chunks where each chunk’s addresses
fit in a single signature, lowering signature overhead to 784B.

5 METHODOLOGY

We study two types of data-intensive applications: graph work-
loads and databases. We use three Ligra [29] graph applications
(PageRank, Radii, Connected Components), with input graphs
constructed from real-world network datasets [30]: Facebook,
arXiV High Energy Physics Theory, and Gnutella25 (peer-to-
peer). We also use an in-house prototype of a modern in-
memory database (IMDB) [20,24,32] that supports HTAP work-
loads. Our transactional workload consists of 200K transac-
tions, each randomly performing reads or writes on a few
randomly-chosen tuples. Our analytical workload consists of
256 analytical queries that use the select and join operations on
randomly-chosen tables and columns.

PIM kernels are selected from these applications with the
help of OProfile [22]. We conservatively select candidate PIM
kernels, choosing hotspots where the application (1) spends the
majority of its cycles, and (2) generates the majority of its last-
level cache misses. From these candidates, we pick kernels that
we believe minimize the coherence overhead for each evaluated
mechanism, by minimizing data sharing between the processor
and PIM cores. We modify each application to ship the hotspots
to the PIM cores. We manually annotate the PIM data set.

For our evaluations, we modify the gem5 simulator [4].
We use the x86-64 architecture in full-system mode, and
use DRAMSim2 [8] to perform detailed timing simulation of
DRAM. Table 1 shows our system configuration.

TABLE 1
Evaluated system configuration.

Processor 4–16 cores, 3-wide, 64kB IL1/DL1, 2MB L2, MESI coherence
PIM 4–16 cores, 64kB IL1/DL1, MESI coherence
Memory HMC [14], 1 channel, 16 vaults per cube, 16 banks per vault

6 EVALUATION

We first analyze the off-chip traffic reduction of LazyPIM,
which leads to bandwidth and energy savings. We then an-
alyze LazyPIM’s performance. We show results normalized
to a processor-only baseline (CPU-only, as defined in Sec. 3),
and compare with using fine-grained coherence (FG), coarse-
grained locks (CG), or non-cacheable data (NC) for PIM data.



IEEE COMPUTER ARCHITECTURE LETTERS 4

6.1 Off-Chip Traffic
Fig. 3 (left) shows the normalized off-chip traffic of the PIM
coherence mechanisms for a 16-core architecture (with 16 pro-
cessor cores and 16 PIM cores) Fig. 3 (right) shows the nor-
malized off-chip traffic as the number of threads increases, for
PageRank using the Facebook graph. LazyPIM significantly
reduces overall off-chip traffic (up to 81.2% over CPU-only,
70.1% over FG, 70.2% over CG, and 97.3% over NC), and scales
better with thread count. LazyPIM reduces traffic by 58.8%, on
average, over CG, the best prior approach in terms of traffic.

0.0

0.5

1.0

1.5

2.0

Pa
ge

Ra
nk

Ra
di

i

Co
nn

ec
te

d
Co

m
po

ne
nt

s

Pa
ge

Ra
nk

Ra
di

i

Co
nn

ec
te

d
Co

m
po

ne
nt

s

Pa
ge

Ra
nk

Ra
di

i

Co
nn

ec
te

d
Co

m
po

ne
nt

s

HT
AP

Facebook Gnutella arXiV IMDB

No
rm

al
ize

d 
O

ff-
Ch

ip
 T

ra
ffi

c 7.0 3.6 3.0 5.0 3.3 3.4 3.1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4 8 16
No

rm
al

ize
d

O
ff-

Ch
ip

 Tr
af

fic
Number of Threads

CPU-only FG CG
NC LazyPIM

18.1 10.1 7.0

Fig. 3. 16-thread off-chip traffic (left), and off-chip traffic sensitivity to
thread count (right), normalized to CPU-only.

CG has greater traffic than LazyPIM, the majority of which
is due to having to flush dirty cache lines before each PIM
kernel invocation. Due to false sharing, the number of flushes
scales superlinearly with thread count (not shown), increasing
13.1x from 4 to 16 threads. LazyPIM avoids this cost with spec-
ulation, as only the necessary flushes are performed after the PIM
kernel finishes execution. As a result, it reduces the flush count
(e.g., by 94.0% for 16-thread PageRank using Facebook), and
thus lowers overall off-chip traffic (by 50.3% for our example).

NC suffers from the fact that all processor accesses to PIM
data must go to DRAM, increasing average off-chip traffic by
3.3x over CPU-only. NC off-chip traffic also scales poorly with
thread count, as more processor threads generate a greater
number of accesses. In contrast, LazyPIM allows processor
cores to cache PIM data, by enabling coherence efficiently.

6.2 Performance
Fig. 4 (left) shows the performance of PageRank using Gnutella
as we increase the thread count. LazyPIM comes within 5.5%
of Ideal-PIM (as defined in Sec. 3), and improves performance
by 73.2% over FG, 47.0% over CG, 29.4% over NC, and 39.4%
over CPU-only, on average. With NC, the processor threads
incur a large penalty for going to DRAM frequently. CG suffers
greatly due to (1) flushing dirty cache lines, and (2) blocking
all processor threads that access PIM data during execution.
In fact, processor threads are blocked for up to 73.1% of the
total execution time with CG. With more threads, the effects
of blocking worsen CG’s performance. FG also loses a signifi-
cant portion of Ideal-PIM’s improvements, as it sends a large
amount of off-chip messages. Note that NC, despite its high
off-chip traffic, performs better than CG and FG, as it neither
blocks processor cores nor slows down PIM execution.

Fig. 4 (right) shows the performance improvement for
16 threads. Without any coherence overhead, Ideal-PIM signif-
icantly outperforms CPU-only across all applications, showing
PIM’s potential on these workloads. Poor handling of coher-
ence by FG, CG, and NC leads to drastic performance losses
compared to Ideal-PIM, indicating that an efficient coherence
mechanism is essential for PIM performance. For example, in
some cases, NC and CG actually perform worse than CPU-
only, and for PageRank running on the Gnutella graph, all
prior mechanisms degrade performance. In contrast, LazyPIM
consistently retains most of Ideal-PIM’s benefits for all appli-
cations, coming within 5.5% on average. LazyPIM outperforms
all of the other approaches, improving over the best-performing
prior approach (NC) by 49.1%, on average.

7 CONCLUSION

We propose LazyPIM, a new cache coherence mechanism for
PIM architectures. Prior approaches to PIM coherence generate

0.0

0.5

1.0

1.5

2.0

4 8 16

Sp
ee

du
p

Number of Threads

CPU-only FG
CG NC
LazyPIM Ideal-PIM

0.0

0.5

1.0

1.5

2.0

Pa
ge

Ra
nk

Ra
di
i

Co
nn

ec
te
d

Co
m
po

ne
nt
s

Pa
ge

Ra
nk

Ra
di
i

Co
nn

ec
te
d

Co
m
po

ne
nt
s

Pa
ge

Ra
nk

Ra
di
i

Co
nn

ec
te
d

Co
m
po

ne
nt
s

HT
AP

Facebook Gnutella arXiV IMDB

Sp
ee

du
p

Fig. 4. Speedup sensitivity to thread count (left), and speedup for all
applications with 16 threads (right), normalized to CPU-only.

very high off-chip traffic for important data-intensive appli
cations. LazyPIM avoids this by avoiding coherence lookups
during PIM kernel execution. Compressed coherence signatures
are used to batch the lookups and verify correctness after the
kernel completes. LazyPIM improves average performance by
49.1% (coming within 5.5% of an ideal PIM mechanism), and
reduces off-chip traffic by 58.8%, over the best prior approach to
PIM coherence while retaining the same programming model.

REFERENCES
[1] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel

Graph Processing,” in ISCA, 2015.
[2] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-

Aware Processing-in-Memory Architecture,” in ISCA, 2015.
[3] A. Basu et al., “Efficient Virtual Memory for Big Memory Servers,” in

ISCA, 2013.
[4] N. Binkert et al., “The gem5 Simulator,” Comp. Arch. News, 2011.
[5] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable

Errors,” Commun. ACM, 1970.
[6] L. Ceze et al., “BulkSC: Bulk Enforcement of Sequential Consistency,”

in ISCA, 2007.
[7] J. Devietti et al., “DMP: Deterministic Shared Memory Multiprocess-

ing,” in ASPLOS, 2009.
[8] DRAMSim2, http://www.eng.umd.edu/ blj/dramsim/.
[9] A. Farmahini-Farahani et al., “NDA: Near-DRAM Acceleration Archi-

tecture Leveraging Commodity DRAM Devices and Standard Memory
Modules,” in HPCA, 2015.

[10] M. Gao et al., “Practical Near-Data Processing for In-Memory Analytics
Frameworks,” in PACT, 2015.

[11] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and
System Design,” in WoNDP, 2014.

[12] L. Hammond et al., “Transactional Memory Coherence and Consis-
tency,” in ISCA, 2004.

[13] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU Systems,” in
ISCA, 2016.

[14] Hybrid Memory Cube Specification 2.0, 2014.
[15] JEDEC, “JESD235: High Bandwidth Memory (HBM) DRAM,” 2013.
[16] O. Kocberber et al., “Meet the Walkers: Accelerating Index Traversals

for In-Memory Databases,” in MICRO, 2013.
[17] P. M. Kogge, “EXECUBE: A New Architecture for Scaleable MPPs,” in

ICPP, 1994.
[18] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked

Memory Bandwidth at Low Cost,” ACM TACO, 2016.
[19] G. H. Loh, “3D-Stacked Memory Architectures for Multi-Core Proces-

sors,” in ISCA, 2008.
[20] MemSQL, Inc., “MemSQL,” http://www.memsql.com/.
[21] N. Mirzadeh et al., “Sort vs. Hash Join Revisited for Near-Memory

Execution,” in ASBD, 2007.
[22] OProfile, http://oprofile.sourceforge.net/.
[23] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.
[24] SAP SE, “SAP HANA,” http://www.hana.sap.com/.
[25] V. Seshadri et al., “The Dirty-Block Index,” in ISCA, 2014.
[26] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL,

2015.
[27] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk

Data Copy and Initialization,” in MICRO, 2013.
[28] D. E. Shaw et al., “The NON-VON Database Machine: A Brief

Overview,” IEEE Database Eng. Bull., 1981.
[29] J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph Processing

Framework for Shared Memory,” in PPoPP, 2013.
[30] Stanford Network Analysis Project, http://snap.stanford.edu/.
[31] H. S. Stone, “A Logic-in-Memory Computer,” IEEE Trans. Comput., 1970.
[32] M. Stonebraker and A. Weisberg, “The VoltDB Main Memory DBMS.”

IEEE Data Eng. Bull., 2013.
[33] S. L. Xi et al., “Beyond the Wall: Near-Data Processing for Databases,”

in DaMoN, 2015.
[34] J. Xue et al., “Seraph: An Efficient, Low-Cost System for Concurrent

Graph Processing,” in HPDC, 2014.
[35] D. P. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable

Processing in Memory,” in HPDC, 2014.


