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Abstract

This thesis explores the effect of a delay constraint on optimum transmission strategies
in a fading communication channel. Here, the delay constraint is expressed in terms
of the fading rate of the channel process rather than in terms of the symbol rate. A
block fading channel model is considered, and a delay constraint is imposed on data
transmission. Thus, processing of data is assumed to occur in (a small number of)
K blocks, each block itself being of (large) length 7;. The idea is to capture the
non-ergodicity of the fading process for the duration of the data processing, due to
the small K, while at the same time allow limiting arguments to be used to calculate
‘capacity’, facilitated by the large Tj. A general cost function p(z) is considered in
solving the delay constrained transmission problem. Two kinds of power constraints
are considered, the short term and the long term power constraints. The solution
to the long term power constraint is better (results in a higher maximum) because
it is a more relaxed constraint. Since the power adaptation that maximizes the cost
function has to be causal, hence dynamic programs are found to give the optimum

power control solution.

The general cost function is then specialized to the case of expected capacity,
by choosing u(z) = z. Expected capacity is the maximum ensemble-average data

rate that can be obtained by optimizing the transmission power. It is observed that



optimizing the transmitted power does not give much benefit at high SN Rs, but
provides a substantial gain at lower SN Rs. At low SN Rs, it is proved that the factor
increase in capacity, due to power adaptation, is approximately logTK if the channel
fades according to the x2,, statistics.

The case of outage capacity is considered next. Outage capacity is defined as the
maximum error-free data rate that can be supported at a given outage probability.
Here, outage is the event that a given target rate Ry cannot be supported by a fading
channel over a given time period. It is shown that the optimum power adaptation
solution to the long term constraint problem gives a substantial SNR gain at both
low and high SNRs. The solution to the short term constraint problem however
does not provide any SN R gain at high SN Rs. It is shown that whereas the outage
probability is inversely related (with a power of m) to the SNR in the short term

case, it is related at least exponentially in the long term case. Random coding bounds

are derived for the outage capacity case.

A stationary version of the outage probability problem is also considered. The
formulation uses an exponential window which weighs the past data rates to approxi-
mate a K block window. Stationarity is introduced in the formulation by considering
a time-averaged optimization. The solution involves linear programming. An SNR
gain is observed when the optimal power control is used rather than a constant power

scheme.

Space-time codes are considered as an example of the use of outage probability.
In particular, the case of an outdoor wireless multi-antenna transmission system is
considered. It is shown that maximum diversity and SN R gain could be obtained by

simply combining space-time codes with an appropriate ‘beamformer’.

Finally, the problem of blind symbol synchronization in OFDM is considered.

vi



It is shown that the ranks of certain autocorrelation matrices contain information
that can be used to blindly synchronize the received signal, even in the presence of
multipath. As opposed to previously existing blind synchronization methods, the new

algorithm is shown to guarantee correct synchronization asymptotically.

vii
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Chapter 1

Introduction

Wireless communications has been ubiquitous ever since radio waves were first used
a century back by Guglielmo Marconi to communicate across the Alantic. It has
evolved from being a point to point telegraphic system, to being widely used for radio
broadcasting, and then finding new life in cellular, mobile telephony. Over the course
of evolution of wireless communications, its technology and understanding has evolved
hand in hand. Increasing sophistication in radio circuits have been complemented
with exponentially rising digital computing power, to such an extent that ‘software
radios’ which are more computing machines than radio circuits, may soon become a
reality. This has been made possible by the availability of the digital signal processor

(DSP), and the theory of signal and information processing.

Ever since its inception half a century back, information theory has been pri-
marily applied to the field of communications. In fact, wireless communication me-
dia (channels) have been studied even in the early decades of information theory.
However, the complexity and variety of these channels is such that though our un-

derstanding of the subject is considerable, there are several areas where ideas are
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only partially understood, and some areas where we’ve barely scratched the surface.

Wireless channels suffer from limitations arising from

e Channel dispersion, which causes a transmitted signal to spread out in time.

The theory of equalization and detection deals with this issue.

e Broadcast nature, because the wireless medium is shared by all users, unlike
wireline telephony. The problem of interchannel interference is complex, because

optimal solutions are usually exponentially complex in the number of users.

e Channel fading, which causes fluctuations in the received signal power. Infor-

mation theory and coding provide the tools to analyze and solve this problem.

Each of these issues is an area of study in its own right. This thesis will focus on
problems involving channel fading. Consider the outdoor wireless communication
system in Figure 1.1. The signal received at the mobile receiver is the result of a
superposition of several signals. This causes a standing wave pattern in space, and so
when the mobile receiver passes through space, the power received by it fluctuates.

This fluctuation in power level is called ‘fading’.

1.1 Classical Notion - Ergodic Capacity

Information theoretic results on fading channels have been available long enough to
be considered classic [53]. However, the more recent past has yielded considerable
new insights into fading channels, driven to a large extent by the immediate needs to
solve practical ‘industrial’ problems. Current research on the issue focuses on solving
such problems for a variety of interesting practical scenarios. [4] provides an elegant

overview of such results, and also a comprehensive list of references.
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=g

local scatterers base J
station

Figure 1.1: A typical outdoor wireless system

The simplest formulation of the problem of communicating over a fading channel
is as follows. Let the X, Y and « be the input, output and state of the channel

respectively. Define the ergodic capacity of the channel as

Cory = max I(X;Y | ) (1.1)

_ / max [ A(Y|G = a) = h(Y|X,G = a) ]) fa(a) do

where the maximization is over the conditional input distribution! fx(z|a). I(-;-|c)
denotes the conditional mutual information, while h(-|«) denotes the conditional en-

tropy [12]. This definition of capacity is valid under the conditions that,

!Refer to the notations defined before Chapter 1.
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e The receiver knows the channel state perfectly. This is reflected in the con-
ditioning of the mutual information on «. This thesis will always make this
assumption. The effect of imperfect channel information on capacity is hard to
analyze, even in the simpler case of ergodic capacity. See [28] for an interesting
analysis that shows the extreme sensitivity of the well-known Gaussian cod-
ing scheme to channel state information. See also [35],[27] and the references

therein for a discussion on mismatched decoding.

e The transmitter knows the channel state information. This is reflected in the
fact the the input symbols are chosen from the conditional density fx(z|c).
If the maximization in (1.1) is over fx(z), then the assumption is that the
transmitter does not know the channel state information. However, in our case,

we will assume that the transmitter knows the channel state information.

e The codeword length is long enough (ideally, code length — 00), so that the
ergodic property of the channel state sequence (which is implicitly assumed)

kicks in.

It is because of the last requirement that this formula for capacity is called the ergodic
capacity. Conceptually, this is the most direct extension of the classical Shannon
capacity idea for a fixed channel, in which « is constant and known. Thus, if the data
rate R < C,g, then there exist a sequence of codes Cr of time length T such that the

decoding error rate P, — 0 as T'— oo. Also for any R > C.,,, any code will result

gy
in P, being bounded away from 0 (typically P, — 1 as T'— oo, a result that is
called the ‘Strong converse of channel capacity’).

Several interesting results exist on ergodic capacity. It can be computed analyt-

ically in a number of instances, such as for a Rayleigh fading channel. [20] showed



1.2. EXPECTED AND OUTAGE CAPACITIES 5

how this results in a time-waterfilling algorithm in a fading AWGN channel. For this
channel y = ax + n, n being additive white Gaussian noise with variance o2, and «
is the channel gain with probability density f,(«). The time-waterfilling algorithm

controls the power transmitted (variance of X) as

0.2

+
Pla) = [c - ﬁ] where ¢ is chosen so that (1.2)

E[P()] = B

c is a positive constant, while P, is the average power alloted to the transmitter?.
The codewords are chosen from a Gaussian codebook. [22] extends this result to
the multiuser case, where several users are assumed to share a common transmission
medium. It also considers delay-limited capacity [4], which does not require any
power adaptation over time (power adaptation over users, for the ‘worst-case’ channel
is required). See also [3], which considers a simple multiple access algorithm, which
includes delay considerations. Note the assumption that channel statistics f,(a) are
assumed to exist. In particular, this thesis does not consider the more general, but
practically limited case of an ‘arbitrarily varying channel’ [1],[14] in which no such

statistics are presumed to exist.

1.2 Delay Constrained Notions - Expected and Out-
age Capacities

The calculation of C,4 in Section 1.1 emphasizes the use of ergodicity. The expec-

tation over « in (1.1) will translate to a time average only when the codewords are

2Refer to the notations defined before Chapter 1.
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long enough to capture the ergodicity of the channel fading process. Otherwise the
‘capacity’ will be a random variable whose value depends on the particular instan-
tiation of the channel fading process over the duration of the codeword. In several
practical situations, the codes necessarily have to be short, depending on the latency
(delay) that the system can tolerate. A very direct example is voice transmission, in
which a high latency would result in unacceptable delays in speech. At the same time,
wireless systems require a guaranteed target performance. For example, voice traf-
fic or real-time video traffic require data transmission at a pre-specified target data
rate. Such systems require that the target data rate is met with a low probability of
outage [4]. However channel fading limits data rate. A deep fade, where the received
power is very low, may reduce the data rate that can be supported for the duration
of the fade. For systems that can tolerate a high latency, the code length can be
made large enough, so that the ergodic capacity of the channel is achieved, such as
in [20]. However, [20] does not deal with the case of finite delay constraint. In that
case, we would be interested in achieving the specified target criteria, assuming that
the codeword is restricted to a specified time span. This gives rise to the important
notions of expected and outage capacities. For the most part, this thesis will concen-
trate on defining and solving problems based on the notions of expected and outage
capacities. Therefore, a brief description of these notions follow. For more details,

the reader can refer to [4] and [12].

(1) and

Consider the (discrete time) transmission system with channel inputs
outputs ™). Let the channel state for the time period in question {1,2,...,T} be
parameterized by ¢(*). Recall that the notation g(*) denotes the set {g1, g, ..., 97}
Here, T is the delay constraint that is imposed by the application. Data processing

has to occur within these T symbols. Thus, time is divided into segments of length
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T. Within each such segment, the application demands a certain performance. Then,
a natural quantity to look at from an information theoretic perspective is the aver-
age mutual information £I(X™); V) | g™ ) In the case of ergodic capacity, this
quantity reduced to the deterministic quantity I(X;Y |G), because T — oo, and
the fading process was assumed to be ergodic. The capital G here denotes averaging
over the random variable G, i.e. I(X;Y |G) = IEg)[I(X; Y |g)]. In contrast note that
FI(X®D; Y@ | ¢ ) is the mutual information conditioned on a specific instantia-
tion of the fading process g{™). Therefore %I (XD, y™ | ¢ ) is a random variable
whose value depends on ¢(*). The notions of expected and outage capacities have

been developed as meaningful measures of this random variable.

Expected capacity : Expected capacity is defined as

1
_ = (T). y(T) (1)
Cezp = max g:!iT))[TI(X YE g )]

The maximization is over the input distribution fyr (z(") | ¢(™)) (assuming
that the transmitter knows the channel state information). This notion shows

how much rate can be transmitted in each segment of length 7', on the average.

Outage capacity : In voice transmission, an ‘outage’ is said to occur when a data
packet containing a voice signal is dropped due to errors. The notion of outage
capacity formalizes this idea. Suppose the application needs a constant data
rate of Ry bits/sec, such as in voice telephony. In a given segment of length
T, suppose the channel fade is such that the rate R, cannot be supported,
ie. LI(XM; Y™ | ¢ ) < Ry. In that case, an ‘outage’ is said to occur.

Clearly it is desirable to minimize the probability of an outage, by optimizing
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the transmission. Therefore, we need to compute the following,
1
Pow = min PZI(XD;v 0 1) < Ry

Then, the outage probability at the target rate Ry is P,,;. Another way to say
this is that the outage capacity at the outage probability P,,; is Ry. Clearly
then, outage capacity is a function of the allowed outage probability P,,;. Thus,
outage capacity can be thought of as the cumulative distribution function of

capacity.

In this thesis, we will assume a block fading channel model [4]. This assumes that
the channel power gain g; for block 7 is a scalar constant over that block consisting
of a large number (7j) of symbols (slow fading). This makes it possible to apply
limiting (large Tp) arguments to £1(X™; Y™ | g™ ) so that it represents a bound
on the largest decoding-error-free data rate that can be transmitted. If the delay
constraint 7" is divided into blocks of length Tj, then it covers K = [T/T] blocks,
labelled {i = 1,2,..., K}. Figure 1.2 shows a delay constrained block fading channel.
The dotted line represents the (fading) channel gain ¢(t) as a function of time t.
Each shaded bar represents one block of data. For a block fading channel, in the
limiting case of large Ty, +I(XT; YD) | ¢(T) ) converges to =I(XK); Y ) | glF) ),

where (with a slight abuse of notation) g(X)

now denotes the channel gains of the K
blocks. The thesis will look at this form of the average mutual information, because
of the block fading assumption. As stated earlier, the core focus of the thesis is on

delay constrained channels, and in particular, on the expected and outage capacity

formulations of transmission optimization on such channels.



1.3. TIME DIVERSITY

A block consists of several
-~ . symbols / \

a(t)

//
7/

block 1 block 2 block n time t

Delay constraint of K = 2 blocks

Figure 1.2: Delay constrained block fading channel model

1.3 Time Diversity

Diversity plays a very useful role in fading channels. This is true even in the case
of ergodic capacity. The time-waterfilling scheme in [20] exploits time diversity. It
may be that this capacity exceeds the capacity of the corresponding AWGN channel
having the same average channel gain. Even if the AWGN capacity is not surpassed,
knowledge of the channel state information at transmitter may significantly increase
the channel capacity over the case where the transmitter does not know the channel
state information. The capacity of a fading AWGN channel is always less than or
equal to the capacity of a fixed AWGN channel with the same average gain (unless the
transmitter exercises power control as mentioned above). However, diversity, which

implies several independent channels carrying the same information, can close this
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capacity gap, as in [20]. In addition to the time diversity scheme of time-waterfilling,
diversity can also be exploited in other forms - space, frequency [49], user [25], mod-
ulation [5]. For signal processing or coding approaches to diversity, see [62],[56],[38],
[15]. An information theoretic treatment of the case where multiple antennas are
used in a Rayleigh fading channel, but neither the transmitter not receiver knows the

channel state information appears in [33].

However, exploiting time diversity is harder than frequency, space, etc., because
of the causal nature of the channel state information. It is not possible to know the
future channel gains, unlike frequency, space, etc. where all the gains can be estimated
simultaneously. This is not a problem when ergodic capacity is considered, because
the optimal scheme (time-waterfilling) is memoryless. But, when delay constraints
are introduced in the problem, the optimal scheme is not necessarily memoryless.
[46] discusses the capacity versus outage probability obtained when the transmitter
does not have the channel state information. In [6],[7] the K block delay constrained
minimum outage problem is solved for the case where the K channel gains are known
simultaneously (e.g. Orthogonal Frequency Division Multiplexing). The solution
there is an intelligent variation of water-filling. In our case however, the optimal
transmission scheme for exploiting time diversity needs to be an ‘online’ scheme,
which makes decisions based solely on past and current channel state information.
The delay limited nature of the transmission (K blocks) means that it may not be
possible to see all possible channel fades, unlike [20]. This thesis explores the optimum
strategies to exploit time diversity in a slow flat fading situation with a K-block delay

constraint.

Other authors have dealt with the issue of delay-constrained capacity, but in

limited or different contexts. [30], [31] impose a strict delay constraint of K =1, and



1.3. TIME DIVERSITY 11

solve the problem of minimizing the outage probability. In addition, they demonstrate
the effect of peak power constraints. [10] takes a different approach in considering an
average delay constraint with a peak power constraint. In their case, the transmitter
attempts to clear a queue of data, and thus very directly relates to queueing theory
ideas. However, the results have been obtained for the special case of the Gilbert-Elliot
channel model [19]. This thesis discusses the delay constrained problem for a general
constraint of K blocks (unlike [30], [31]). In particular, it focuses on the expected
and outage capacity formulations. We seek to optimize transmission; specifically to
maximize either the expected or the outage capacity. The optimization reduces to
adapting the transmitted power as a function of the observed channel gain. Since the
adaptation has to be a causal function of the channel gains (unlike [6],[7]) , hence

dynamic programs are required because they ‘provide an estimate of the future’.

The thesis is organized as follows. Chapter 2 defines the problem of delay con-
strained transmission, and solves it for a general cost function. The solution to the
problem involves dynamic programming. Chapter 3 specializes the results to the ex-
pected capacity case. Expected capacity [11] considers as cost function the ensemble
average of data rates for a fading channel. Analytic results are derived in the chapter,
for the case of low signalling power. Chapter 4 solves the minimum outage probability
problem. Outage probability is a capacity notion which is commonly used for fading
channels. It is equivalent to considering the cumulative distribution function of the
capacity random variable. In the area of coding for fading channels [56],[15],[5],[58],
codes are designed with the implicit cost function of outage probability. In this chap-
ter, the optimal transmission strategy is presented, and random coding bounds are
derived for the strategy. Sections 4.2 and 4.3 in this chapter are joint work with Moses

Charikar. Chapter 5 describes the related problem of finding ‘stationary’ policies for
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the delay constraint problem. Transmission strategies are obtained that are time-
invariant in their specification. Chapter 6 describes an example of the use of outage
probability. The problem of optimum transmission in an outdoor mobile channel is
considered. The work in this chapter is joint work with Ardavan Maleki. Finally,
in Chapter 7, we switch gears and describe the problem of symbol synchronization
in Orthogonal Frequency Division Multiplexed (OFDM) transmission. OFDM is a
transmission scheme that allows optimization of the transmitted frequency spectrum.
Whereas most of the previous chapters consider a flat fading channel (i.e. no inter-
symbol interference), this chapter illustrates some of the complications that arise due
to dispersive channels. In particular, channel dispersion makes recovery of the OFDM
symbol (frame) clock tricky. We present an algorithm that asymptotically guarantees
correct recovery of the clock. The main conclusions of the thesis are summarized in

Chapter 8.



Chapter 2

Dynamic Programming for Delay

Constrained Channels

2.1 Introduction

Ergodic capacity is a single deterministic scalar that is the upper bound on the max-
imum error-free data rate that can be transmitted over a fading channel. The as-
sumptions required are that the channel fading process is ergodic, and the codeword
is long enough to capture the ergodicity of the fading process. However, when delay
constraint is introduced, the maximum error-free data rate that can be supported
becomes a random variable, that depends on the sequence of channel gains seen for
the duration of the codeword. Therefore, various measures of this random variable
have been proposed. In particular, ‘expected capacity’ and ‘outage capacity’ are often
considered by researchers, as being measures of interest. In this chapter, we propose
a general transmission problem, with an arbitrarily defined measure of capacity, that

captures the general ‘utility function’ that one expects for the end-user. This general

13
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measure can be specialized to yield the outage and expected capacity measures along
with other less common measures. We then solve the problem of optimum trans-
mission under the delay constraint, for fading channels, using this general measure.
Optimum transmission will refer to maximizing the chosen utility function of capac-
ity. The delay constraint will be a constraint on the length of the codewords, defined
in terms of the channel fading rate. Practically, such a constraint would arise due to
the requirements of the application, such as voice transmission.

Section 2.1.2 formulates the delay constrained optimization problem formally.
The formulation assumes that the channel gains are fed back to the transmitter
causally. In Section 2.2, we show that this optimization problem includes as its so-
lution the more general problem of output feedback. Section 2.3 then solves the
problem using a dynamic programming approach. Several good books exist on dy-
namic programming, and the reader is referred to any of those for an explanation
of the subject. See for example [23]. This thesis utilizes dynamic programming to
a large extent, and borrows the concept of ‘utility function’ from it. In Section 2.4,
we show that for a concave, non-decreasing utility function, if the transmitter is not
allowed to adapt the powers based on the channel gains, then the best strategy is to
simply transmit constant power. This result is useful to provide a comparison with
the optimal strategy derived in Section 2.3. The result however does not hold for a

general utility function.

2.1.1 Fading Channels with Delay Constraint

We assume a flat fading channel in AWGN. Further, it is assumed that the channel
is i.i.d. block-fading [4]. This implies that the channel power gain g; for block ¢ is

a scalar constant over that block consisting of a large number (1) of symbols (slow
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fading). Also, the gains g; are i.i.d. with distribution fg(g). This situation is valid
for example in the case of slow frequency-hopped TDMA. In general however, there
will be correlation between the blocks. If this correlation is known, the algorithms
derived in this chapter can be easily extended by using a state space model of the
fading process. However, this thesis will not cover the case of correlated blocks.
Without loss of generality, we can absorb the noise power NyB (which is constant)
into the channel gain g;. Thus, if the power transmitted is P, the received SN R over
that block is Pg,;. This situation covers the case of narrowband transmission (possibly
using antenna arrays), or even broadband transmission such as wideband CDMA or
multicarrier CDMA, where the RAKE structure and tone structure, respectively,
allows one to apply the theory developed for flat fading channels. For example, in the
case of wideband CDMA, the receiver processes the incoming signal using a RAKE.
The channel then looks like a flat (i.e. narrowband) fading channel as far as the
symbols are concerned, even though it is a multipath (i.e. wideband) channel at the

chip level.

The data transmission system is shown in Figure 2.1. It is assumed that the
average power per transmitted symbol is Py. Both the receiver and transmitter are
assumed to have perfect knowledge of the channel gain of the past and current blocks,
the latter by use of a feedback channel. However, they obviously do not have any
knowledge of future gains, due to the i.i.d. assumption. On this system, we impose
a ‘K-block’ delay constraint, i.e. we require that data transmission occur in groups
of K blocks. Within each group of K blocks, the transmitter is allowed to distribute
the total power K PyTj as it pleases. Note that on the one extreme, we could require
equal power transmission for every block (K = 1). On the other extreme, we could

have a scheme that adapts power over an infinite number blocks (K — 00), which



16 CHAPTER 2. DYNAMIC PROGRAMMING FOR DELAY

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | g, ' Receiver |

| _ o NG AWGN estimate |

‘ Transmitter o } of message'

| L # ¢ Decoder !
message Power X yil | il |
—-— Encoder |—® H—— \ |
| Control o | :

l L ! Pre]:rfecé l

| o chann g. }

: | ! Channel | estimator : |
noisdless feedback ofCSl |

Figure 2.1: Transmission system for flat block-fading channel

provides the maximum flexibility. The assumption throughout is that 7j is large,
whereas K is not. Thus limiting arguments (in 7j) can be used to obtain information
theoretic results. On the other hand, the small K means that ergodicity arguments
cannot be used for capacity.

We require that the system achieve an optimal performance, defined in terms of
a rate measure u(x) (see Section 7.2.4). The K block constraint is a practical trade-
off for systems that have to be better optimized, but cannot tolerate large latencies.
In particular, this chapter includes the expected capacity and the outage probability

formulations.

2.1.2 Problem Formulation

Given the channel model of Section 2.1.1, the most general question that could be
asked is to design a codebook (a set of messages) that maximizes a rate measure over
K blocks, under the total power constraint ! of K PyT, with decoding error probability

P, — 0. Clearly, the codeword transmitted will be a function of the channel gains

Lwithout loss of generality, we set T' = 1 in the total power constraint, with the understanding
that this gives the per-K-symbol power budget
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that are seen. However, for a given average power level in a block, the Gaussian
codebook achieves capacity in that block [12]. Therefore, the optimum codebook will
be a Gaussian codebook even though the future channel gains are unknown, with
the power of transmission varied optimally in the different blocks. Such a power
adaptation strategy is called an ‘online’ strategy because of the causal nature of
channel state information. The problem solved in Section 2.3 derives the best online

power adaptation, so as to maximize an appropriate rate measure.

Mathematically, given the sequence of K channel power gains {g;,i =1,..., K}

for the K blocks respectively, and power P, per transmission

K

maximize E[ u( Zlog(l + P(¢Mg) ) ] such that (2.1)
i=1

P(¢) > 0 Vi=1,...,K  and either (2.2)

K
Z P(¢") < KPR, ‘Short term power constraint’, or (2.3)

=1

K
E[Z P(¢] < KP, ‘Long term power constraint’ (2.4)

i=1
where the expectation? is over the channel gains {g;,;4 = 1,..., K}, and the maxi-
mization is over all online power adaptation strategies {P;(¢"),i =1,..., K}. Note

that transmitted power P; for the ith block is a function only of the causal channel

gains {g1,..., 9}

The function p(x) is chosen based on the practical requirement of the application.

In particular, we can choose p(z) to solve the delay-constrained expected capacity

2Refer to the notations defined before Chapter 1.
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problem [40], or the delay-constrained outage capacity problem [39] as follows:

ulz) = z solves the expected capacity problem (2.5)

u(z) = 1p(zx > KRy) solves the outage capacity problem (2.6)

Expected and outage capacities have been defined in Chapter 1. With the expected
capacity formulation, one attempts to maximize the expected capacity for the K
blocks, while in the outage capacity formulation, one attempts to minimize the prob-
ability that the capacity for the K blocks does not meet the target rate of KRj.

Figure 2.2 shows some of the possible p(z) functions. For example, an application
that requires a specific data rate ‘approximately’ may be satisfied with the function
us(z). pa(z) = /7 is often used as a utility function in economic planning.

The short term constraint imposes a stricter power constraint than the long term
constraint. In the short term constraint, one is allowed to distribute the total power
K P, among the K blocks optimally. Each sequence of K blocks is allotted exactly
power K P,. However, in the long term constraint, the power allotted to a sequence
of K blocks is K P, only on the average. Sequences may be allotted higher or lower
power than that, as long as the average power constraint is met. Thus, the short term
constraint implicitly includes a peak power constraint of K FP. The choice of which

constraint to use depends on the design of the transmitter.

2.2 Capacity of feedback channels

The most general case of feedback would be feedback of the channel gains {g(%)}
and the channel output {y;,¢t = 1,2,... KTy}. One could ask how the solution to

the problem posed in Section 2.1.2 differs from the solution to the above feedback
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Figure 2.2: Various possible utility function p(z)s. u1(x) results in expected capacity,
while po(z) results in outage capacity

case. In this section we show that channel capacity is not increased by this general
feedback over the case in Section 2.1.2 where only the channel gains {g(8)} are fed
back. This is not surprising because for a fixed channel, it has been shown [12] that

feedback does not increase capacity. The proof basically uses Fano’s inequality [12].

Consider the transmission system that encodes message W into K7, symbols
&) which are sent over the fading channel that produces the output symbols

KTo) - The receiver is assumed to feedback y; without delay, and so the symbols

y(
z; are the causal functions z; = x,(W,y* V). The receiver buffers all KTj symbols
yET0) and decodes them to estimate the message W = W (yX7), ¢(X)). The mutual

information between W and y570) is I(W; Y(¥70)|G(K)) where the conditioning on

G®) denotes that the receiver has complete knowledge of all the channel gains prior
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to decoding the message. Now we bound the achievable rate R as below,

KTyR < H(W|g™)
= HW[YER) gy 4 [(w; YK Gy

< 14 KTyRP,,, + I(W; Y E)|G(K)) (2.7)

where (2.7) arises due to Fano’s inequality. P, is the decoding error probability.

Now we can bound the mutual information as,

I(W; y(KTo)‘G(K)) - h(y(KTo)|G(K)) _ h(y(KTo)‘W, G(K))
KTy
= p(YET)|GH)) - Z h(Y,|W, Gy (t=1)

t=1

KTy
= AYUM|GU0) =3 h(Yi|X, GU) (2.8)
t=1
KT(] KTO
< ) RWIGT)) = T h(Yi X, GX)
t=1 t=1

KTy

= Z I(Xt; Yt‘G(K))

t=1

(2.8) arises because X; is a causal function z; = z,(y* ", W). Therefore the data

rate is bounded as,

KTy

1 1
< o RPa + o Y I(X VG
R < TO+R + T 2 (X Y3 GY™)

K

1 1

= —— 4+ RPy +— Y I(X; V|G 2.
KT0+R err+Ki:1 ( (2] 1‘G ) ( 9)
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(2.9) arises because of the block fading assumption. Now for any code that has

decoding error probability P, — 0 as Ty — 0o, we have the bound,

K
Z (X ;|9

But R.H.S. in (2.10) can be achieved by codes designed to achieve capacity in a
channel with only feedback of channel gains G) (and not necessarily feedback of

channel outputs (Y (570)). In a random coding argument, this would require X (K70) ¢

0
be chosen with the conditionally independent distribution fx (z(870)|GU) y(KT0)) =
[T fx (2] g /7o), Thus, it is sufficient to feedback only the channel gains, and
not the channel outputs. We emphasize again that R is the bound on data rate, and

not a fixed target data rate, and P,,, is the decoding error probability, and not the

probability of outage.

2.3 Power Adaptation for Delay-Constrained Chan-
nels

The problem posed in Section 2.1.2 is certainly not trivial, because of its ‘online’
nature. Roughly speaking, on observing the channel gain of the current block, the
transmitter must decide whether the gain is ‘large enough’ for it to be worth trans-
mitting a large power, or whether it is better to conserve power and wait for some
future block that may have a larger gain. Fortunately, if the statistics of the fades

fc(g) is known, then optimum strategies can be designed.

Theorem 1 The solution to the mazimization problem (2.1) is the power adaptation

functions {P;(¢®"), Q*(g;, R, P)),i = 1,..., K}, which are calculated using algorithm
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Figure 2.3: Dynamic program used to compute optimal power scheme

Power_adapt(K, Py, Ry). The mazimum value of the reward function in (2.1) is

(0, KPy).

Algorithm Power_adapt(K, Py, Ry) : Forn=K, K —1,...,1

At time n, choose

P:(gm R, P) = argmax "pn-i-l(R + lOg(l + Pngn)a P — Pn) and
0<P, <P

0pi1(gn, R, P) = tpy1(R+1og(l+ Prg,), P — P}) , compute

UYp(R,P) = E[6,41(gn, R, P) ] for short-term constraint , or
9n
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Yn(R,P) = maz E[6,41(gn, R, P(g,))] for long-term constraint (2.10)
9n

Y (R, P) = p(R) initialization

where the maximization in (2.10) is over all functions P(g,) > 0 such that E[P(g,)] =
P. Call the maximizing function P(g,) for each (R, P) pair as Q7 (gn, R, P). This
function is identically equal to P in case of the short term constraint algorithm.

In this manner, compute the functions {¢,(R,P),R > 0,P > 0} by a backward
recursion (i.e. proceeding n = K, K —1,...,1). In the process, we also obtain the
three-dimensional function pairs { P} (gn, R, P), Q(9n, R, P)), R > 0,P > 0}. These

functions are pre-computed and stored in the system.

Now, when the system is used, then the optimal online power adaptation strategy
chooses

Forn=1,..., K

Qn(¢™) = Q(gn, R™, PM) total power allotted to blocks n to K(2.11)

Py(¢™) = P*(gn, R™,Qn(¢™)) where the ‘left-over’ power (2.12)

P = Q. (g™ V) =P, (g™ V) and the achieved rate (2.13)

n—1
R™ =7 Tlog(1+ Pi(g”)a) (2.14)
i=1

depend on the fades seen by the earlier blocks. Here, we define P() = K P, and
RM = 0.
Proof: The algorithm is the optimal dynamic program solution [23] to the optimiza-

tion problem. O
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Figure 2.4: Optimal power functions P(g, R, P), Q5 (g, R, P) used when the system
is in operation

In the above algorithm, one pre-computes offline and stores the functions
{P(gn, R, P), Q}(gn, R, P)), R>0,P > 0}. When the system is online, depending
on the sequence of channel gains seen, one allots power Pn(g(”)) to block n.

A key point to note is that whereas power selected for block 7 should depend on
the past and present 7 gains ¢, it is sufficient to consider the state variables R, P, g
for the dynamic program, to obtain the optimal solution. Thus, the complexity of
the algorithm increases only linearly with number of blocks K, as opposed to expo-
nentially, if all the past gains were to be explicitly used. Figure 2.3 shows a visual
depiction of the dynamic program. It is initialized on the right side of the figure,
and calculations progress from right to left (backwards). In the course of the cal-

culations, we obtain the power functions P(g, R, P), Q% (g, R, P) (three-dimensional
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functions), and the value functions ¢, (R, P) (two-dimensional functions). These func-
tions are computed and stored in the transmission system. When the system is in
operation, the power and rate for each block are computed using the power functions
P*(g, R, P),Q:(g, R, P) stored in the system, as shown in Figure 2.4. For example,
the nth power P, is selected from PZ(g, R, P) by setting g = g,, P = ‘Remaining

allowed power’ and R = ‘Achieved rate’ coming into block n.

This algorithm can be specialized to the case of expected and outage capacities
(among other measures) by choosing u(z) appropriately. The next chapters will
discuss this issue in detail, and also present simulation results to show the performance

of the algorithm for the case of expected and outage capacities.

2.4 Equal power strategy

We would like to compare the solution in Section 2.3 to the best strategy that does
not optimize transmission based on the channel gains. To this end, we look at the
solution to the optimization problem; given the sequence of K channel power gains

{gi,i=1,..., K} for the K blocks respectively,

K
maximize E [ u( Zlog(l + Pi(w)gi) ) ] such that  (2.15)
i=1

9w

Bi(w)

Vv

0, Vi=1,... K

K
Z P(w) < KPR ‘Short term power constraint’, or (2.16)
i=1

K
IE)[Z P(w)] £ KP ‘Long term power constraint’ (2.17)
i=1
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where the random variable w is independent of {g(®)}. This means that the power
control does not make use of the channel gains. We assume that the function p(z) is
concave and non-decreasing in x, which belongs to an important set of utility func-
tions. We will show that the optimum strategy with the long term power constraint
is to transmit equal power. i.e. P;(w) = P,. Since this strategy also satisfies the
short term constraint, this is also the optimum strategy for the short term constraint

problem.

The proof basically uses Jensen’s inequality. We first show that the function

C(PY) = (D log(l + Pigy))

=1

is concave in {P5)}. Look at the Hessian matrix V2C(P®)) = [(V2C(P5)))],

where
0*C(PX))
2o(pE)yy,, = U0
(V2C(P1)),, 3P.0P,
= u’(iIOg(lJer-gi)) —9i8i04s +
(1+ Pig) (1 + Prg;)
Zlog + Pigi)) 9:8i

(14 Pigi)(1 + P;g )

Thus, we can write the Hessian as

2

K 2
V2O(PE) = —i/(S log(1+ Pg)) - dia (9719—1‘) +
(P u(izz1 g(1+ Pg;)) e\ G5 P (5 Prgn)?

K 2 ) T
S log(1 + P, (979_K) .
(Z 8l 9:) (14 Pig1)? (14 Pkgk)?

i=1
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( 9 gk )
(I+Pig1)?" " (14 Pkyk)?

IA
o

since both matrices are semi-negative for concave, non-decreasing j(x). Thus, C(P¥))

is concave in {PK)},

Now, suppose the optimum solution to the above optimization problem is P, =
P’ (w). Define P* = { Py, ..., P;}. The elements of P* can be permuted using a per-
mutation operator H to produce a new strategy HP*. There are n! such permutation

operators, which form the set Sy = {#}. Due to symmetry, we can assert that

g(K) Zlog I+ F(w)g) )] = E[u > log(1+ (HP")igi) ) | V¥ HeSy, w

g i=1

Therefore,

E [( Y log(1+ (HP*»g@-))]]

9w

B LD tog1+ P wla))] = o S

< (I];)][/L(Zlog<1+—Z[HP* ))] (2.18)

< g)[u(zlog (1+E[ o e, m) ) \(219)
= Blu D> _log(1+ Pogs) ) | (2.20)

(2.18),(2.19) use the concavity of C'(+), (2.20) uses symmetry and the long term power
constraint. Thus, the optimal solution to the problem (2.15) is bounded above by

the equal power strategy. Therefore, we conclude that the equal power strategy
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P;(w) = P, is indeed an optimum strategy for (2.15), in case of both the short term
and the long term constraints. Again, we emphasize that this result has been proved
only for the (useful) case of concave, non-decreasing pu(x).

Numerical results will be presented in the next two chapters to compare the per-
formance of the optimum power adaptation algorithm of Section 2.3 and the constant

power scheme.



Chapter 3

Expected Capacity

3.1 Introduction

The concept of expected capacity is the most direct extension of the standard ergodic
capacity concept to fading channels. In the light of the general problem posed in
Section 2.1.2, it can also be seen as a ‘risk-neutral’ optimization approach, since p(z)
is linear. Again, the problem for maximizing expected capacity is; given the sequence

of K channel power gains {g;,i = 1,..., K} for the K blocks respectively,
K
maximize E[Z]og(l + Pi(9)g:)] such that (3.1)
i=1

ZPi(g(i)) < KPR, (Short term power constraint), and (3.2)

Pi(gD) > o, Vi=1,...,.K

where the expectation is over the channel gains {g;,i = 1,..., K}, and the maximiza-

tion is over all online power adaptation strategies {P;(¢)),i = 1,..., K}, which are

29
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functions only of the causal channel gains. Only the short term constraint problem
will be considered. Section 3.5 shows that the solution to the long term constraint

problem is trivial.

Section 3.2 shows that the optimum power adaptation is specified by a two
dimensional function P,(g, P). The case of low SNR (low values of P) is treated
separately in Section 3.2.3 because it is interesting in its own right, and is also easier
to analyze. Section 3.3 shows some simulation results for the algorithms. Section 3.4
derives some bounds for the performance of the optimum algorithms in the low SNR
case. In Section 3.5, we show that the solution to the long term constraint problem

in the expected capacity case is simply time waterfill.

3.2 Power Adaptation

3.2.1 Dynamic programming solution

Specializing the solution in Section 2.3, the optimum strategy is summarized by the

following lemma.

Lemma 1 The mazimum expected capacity (for any SNR) for Gaussian codes over
the K-block fading channel is achieved by the power adaptation functions {P;(¢g®¥),i =
K,K-1,...,1}, which are calculated using algorithm Expected_adapt(K, Py). Fur-

thermore, the (mazimized) expected capacity is S1(KPy)/K per transmission.
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Algorithm Expected adapt(K,P,): Forn=K K—-1,...,1

At time n, choose

P (g, P) = argmaz  [log(1 + P,(gn, P)gn)
OSPn(gnaP)SP
+S541(P — Py(gn, P))] and (3.3)
Sp(P) = , E[log(1+ P (gn, P)gn)

+Sn11(P = P} (gn, P))] with initialization (3.4)

end
In this manner, compute the functions {S,(P),0 < P < KP;} by a backward re-
cursion (i.e. proceeding n = K, K — 1,...,1). In the process, we also obtain the

two-dimensional functions {P}(g,, P),0 < P < KP,}.
Now, the optimal online power adaptation strategy chooses
Forn=1,..., K

P,(¢"™) = P'(gn, P™) where (3.5)

n—1
P = Kp,— Z Pi(g™) (‘left-over’ power)
i=1

depends on the fades seen by the earlier blocks. Here, we define P = K P,

end

This is the online version of waterfilling in time.
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3.2.2 Comments

Note that the linearity of u(x) makes the state variable R in the dynamic program
described in Theorem 1 superfluous. Thus, the optimum power functions P reduce
by one dimension. As K — oo, the online algorithm should converge to the ‘time-
waterfilling’ algorithm described in [20].

The algorithm described in Section 3.2.1 is complicated because of the need
to store K two-dimensional power adaptation functions { P} (g, P),0 < P < KPy}.
Therefore, it is interesting to look at an online algorithm that transmits all the power
K P, in one block, just like the optimum low SN R algorithm described in Section
3.2.3. Section 3.3 will compare the performance of such an algorithm against the

optimum.

3.2.3 Channels with low SNR

A special case of interest is the low SNR case. i.e. SNR = KPE[g] < 1. For
one, the optimum strategy is simpler for this case, and for another, the optimum
strategy translates directly to the multiple access scenario when all users have low
SNRs. Since the assumption log(1 + SNR; + SNRy+---)~ SNR; + SNRy + - - -
can be made in the low SNR case, hence the capacity maximization will hold due to
linearity, even in the multiple access scenario.

For the low SNR case, Lemma 1 reduces to the following.

Lemma 2 For low values of SNR, the mazimum expected capacity for Gaussian
codes over the K-block fading channel is achieved by the choosing the power adapta-
tion functions {P;(¢®),i = K,K — 1,...,1}, which are calculated using algorithm

Expected _low(K, Py). Furthermore, the (mazximized) expected capacity is S1/K per
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transmaission.

Algorithm Expected low(K,F): Forn=K,K—-1,...,1

At time n, choose

KP, if KPyg, > Shi1
Pa(g™) = (3:6)
0 if KPOgn < Sn_|_1

If Pn(g(n)) = KPF,, set P,.1 =--- =0 and exit loop.
end

S, is defined by the backward recursion

S, — Sn+1 = P[KPogn > Sn+1] . (37)
(E[Kpogn | Kpogn > Sn—H] - Sn—|—1)

SK_|_1 =0 (38)

As an example, the performance of this strategy can be computed for the Rayleigh
fading channel. In this case fg(g9) = gioexp(—g/ 90), so that the online algorithm

results in the following recursion for S,
Sp—Sny1 = KPygo x exp(—Sn+1/KPyg0)

Approximate Sy for large K by approximating the recursion by the equation

0S(x)
ox
5(0)

= KPyg x exp(—=S(x)/KPygo)

0



34 CHAPTER 3. EXPECTED CAPACITY

which solves to S(z) = KPygolog(z + 1). In the approximation, x was the time
variable, and so the expected capacity is S1/K ~ S(K)/K = Pygolog(K +1). It is
clear that the online power adaptation increases the capacity by a factor of approx-
imately log(K + 1), over the unknown channel state information case. Though the
analysis was straight-forward in the Rayleigh fading case, it is seldom mathematically
tractable in general. In Section 3.4, we show approximate bounds of performance in

the important case of an x3,, (Nakagami) fading channel.

3.2.4 Comments

In the low SN R case, we see that the online power adaptation basically picks just one
block to transmit the entire power, similar to the waterfill algorithm [12], which picks
just one subchannel to transmit on when the SNR is low. Since S, > S,.1, V n,
hence the adaptation scheme keeps lowering the transmission thresholds for subse-
quent blocks. In practice, when K becomes large enough, the ‘low SN R’ assumption
will break down, since the transmission will occur with high probability in a block
with large gain.

It is interesting to compare the capacity gain obtained here to the case where
the gains of all K blocks are available apriori. If selection diversity is used in those
cases (i.e. transmitting only on the largest gain channel), then for i.i.d. Rayleigh
fading on the channels, we see that the capacity gain over the equal-power case is
again a factor of approximately log(K). It is interesting to observe that in our online
algorithm, the causal nature of the channel state information at the transmitter does
not significantly hurt the expected capacity! Section 3.4 shows that this result also
holds for x3,, distributed gains [48], in general.

On the other hand, the capacity distribution in the case of the online algorithm
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is poor (high probability of taking low values) as compared to the apriori knowledge
case. Thus, this is not a good algorithm if one intends to guarantee a certain outage
probability. The results in [39] are relevant in that case, which will be described in

Chapter 4.

3.3 Performance of the Online Algorithms

We demonstrate the capacity improvement afforded by the online power adaptation
scheme over a constant power scheme (K = 1), by calculating the ratio of the re-
spective capacities for various cases. In Figure 3.1, we have the case of low SNR
(Section 3.2.3). The channels shown have g distributed as x? random variables with
degrees of freedom 2,4,8,16 (corresponding to Rayleigh fading, and Nakagami fading
of diversity of 2,4,8 respectively). We plot the capacity ratio against the delay re-
quirements (K). It is clear that for the Rayleigh fading channel, the capacity ratio is
roughly log(1 + K), as promised. For higher degrees of diversity, the capacity ratio

falls because the channel already has sufficient diversity.

Figure 3.2 shows the capacity ratio of the optimum algorithm of Section 3.2.1
over the constant power case against the delay requirements (K), for various values of
SNR. A Rayleigh fading channel is assumed in this case (though a similar calculation
could be made for any gain distribution). As the SNR increases, the capacity im-
provement decreases. This agrees with the results in [20] (K — oo). Figure 3.3 shows
the performance of a one-block transmission scheme, similar to the one in Section
3.2.3 but without using the log approximation, used for larger SNRs. A Rayleigh
fading channel is assumed. It is interesting to note that as K increases, the capacity

ratio begins to drop, even falling below one! This shows that a waterfill-like solution
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that assigns power to more than one block is essential in those cases. Finally, in
Figure 3.4, we compare the optimum power adaptation strategy of Section 3.2.1 to
the above one-block suboptimal strategy. In the range of SNRs and K where the

two strategies agree well, one would prefer to use the simpler suboptimal strategy.

For low SNR and channels of various diversity
5 T T T T T

—_— diversity m = 1 (Rayleigh fade)
45 1 —— - diversity m =2 .
+ diversity m =4
¢ diversity m =8
4 log(K+1) approximation ,

capacity ratio over constant power scheme

05 I I I I I
0 10 20 30 40 50 60 70 80 90 100

number of blocks K

Figure 3.1: Capacity improvement ratio for low SNRs and various channel gain
distributions

3.4 Low SNR bounds for expected capacity

The expected capacity case shows substantial gain in the low SNR regime. We
will derive bounds to quantify this gain in capacity in the case of x3, distributed

gains, which can represent a channel with diversity m, such as an m-multipath fading
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For Rayleigh fading channel and various SNRs
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T

0dB 1

capacity ratio over const. power
N
T

| | |
0 5 10 15 20 25 30 35 40 45 50
number of blocks K

o

_ 11
[}
2
[=}
o
2; 5dB
S 1.05| .
o
5] 10dB
>
o
2
g ar .
> 20 dB
S
[
Q.
]
© 0.95 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

number of blocks K

Figure 3.2: Capacity improvement ratio of optimum power adaptation in a Rayleigh
fading channel for various SN Rs

channel - this would arise for example, when using antenna arrays or in broadband

CDMA after RAKE-combining. This channel has density [48],

m—1
—mg (Mg)

o (3.9)

falg) = me
(mg)m—2 (mg)m—l
(m—=2)! " (m—1)!
Eg;[g] =1 (3.11)

Falg) = 1—e™ |1+ (mg)+---+

so that (3.10)

Without loss of generality, the average channel gain E[g] has been normalized to one.
g
We first derive a lower bound for the expected capacity, when the optimum power

control strategy for K blocks (3.6) is used. For convenience, we relabel the blocks
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Suboptimum scheme for Rayleigh fading channel and various SNRs
4 T T T T T T T

-40 dB

35F .
-30.dB

25F -20dB

capacity ratio over constant power scheme
N
T
|

1 -10dB 7

05k -5dB
0dB

| | |
0 5 10 15 20 25 30 35 40 45 50
number of blocks K

Figure 3.3: Capacity improvement ratio of suboptimum power adaptation in a
Rayleigh fading channel for various SN Rs

1,2,...,Kas K,K—1,...,1. Then the dynamic program to calculate capacity (3.8)

is,

So = 0 (3.12)

Spi1 — Sy = P[KPygns1 > Sa] - (3.13)
(E[KPogn+1 | KPygni1 > Sn] — Sn)

- / :KPO KPogfo(g)dg — S / :KPO folo)dg  (3.14)
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For Rayleigh fading channel and various SNRs
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Figure 3.4: Capacity ratio of optimum power adaptation to suboptimum power adap-
tation in a Rayleigh fading channel for various SN Rs

_ Ka/' (1 - Fa(g))dg (3.15)
Sn/KPy

= KPG S here (3.16)

B "™\ KPp, W :

G) = [0~ Folg)ag (3.17)

In particular, we look at x3,, distributed gains (3.9), for which we calculate

)m—2 )m—l

(my (my
(m—=2)! " (m-—1)!

Gly) = %e‘my [m+(m—1)(my)+---+2

v

e "™ V y>0

Spi1 — S, > KPye mSn/KP
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We compare this to the solution of the differential equation,

_ KPOeme(w)/KPO

P(0) = 0  which has the solution

KP
P(z) = molog(l-l—mx)

Since both S,, and P(z) are always positive, it is clear that P(n) < S,, ¥V n > 0.

Therefore, we get the lower bound,

Sk . P(K)

K K
P
= log(l+mK)
m

v

This shows that the capacity per transmission roughly increases at least as fast as

L Jog(K).

We now derive an upper bound on the optimum power control capacity, by
bounding the capacity per transmission when apriori knowledge of all the K gains
is available. Note again that in the low SNR case, if all the K gains were available
apriori (rather than in a causal fashion, as in the optimum power control), then the
optimum strategy chooses to transmit on the maximum gain only (selection diversity).
Selection diversity therefore upper bounds the optimum power control capacity in the
low SNR case. To bound the capacity obtained by selection diversity in a channel

with 2 = distributed gains, we proceed as below,

Ty = E [ K_Pomax[glag?a"':gf(] ]
g(K)

Vn+1 = max[gla g2, - -- 7gn+1]
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= max[gni1, Val
We first indicate how E[V,,] grows in comparison with S,,.

E[VTH—I] = E [gn—|—1 ; Gnt1 = Vn] + ‘]/E[Vn P[gn+1 < Vn|vn]]

gn+1;Vn

n

= E0A( - FolV)+ [ (1= Folg))dg] + EViFa(Vi)

E[V,11] —E[V,] = %[G(Vn)] where G(y) is as in (3.17)

It can be directly seen that G(y) is a non-increasing, convex function with G(0) =

Elg] = 1 and G(o0) = 0. Thus, by Jensen’s inequality,

E[V,] = 0

Compare this to (3.16),

Sn—|—1 _ Sn - G Sn
KP, KP, KP,
So
KPy 0

As n becomes large, we can expect the relation in (3.18) to be close to an equality.

Then, since Ifl’go < ‘]/E)[Vn] which implies that G(Ifl’_%,o) > G(‘]/E[Vn]), we can expect

Ig—}; to ‘catch-up’ with E[V;] as n increases. To make this statement more precise,
0 Va

we continue with the upper bound, assuming now that the channel gains are x3,,
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distributed.

w; = mg;
Yi = e(Vwi-1)?
2
w, = w(y) = (1+\/10gyz~) so that
m—1
—w; wi
fwlws) = e (m—1)!
Ely] = E[V7 )
o] m—1
_ / p(w—2vw+1) j—w w dw
B 2¢e (2m—1)!
- (m—1)!  22m

w(y;) is a concave function of y. Now, we bound

2
max|wy, W, . .., W] <

log(z vi)

\ 2
\

K
log(E[Zyi]) because w(y) is concave

1=1

Tk

(1 +

E[ max[wy, wo, ..., wk] ] < (1 +
P,
—OE[ max|wi, we, . .., Wk| |
m

K

< % (1 + \/log(K) + log ((m2_6 1)! (2”;2; 1)!>)

Since STK < %, hence we have the upper bound,

P,
Sk < EOE[maX[wl,wg,...,wK]] (3.18)

< % (1 + \/log(K) + log ((mQ_el)! (2722; 1)!>) (3.19)
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(3.18) and (3.19) together show that the expected capacity increases approximately

as = log(K). In fact, for a Rayleigh fading channel (m = 1), we can produce an even

tighter upper bound, because TYK can be evaluated exactly as

T
_K = PoE[ ma:X[gl;,927"'7gK] ]

K o0
_ B / (1 - FX(g))dg
_ po/oooeg(Fg1(g)+Fé§2(g)+---+1)dg
= P, /Ooo(Fg—l(g)+F§‘2(g)+---+1)ch(g)

1 1
= pP-(1+24+... =
0 (+2+ K)

Py-(1+logK)

IA

Thus, for a Rayleigh fading channel, we get the tight bounds,

S
Plog(l+K) < == < Pyl +logK)

(3.20)

(3.21)
(3.22)
(3.23)

(3.24)

(3.25)

This shows that for a Rayleigh fading channel, causality causes negligible loss with

respect to the optimum acausal strategy (selection diversity). For higher diversity

channels, the bounds are not as tight ((3.18), (3.19)), but they’re sufficiently close.

3.5 Long term constraint problem

We consider the solution to the optimization problem (2.1) with the long term power

constraint (2.4), in the expected capacity case. We will show that the optimum power

control strategy for this case reduces to choosing P; = P;(g;). i.e. power depends only

on current channel gain. In fact, the optimum solution is time waterfilling. To prove
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this, we upper bound the capacity for the case that all K channel gains are known
apriori (the ‘acausal capacity’). This capacity in turn upper bounds the capacity in
(3.1).

Therefore, we will upper bound the capacity,

K

imi (a BN g
maximize gg){)[ ; log(1+ Pi(g"")g:) | such that  (3.26)
P(g®)) > 0, Vi=1,...,K and
K
gg)[izzl P(¢")] < KP, Long term constraint (3.27)

(K)

Note the dependence of the power on all of the gains ¢g'*/. Let the optimum power

control strategy for this case be {P; = P#(g""))}. Define a new strategy,

Qlg) = B [P (3.28)

Then we bound the capacity as,

K K
i (oE)Y g, — *(aENg.
maximun - B[ 3 log(1+ P6g) | = B[ 3 logl1+ P16
K

= E[ E [log(l+ P/ (g")g)]]
= i {g9j,3#1}

K

log(1+ B [P(s"))a)]

Ui ng
]

- Z E“Og(l + Qi(9:)9:)] (3.29)
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Thus, it is clear that the optimum strategy is of the form P; = @;(g;). Continuing,

we can see that the optimum @;(g;) is obtained by time waterfilling,

+
Qilg:) = [Ki_i} such that (3.30)
E[Qf(gi)] = B (3.31)
K
Y B < KPR (3.32)
i=1

Here [xz]* = max[z,0], and 5; > 0,V ¢. All that remains is to find the best set of {3;}

to maximize the upper bound. This can be obtained by noting that that the function

U(B) = E[ log(1+Q(g)g) ] is concave in S.

g

Lemma 3 The function U(B) = ];3[ log(1+ Q(g)g) |, where Q(g) = [K — %]J’ such
that E][Q(g)] = 3, is concave in 5 > 0.

Proof: Let 0 < A <1, A=1— X\, 51,52 > 0. Then,

AU(BL) + AU (By) = AE[ log(1+Qu(g)9) ] + X]}[ log(1 + @2(g)9) |

g

< Bllog(1+ (AQ1(g) + Q2 (9))g)Jand (3.33)
E[AQ1(9)+XQ2(Q)] = A& +Xﬂ2 So,
AU(B) + AU (B2) < UG+ AB2) (3.34)

(3.34) holds because (3.33) is maximized when AQ;(g) + AQ2(g) is the waterfill solu-
tion. O

Thus, continuing from (3.29),

K K
maximum gg)[ ZZ:;log(l +P(g"g)] < Z U(Bi)
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1 K

= KE Z:ZI U(Bi)
1 K
< KU (E ; @) due to concavity of U(3)
< KU(P)  due to (3.32) (3.35)

The R.H.S. in (3.35) is achieved when P;(g®)) is chosen as the i.i.d. waterfill strategy,

P (g") = Pi(g:)

11+
= [K — —} such that

Gi
B[P ()] = P

But since this is a memoryless strategy, hence even the casual system (3.1) (with the
long term constraint) can achieve this bound. Therefore the optimum solution to

(3.1) with the long term constraint is the memoryless strategy (3.36).



Chapter 4

Outage Capacity

4.1 Introduction

The concept of outage capacity is useful for systems that require a guaranteed data
rate. For example, in voice communications, unless a raw data rate of 8 kilobits/sec is
communicated (perhaps a little lower with better source coding), it may be difficult to
understand the message. However, a delay of around 20 millisec is considered tolerable
in wireless voice transmission. If the 20 millisec long voice packet is corrupted, it has
to be dropped, a phenomenon called ‘outage’. Clearly, too many outages will result
in unintelligible speech. Hence, there is a need to minimize the probability of outage
at a target data rate of 8 kilobits/sec (in the case of voice). Suppose the minimum
probability of outage that can be achieved when transmitting at a rate of 8 kilobits/sec
is P,y (clearly, P,y will be an increasing function of transmission rate). We say then
that the outage capacity is 8 kilobits/sec, at the outage probability P,,;. Thus in
general, outage capacity is Ry at an error probability of P,,;. The function P, (Rp)

then represents the cumulative distribution function of the capacity random variable.

47
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Note that if a data rate of Ry is transmitted, then the decoding error probability is,

P.., = P[Decoding error, given I(X,Y|G) > Ry] - P[I(X,Y|G) > Ry| +

P[Decoding error, given I(X,Y|G) < Ry] - P[I(X,Y|G) < Ry]

If capacity achieving codes can be used, then P[Decoding error, given I(X,Y|G) > Ry
— 0, while P[Decoding error, given I(X,Y|G) < Ry] — 1. This shows that P, —

P, in the limit.

Mathematically, the outage capacity problem is; given the sequence of K channel
power gains {g;,i = 1,..., K} for the K blocks respectively, and given the target rate

Ry per transmission, and power P, per transmission

K
minimize P[Zlog(l + Pi(9")g;) < KRy)
i=1

P(g?P)y > 0 Vi=1,...,K  and either

K
ZPi(g(i)) < KP, ‘Short term’, or (4.1)
i=1
K

E[Y P(¢")] < KPR  ‘Long term’ (4.2)
i=1

where the expectation is over the channel gains {¢;,7 = 1,..., K}, and the mini-

mization is over all online power adaptation strategies {P;(¢®),i =1,..., K}. Note

that transmitted power P; for the ith block is a function only of the causal channel
gains {gi,...,9:}. The cost function P[(-)] is the probability of outage at the target

transmission rate of Ry (KR, for K blocks).

Section 4.2 describes the solution based on dynamic programming. The notation
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used is slightly different from that in Section 2.3, to make it more intuitive in the con-
text of outage capacity. Section 4.3 shows some simulation results for the algorithms.
Section 4.4 shows bounds that explain the difference between the performance of the
short term and long term power constraint solutions. Specifically, we show that the
short term constraint solution results in an outage probability that falls as an in-
verse power of the SN R, while the long term constraint solution results in an outage
probability that falls off at least exponentially with SNR. Often, error exponents
are used to show how quickly the error probability decays with code length. This
provides more detail on possible data rates than simply the capacity figure, because
the smaller the data rate transmitted as compared to the capacity, the faster the error
probability falls to 0. Outage capacity based systems potentially have a higher error
exponent because the codeword can span the entire K blocks. Section 4.5 presents
‘error exponents’ based on a random coding argument. The single quotes indicate
that the exponents are not true error exponents; these don’t exist in the delay con-
strained fading case because the error probability converges to P,,; and not to 0 as

code length — oc.

4.2 Power Adaptation for Minimum Outage Prob-

ability

4.2.1 Power adaptation with short term power constraint

Theorem 2 The probability of outage for rate Ry and the short term power constraint
(4.1) is minimized for Gaussian codes over the K-block fading channel by choosing

the power adaptation functions {P;(g"),i = 1,..., K}, which are calculated using
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algorithm Outage_short(K, Py, Ry). The minimum probability of outage for rate Ry
18 wl(KRO; KP())

Algorithm Outage _short(K, Py, Ry) : Forn=K K—-1,...,1

At time n, choose

P¥(gn,R,P) = argmin n11(R —log(l + Pog,), P — P,) and (4.3)

0<P,<P

Ya(R,P) = Bl (R —log(l+ Pi(gn, R, P)gn), P — Py (gn, R, P))] (4.4)

beamP) = 40T Y atiation (4.5)
0 if R<ZO
end
In this manner, compute the functions {¢,(R, P),0 < R < KRy,0 < P < KFy} by
a backward recursion (i.e. proceeding n = K, K —1,...,1). In the process, we also
obtain the three-dimensional functions { P} (g,, R, P), 0 < R < KR;,0 < P < KP,}.
Yn(R, P) is interpreted as the minimum outage probability if the power allotted is P
and the target rate is R.
Now, the optimal power adaptation strategy chooses

Forn=1,...,K

P,(¢™) = P*(gn, R™,P™) where power (4.6)
n—1

P™ = KP—) P(g"”)  andrate (4.7)
i=1
n—1

R™ = KRy— log(1+ Py(9")g;) (4.8)

=1

depend on the fades seen by the earlier blocks. Here, we define P(") = K P, and
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RW = KRy. P™ and R™ are the remaining power and required rate seen for the
nth block.

Note that in the algorithm above, ¢k (R, P) = Fg(5(e® — 1)), where Fg(g) is
the cumulative distribution function of the channel gain. In the algorithm, one pre-
computes offline and stores the functions {P!(g,, R,P), 0 < R < KRy,0 < P <
KPy}. When the system is online, depending on the sequence of channel gains seen,
one allots power P,(g™) to block n.

As a corollary, it is easy to show that the optimum strategy simplifies to the fol-
lowing strategy when SNR < 1. For such SNR, we can approximate log(1 + Pg) ~
Pg, and so (4.3) implies that given a target rate Ry and power P,, the transmitter
should not transmit until the channel gain in the current block supports that rate.
i.e. until KPyg, > KRy. Then, the minimum outage probability ¢ (K Ry, KPy) =
[F(Ry/P,)])¥. This is interesting because at low SNR, the optimum (waterfill) strat-
egy when all the K channel gains are known in advance is selection diversity (select
the maximum gain channel), which results in the same outage probability as that for

the online strategy!

4.2.2 Power adaptation with long term power constraint

Theorem 3 The probability of outage for rate Ry and the long term power constraint
(4.2) is minimized for Gaussian codes over the K -block fading channel by choosing the
power adaptation function pairs {(Pi(¢™), Qi(¢™)),i = 1,..., K}, which are calcu-
lated using algorithm Outage long(K, Py, Ry). The minimum probability of outage
for rate Ry is 1 (K Ry, KP,).

Algorithm  Outage long(K, Py, Ry) : Forn=K,K—-1,...,1
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At time n, choose Pf(gn, R, P) as in (4.3). Then choose,

0n—|—1(gna Ra P) = wn—}—l(R - log(l + P;:(gn, Ra P)gn)a
P — PY(gn, R, P)) , and compute (4.9)

Yn(R,P) = min gEn[enH(gn,R,P(gn))] (4.10)

Initialize g1 (R, P) as in (4.5). The minimization in (4.10) is over all non-negative
functions P(g,) > 0 such that E[P(g,)] = P. To compute this minimum, one can use
the calculus of variations. Alternately, we can use another dynamic program, which
runs over the index of channel gains. Call the minimizing function P(g,) for each

(R, P) pair as @ (gn, R, P).

In this manner, compute the functions {1,(R,P),0 < R < KRy, P > 0} by a
backward recursion (i.e. proceeding n = K,K — 1,...,1). In the process, we also
obtain the three-dimensional function pairs {(P;(gn,, R, P), Q% (gn, R, P)), 0 < R <
KRy, P > 0}.

Now, the optimal power adaptation strategy chooses

Forn=1,..., K

Qu(d™) = Qi(gn, R™, PM) a power function
P, (g(")) = P’(gn, R™. Q. (g("))) where (4.11)
PY = Qualg™ V)= Pus(g™)  and

n—1
R™ = KRy— log(1+ P(g®)g,)
i=1

depend on the fades seen by the earlier blocks. Here, we define P(") = K P, and
RM = KRy. Qn(g™) is the total power allotted to blocks n to K, P(™ and R™ are
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the remaining power and required rate seen for the nth block.

In the above algorithm, one pre-computes offline and stores the function pairs
{(P*(gn, R, P),Q*(gn, R, P)),0 < R < KRy, P > 0}. When the system is online,
depending on the sequence of channel gains seen, one allots power P,(g™) to block

n.

4.3 Performance of the Online Algorithms

We demonstrate the capacity improvement afforded by the online power adaptation
scheme over a constant power scheme (which would occur, say when there is a strin-

gent delay constraint of K = 1, or when the CSI is unknown at the transmitter).

4.3.1 Simulations

In all the simulations, the channel is assumed to be Rayleigh fading, though the
algorithms could very well be applied to other kinds of channel distributions too. In
Figure 4.1, we have the case of low SNR. The figure shows the outage probability
achieved by using the online algorithm with short term power constraint (Section
4.2.1), at various SNRs and K = 1,2, 3,5. The target data rate is Ry = 0.1 nats per
transmission, which is the capacity of a fixed gain AWGN channel operating at —9.8
dB. The dotted lines refer to the outage probability obtained in the absence of channel
knowledge, with a delay constraint of K blocks. In that case, the transmitter would
transmit at a constant rate of Ry and power P, per transmission. It is clear that a
substantial SN R gain is obtained over this by adapting the power. Figure 4.2 shows
the performance of the online algorithm the with long term power constraint (Section

4.2.2) for rate Ry = 0.1. The performance of the short term algorithm is also plotted
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for comparison. It is clear that the long term constraint algorithm outperforms the
short term constraint algorithm. The improved performance may be worth the higher
complexity of the long term constraint algorithm for some cases.

Unlike the low SNR case, the high SNR case shows negligible gain when the
short term constraint power adaptation is used. But Figure 4.3 shows that the long
term constraint algorithm produces a significant SN R gain even at large SN Rs. In
this figure, the target data rate is Ry = 3 nats per transmission, corresponding to an
AWGN SNR of 12.8 dB.

It is clear from the plots that in the case of the short term constraint, a larger
K results in graph with a larger slope, reflecting the higher diversity effect. What is
not clear is that the long term constraint algorithm should ideally produce at least
an exponentially decaying error graph (See Section 4.4 for a proof). The plots do not
show such an exponential decay in the case of the long term constraint algorithm. This
discrepancy occurs because of the ‘flooring effect’; the power adaptation functions
were calculated sampled at a finite number of points, and that decides the outage
probability floor (or the rate at which it falls). This can be reduced by increasing the

discretization.

4.3.2 A Note on Discretization

Since the optimal algorithms are obtained by dynamic programming, hence it be-
comes necessary to study the effect of discretization of the state variables on the
optimality of the solution. In fact in several cases, such as the long term constraint
case, discretization severely limits optimal performance at high SN Rs. The standard
analysis (see e.g. [23]) uses Lipschitz conditions on the utility function u(x), among

other requirements. This will not be satisfied by (2.6). Our analysis of the effect
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Figure 4.1: Short term constraint algorithm in Rayleigh fading for Ry = 0.1 and
various K. Solid lines: optimum algorithm; dotted lines: no power adaptation

of discretization shown below, is different from the standard analysis and we believe

more elegant.

We assume a linear discretization of the state variables rate R, and power P,
and a geometric discretization of the channel gain g. The motivation for the lin-
ear discretization of R is that the sum of rates in the K blocks is important. The
motivation for the linear discretization of P is that the sum of powers in the K
blocks is constrained. On the other hand, g is discretized geometrically because it
appears as a product with P in log(l + Pg). Thus, the discrete values for R are
Sr ={0,eg, 2¢R, ...}, the discrete values for P are Sp = {0,ep, 2¢p, ...}, and those

for g are S; = {0, 90,490, €290, - - - » Goo }» Where g4 > 1.
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Figure 4.2: Long term constraint algorithm in Rayleigh fading for Ry = 0.1 and
various K. Solid lines: short term algorithm; dotted lines long term algorithm

We first analyze the effect of discretizing each of the three variables separately,

Discretization of g: The values of ¢g; are rounded down to the highest value in

S, smaller than g;. Call the discretized versions of g; as g; respectively. The

event that any of the g;s are either 0 or g, occurs with probability P.,, <

(1 — (1= Fg(90))®) + (1 — FX(gso))- Call the set of such events S,,.. Then,

for any event in the complementary set S.,,, we can achieve the same or better

performance as the continuous g (optimal) scheme, by transmitting power ¢,P

instead of power P. Due to the geometric discretization of g, we can compare

the discrete scheme with a continuous variable scheme that has fading gains g/<,

but power levels e ,P. The latter scheme clearly has the same performance as the
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Figure 4.3: Long term constraint algorithm in Rayleigh fading for Ry = 3 and various
K. Solid lines: long term constraint algorithm; dotted lines no power adaptation

(optimal) continuous variable scheme. Thus, by allowing the discretized scheme
to use a power constraint of ¢,F instead of F;, we can guarantee performance
at least as good as the optimal continuous variable scheme, for all events in

Serr. This occurs with probability 1 — P,,,.

Discretization of P: Since €p is the maximum quantization error in P, hence by
increasing the power allotted to each stage by £p, we can make the discrete
scheme perform at least as well as the optimum continuous variable scheme.
Therefore, the discrete scheme with power constraint K Py + Kep performs at

least as well as the optimum scheme with power K F.
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Discretization of R: Since €p is the maximum discretization error in R at any
stage, hence the outage probability will be smaller for a discrete scheme that
has a target data rate of KRy — Keg, than for the optimal continuous scheme

that has a target rate of KR,.

Combining these results, we can assert that if the optimal scheme with discretized
g, R, P, a power constraint of K Py + Kep, and a target data rate of KRy — Keg, is
compared with the optimal scheme with continuous variables, but power constraint
of KP, and target rate K Ry, then the outage probability of the discrete scheme is

higher than the outage probability of the continuous scheme by at most P,,.,, where

Pery < (1= (1= Fe(90))") + (1 = F (9:0))-

4.4 Asymptotic behavior

Whereas outage probability cannot be found analytically for the optimum policies,
we can attempt to bound their asymptotic behavior for large SNR. In this section,
we will present some such bounds for the Rayleigh fading channel, which is commonly
encountered in narrowband communications. These show dramatically different be-
havior for policies with the long term constraint as opposed to policies with the short

term constraint. In this Section, without loss of generality, we can normalize E[g] = 1.

4.4.1 Short term constraint policy

First we show that the short term constraint results in a policy (4.6) that produces
a diversity-K outage probability graph. Formally, if Pser(FPp) is the minimum out-

age probability at SNR = P, for the short term constraint policy, then there exist
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constants ¢y, ¢, Py, such that for Py > Py,
g — Klog(Py) < 10g(Psport) < c¢o— Klog(Py) (4.12)

To prove this, we first show that in a Rayleigh fading channel, the constant power
policy (which assigns power Py per block) results in a diversity-K outage probability
graph. Whereas this result is well-known in uncoded (and AWGN coded) systerms,
we’ve not come across a similar analysis for systems at capacity. To that end, we

show that if

K
Pronst = P[Zlog(l + Pogz) < KRO]

=1

then

1 1
c— Klog(Py) < log(Peonst) < ¢— Klog(Py) + K (e —1) (P— - p> (4.13)
th 0

It is clear from these inequalities that Pone ~ Py ™ for large Py (SNR).

This result can be easily derived because P,,, is a continuous function of P

when g is Rayleigh fading. Look at,

alog Pconst _ PO aPconst
alogpo B Pshort aPO
Define
K
i=1

yi = log(1+ Pogs)
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Now denoting the probability density function of W by fi (w),

aPctmst _ /KRO 8fW( ) -dw
0
)

0P, oF
KRy O % fy(w) )
- e
_ /KROM/KRO Ofy(m) - fr(p—7)-- - fr(w—Tk2))
0 a-PO

d’T1 dTQ dTK 1" dw
KRy KRy a T
= K- / / fgpol “fr(e—m) o fr(w—Tro1) -
d’7'1 'dTQ"'dTK_l -dw (414)

where ; > denotes the K-fold convolution. Since

frly) = %fc (ef‘/P—()l) and

falg) = €e* hence
ofr(y) _ _fY(y) . (1_ ey_l)
o PR Py

Within the limits of integration of the dummy variables 0 < 7, 75, ...,w < KRy,

_Ir(y) < Ofy(y) < _fy(y)_(l_&>
Py - ('3P0 - B P,

Substituting in (4.14),

-K

Pconst < aPconst < _KPconst (1 _ eKRO - 1)
P

Py - 0F - Py

Integrating these inequalities for Py > P, gives the result (4.13).

With these bounds we can now look at the asymptotic behavior of the short term
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constraint policy. In particular, we will derive (4.12). It is clear that Psper(Po) <
P.onst(Po). Also, if we allot power K Py to each block, we will clearly outperform the
short term constraint policy, which is limited to a total power of K FP,. Therefore,

Psport(Py) > Poonst(KPy). Combining these facts with (4.13), we conclude that for

PO > -Pth7
KR 1 1
c— KlogK — Klog(Py) < log(Psport) < ¢— Klog(Py)+ K(e*™ —=1)( — — —
Py P
and so
¢ — Klog(Py) < 10g(Psport) < c¢9— Klog(P), with

Whereas these bounds are not tight, they will suffice to illustrate the main difference

between the performance of the short term and long term constraint policies.

4.4.2 Long term constraint policy

In contrast to the short term constraint policy, the long term constraint policy (4.11)
produces an outage probability graph that is at least exponentially decreasing with
SNR. Formally, if P,,,,(Fp) is the minimum outage probability at SNR = F, for the
long term constraint policy, then there exist constants c3, Py, such that for Py > P,

1
efto — IPO

log(Piong) < ¢3— (4.15)
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To prove this, we first show that in a Rayleigh fading channel, a power inversion
policy (which optimally distributes power P, per block) results in an exponential

graph. Define

Py, = Pllog(1+ P(g9)g) < Ro] where

eRoil .
—— if g>go
P(g) = !
0 else
E[P(g)] = B solve for gy
g
We also define
1
?(90) = E[-; g> go
9 g

It is clear that

¢(90) = P

Pin'u = FG(gO)

where F;(g) is the cumulative distribution function of g. So

0Py
9dg fa(go)
1 0P,
li —_ I
#'(g90) = o —1 dgo , SO
1 1 0P,
. — %o d
% fa(g0) ¢Fo—1 Bgo an
0log P, 1 0Py, 0go

dP, Py 0go 0Py
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— 1 . . f— 1 . go
B Pim) fG(gO) ( fG(QO) efo — 1)
p— 1 . gO

efo —1 Fg(go)

For a Rayleigh fading channel Fg(g) =1 — €79, therefore Fg(go) < go.- Thus

Olog Piny  _ 1
0P, 0 B efo — 1

Integrating the inequality, we can assert that for Py > Py,

Py
T eRo—1

log Pipy < ¢

Now, to upper bound P,,,, we note that a suboptimal solution to the long term
constraint problem is to allot average power P, to each block, and to use this power
optimally in each block to achieve a rate of exactly Ry. In that case, the probability
that any block will not achieve the rate Ry is simply Pjy,. Therefore, Py,,, is upper
bounded by the probability that any one of the K blocks fails to achieve rate Ry in

the suboptimal scheme.

logPlong S log(Kf)mv)

< c+logK —

efo — 1

which is the bound (4.15).

It is clear on comparing (4.12) and (4.15) that whereas the short term policy re-
sults in an outage probability that is inversely proportional to the Kth power of
SN R, the long term policy results in an outage probability that is exponential in the

SN R. Therefore, we can expect the difference in their performance to grow as SNR
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increases. Practically speaking though, the discretization required in the dynamic

programs reduces this advantage.

4.5 Random coding bounds

The random coding bound for the optimal power control algorithms can be calculated
following the development in [18] (see also [32]). Random coding bounds specify an
upper bound (which is usually tight in the exponent) on the decoding error, of the

form,
Perr < eXp(_E'r(Ra q(X)) ' T)

where R is the rate of transmission, ¢(X) is the input symbol density, and 7 is the
code length. The error exponent E, is a decreasing function of R. Thus if R is further
(smaller) away from capacity, P.,. decays faster. The random coding bound therefore
contains more information than just the capacity bound. For fading channels, E, also

depends on the channel gains, as described below.

In the subsequent development, we assume that the optimal power control algo-
rithms were designed for a target data rate of Ry, but we transmit at a data rate R
(typically R < Ry). Thus, the Gaussian codebook is assumed to have e %7 code-

words.

Por < B[ exp(-KTE,(g(X), 9", R)) ] (4.16)

=

with random coding exponent
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1 K

E(0(X).0%.R) = max 2(> Bolau(X),p.g0) = pRE) (4.17)

and input symbol density

¢X) = X ¢.(X,) (independent but not identical)

Eo(q(X),p,9) = —log ( / ( / q(x)p(y/x,aﬁdx) dy>

Here, ¢(X) is the probability density of the input X to the channel, while p(Y/X, «)
is the channel transition density function. Note that for a fading channel, g = |a|?.
Strictly speaking, FEq(q(X), p, g) should depend on «, but since a Gaussian codebook

is assumed, it effectively depends on only g (see below)

Since we use a Gaussian codebook,

0le) = oy exp(—laf/Pu(e™)

while since the channel is assumed to be AWGN, with unit noise variance within each

block!, hence

py/z.0) =  esp(-ly aaf)
Simplifying, we calculate
Eo(¢(X),p,9) = plog (1 -+ %) where P is the variance of X. i.e.
o) = —exp(~laf’/P)

lagain, the noise power has been absorbed into channel gain g
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The random coding exponent 4.17 simplifies to

0<p<t K P

E.(¢(X).¢%) R m NS log [ 1 9uLu(9™) RK
i , gt = - + 2T ) —
(¢(X), g ) ax 7?:1 0g< I+ )

Summarizing, the random coding bound on the error probability, with data rate is R

and power control strategy {P,(¢™),n=1,...,K}, is

Poy = E [ exp(-KTE,(q(X), 9", R)) ] (4.18)
g9
K (n)
) By — ’ gnlu(g™) ) _
E.(¢(X), 9", R) max - (7?:1 log <1 +7 + RK (4.19)

4.5.1 Exact computation

The difficulty in calculating the error bound is, of course, the maximization in (4.19).
Each K-tuple ¢(¥) requires a separate maximization over p. Monte Carlo calculations
will therefore require number of calculations exponential in K. This can be done for

small values of K. A simplifying property that can be used is that

K
WP (g™
E.(p,q(X),g"), R) = % (Z log (1 - QT(gp)) - RK) (4.20)
n=1

is concave in p.

4.5.2 Small deviation from target rate

As explained in the earlier section, exact computation of the random coding bound
would be very complex for large K. However, if the power control algorithm is
designed to achieve rate Ry (as in the algorithms obtained by dynamic programming

for outage probability problems), we can compute an approximation to the error
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bound (4.18) for the rates R = Ry — ¢,¢ < Ry (small deviation from target rate).
These bounds will be valid if the power control is designed for rate Ry, but in fact

the codebook has rate R.

To compute the bound for the small deviation case, the ensemble of ¢/%) can be
divided into those for which the power control is able to achieve the target rate Ry
(no outage) and those g(&) for which it is unable to meet the target rate (outage).
For the outage event, the optimum p = 0. For the event where there is no outage,
we can approximate the calculation of the random coding bound by approximating

(4.20) by its truncated Taylor series

OF,
E.(p,gX), ")\ R) = E.(p=0) + P% +
p=0
1 2 aQEr(p) 3
- 4.21
5 7 |, + o(p°) (4.21)
(K)

The reasoning is that if R = capacity — €, then for all such ¢'*’ the optimum p

will be approximately 0. Simplifying (4.21) and using the fact that R = Ry — ¢,

Ry = %Zle log(1 + g,P,) (since we are considering g(¥) for which there is no

outage), hence

2

K
P,g
E, X). oK) — _p_E: __"nIn__ 3

n=1

Therefore,

Er(¢(X), 9", R) = max Er(p.q(X),¢"),R)
<p<1
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is achieved approximately by

p(opt) — i’ where

27-[

ngn
"= KZ <1+Pngn)

which yields the maximized E, = £2/(4H). Recollect again that p(°® is the optimum
p only for the case that there is no outage. i.e. for the case that the sequence of
channel gains ¢ is such that the power control algorithm succeeds in meeting the
target rate. Combining the error bound for such ¢&) which do not result in an outage,

with the outage event case, we can bound the error probability approximately by

P.,. < E [ exp(—KTe?/(4H)) ] + P|outage]
¢g(E):no outage

To avoid Monte Carlo calculations, a weaker upper bound can be obtained by bound-

ing ‘H as

1 & 1
= 1-— — -
" K;<1+Pngn>

1 1/K
< 1 (0, ——— 4.22
<1 (M ) (42)
= 1l—efo (4.23)

where (4.22) uses the Arithmetic-Geometric means inequality, while (4.22) uses the
fact that in the absence of outage, the optimum power control achieves Ry = % Zle

log(1 + g, P,). This gives the random coding bound

52

4(1 — exp(—Ry))

P,., < exp (—KT ) + Ploutage]
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Again, this approximate bound is only valid for the rates R = Ry — €,& < Ry (small

deviation from target rate).

4.5.3 A weaker upper bound

If an error bound is desired for an R that is very different from Ry, then the ap-
proximation in Section 4.5.2 cannot be used. At the same time, if the K is large,
the exact computation in Section 4.5.1 may be too complex. However, an upper
bound is yet possible if we are willing to settle for a weaker bound. This is obtained

(K)

by optimizing p over a set of ¢!®) in contrast to optimizing p for each ¢(*). We

can then use the fact that the optimum power control solution results in a Markov
chain {PW) RW} — {P@ RO} — ... o {PEF) REFDL (see equation (4.8) for
the definitions of {P™, R(™}). Due to this, (another!) dynamic program can be
used to calculate the random coding bound. Thus, a weaker bound is calculated in
the general R case, using a dynamic program that utilizes the Markov property of
{P™ R™}). Again, this Markov property arises because the optimal power control

is used.

To this end, we proceed as follows. For the moment, assume that p is a constant

over all g8, In that case, (4.16) can be rewritten as

P, < g%i/pgle(ﬂ) ,  where (4.24)
Perr(p) = B exp(—KTE,(p,q(X),g",R)) ],  and (4.25)

K p ([~ 9nPu(9™) .
E,(p,q¢(X),d®) R) = Ve (glog (1 + ﬁ) — RK) , (as in (4.20))

This bound is weaker than (4.18) because it assumes a constant p over all g¥) (which



70 CHAPTER 4. OUTAGE CAPACITY

is then optimized), as opposed to the exact bound which optimizes p for each g'%).
The strategy we use is to first find an algorithm to calculate P..,.(p). We can show
easily that P..,.(p) is convex in p. Therefore, it can be minimized efficiently over

{0 < p < 1} using bisection (Section A.1).

The next few pages show how P,,,.(p) can be computed using a dynamic program.
If desired, the reader can skip the derivation and go directly to the result, which is

summarized by algorithm Calculate_error(p).

The state space of the dynamic program used to compute the optimal power
control scheme in Section 4.2 was Z, = {P™ R™}. Note that Z, = {KPy, KRy}
is a constant. Since the optimal strategy is Markovian in this state space, hence
Zy — 4y — --- = Lk, forms a Markov chain, when the optimal power control
strategy is used. In terms of this state, the optimal power functions chosen for the

nth block are (see (4.6) and (4.11))
Pa(g™) = P;(gn, Zn) (4.26)

Thus, P,,.(p) can be computed as below

K (n)
Parlp) = Elew (—KT% (Zlog (1 + %) - RK)) ] (4.27)

p (& 90 Py (9ns Zn)
= g:(l‘%)[ exp (—KTE (;lOg <1+ T) —RK)> ]

= E [ exp(-KT()_ $(Zn,gn))) ],  where we define (4.28)

g(K)

7'LP_>i< naZn
$(Zngn) = % (log (1 + %gp)) - R)
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Now, we can make use of the Markov property of {Z,}.

Par(p) = B [exp (—KTZ¢(zn,gn>) - Blexp(~KT9(Z1,00) | Z2: 55

K
Z? 392 n=2

K
= E [exp (—KTqu(Zn,gn - 1(%1,25)]  where
n=2

Z27.q£<

)
11(21,22) = Elexp(=KT$(Z1,01)) | Z2, 95 ]

g1

= Elexp(—KT¢(Z1, 1)) | Z5] (4.29)

g1

(4.29) is valid because Zy = Z5(Z1, 1), and {g,} are assumed to be i.i.d., and hence

{Z1,¢:} is independent of gX, conditional on Z,. Continuing,

Per(p) = ?EK['YI(ZlaZQ) - exp <—KTZ¢(Zna9n)) :

Z3,93

E[ exp(=KT¢(Zs,92)) | Zg,gg( ]

g2

= E [n(21,2y) - 72(22, Z5) -

Zg,g3

K
exp (—KT Z & (Zn, gn)> ] where
n=3

’Y2(Z2,Zs) = E[ exp(—KT¢(Z2,g2)) | Z§29§(]

= g[ exp(=KT¢(Z2, 92)) | Z2, Z3)

since go is independent of g5 conditional on Z,, Z3. Continuing in this manner, we

conclude that

Por(p) = B [OX, %(Zn, Zny1) ] where (4.30)

K+1
Zy

’Yn(Zn:Zn—f—l) = E[ exp(—KT¢(Zn,gn)) | ZmZn—i—l]

9n
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Note that for the optimal power control, Z,, is the deterministic function Z,,; =
Zni1(Zn, gn)- Also, Z1 = {KPy, KRy}. Therefore fg(gn|Zn, Zni1), which is required

in the calculation of +,(Z,, Z,+1), can be found as

f(gn) : P[Zn—H ‘ Znagn]

n ZnaZn =
fG(g | +1) P[Zn_H | Zn]

which can be calculated from the optimal power control solution.

The expectation in (4.30) is easy to compute as below

Per'r(p) - ZEI)([ Hrll(:_ll’Yn(ZnaZn-l-l) . [7K(ZK5ZK+1) | ZQK] ]

ZK 41
= B[S %(Zn, Znn) - B [vk(Zk, Zki) | Zi] ] (4.31)
Z, Z K41
= ZEI]{[ HnK;117n(ZnaZn+1) ) VK(ZK) ] ) where
2

v(ZKk) = Z}EI[VK(ZK;ZKH) | Zk]

and (4.31) occurs because Z,, is Markovian. Continuing the nested conditionals,

Perr(p) = ZI]{E_I[ Hf:_f’Yn(Zn,ZnJrl) : ZEE([VK(ZK) '7K—1(ZK—1,ZK) \ ZK—I] ]
2
= ZI](E_I[ Hrlf:_127n(Zna Zn1) - ve—1(Zr-1)]
= ]ZE[ ’Yl(Zl, Z2) : VQ(ZQ) ] ) where (4-32)
2
Vn(Zn) = ZEL[ 'Yn(ZnaZn-l-l) : Vn+1(Zn+1) | Zn ]

vn(Z,) requires calculation of P[Z,, | Z,], which can be found from the optimal power
control. (4.32) is the required result.

Summarizing, the calculation of P.,..(p) (defined in (4.27)) proceeds as,
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Algorithm Calculate_error(p) :

1. Based on the optimal power control solution to either the short term or the
long term constraint problem (Section 4.2) which results in a Markovian 7, =

{P™) RM} calculate

PIZy|Z] = / PZoii | Zoigal folgn) dgn  and the densities

fG(gn) ) P[Zn—l—l ‘ Znagn]
P[ZTH—I ‘ Zn]

fG(gn ‘ Zna Zn—|—1)

2. Set up the trellis of Markovian states {Z,,n = 1,..., K + 1} (see Figure 4.4).

Calculate the branch metrics for the trellis stages n =1,..., K as,

’)/n(ZnaZn—l—l) = gE[eXp(_KT¢(Znagn)) | ZnaZn—l—l]

3. Calculate the node values of the trellis states for stages n = K,...,1 (in a

backwards manner) using the dynamic program

Vn(Zn) = E [’Yn(ZnaZn—l—l) : Vn—l—l(Zn-i—l) | Zn]

Zn+1

The dynamic program is initialized as vgi1(Zk+1) = 1.

4. The error probability desired to be calculated is

Perr(p) = VI(ZI)

= Z/l(KP(),KR())
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Since P,.(p) is convex in p, it is minimized over {0 < p < 1} using bisection to give
the optimal value p(®?). See Section A.1 for a short description of the method of

bisection. This gives the desired bound (4.24) on P,,,.

Each calculation of Calculate_error(p) is effected in O(K|Z||G|) operations,
and the bisection requires O(log(1/¢,)) calls to the algorithm, where ¢, is the tolerance
in p. This is usually much less than the O(|G|¥) optimizations required by a Monte

Carlo calculation of (4.18).

The error bound (4.24) may be weak (or even useless) for small 7. In particular,
notice that if % Zlelog(l + goP,) < R, then the optimal p for this set of g(%) is
p = 0. Using p(®) > 0 found by the bisection will result in an error bound for that

(K) that is greater than one! This is clearly a gross over-estimation. Appendix

set of ¢
A.2 shows one method to reduce this over-estimation at the expense of increased

complexity.

The weak random coding bound was calculated for the long term power con-
straint solution for the Rayleigh fading channel in the case, Ry = 3 nats per trans-
mission, K =5, SNR = 20 dB. From Figure 4.3, the outage probability for this case
is 1073, Two sets {Si, Sa} were used with Ry, o = 0, Ryp1 = KRy — KR, Ryn2 = KRy
(See Appendix A.2). Figure 4.5 shows the random coding bound for various values
of block length 7. The dotted line is the outage probability obtained when the long
term constraint solution is used with different code rates R (R < Ry). Outage proba-
bility assumes Ty — 0o, and is therefore the limit to which the random coding bound
must converge. Note that for R = 2.9, the outage probability is close to 1072, as

expected.

It is clear that the error bound increases with increasing R, in keeping with the

increasing outage probability. Another point to note is that a smaller 7} results in
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Figure 4.4: Trellis to calculate a weak random coding bound

a larger error bound, due to the higher decoding error. Figure 4.6 plots the ‘error

exponent’, defined as — log(Pe,)/(KTy), for various R. Larger T result in a smaller

exponent, because the exponent converges to 0 when the system has outage. Also, a

larger R results in a larger exponent, reflecting the smaller decoding error.
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Figure 4.5: Weak random coding bound for long term constraint algorithm for K = 5,
SNR = 20 dB, Ry = 3. Solid lines are the random coding bound, while dotted line
is the outage probability (T — o0)
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Chapter 5

Stationary Power Control

Strategies

The problem formulation in Chapter 4 requires formation of a ‘super-frame’ of K
frames of data, and the power control scheme has to be different for each of the
K frames within the super-frame. Some systems may not be able to introduce this
additional structure (such as existing communication protocols). Also for large K,
the memory requirements increase at least linearly. In this chapter, we propose a
power control scheme for the outage capacity problem that does not need such a
super-frame structure. The new scheme tries to achieve a target rate within the delay
constraint, for any position of the delay window. Thus such a scheme is a ‘stationary

scheme’.

[10] also deals with a stationary power control strategy, However, the approach
there is to minimize the average power transmitted, under an average delay constraint.
It obtain results for the Gilbert-Elliott channel only, which limits their applicability

to more general situations. However it introduces the interesting concept of a queue

78
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of data, in the context of a fading channel.

This chapter is organized as follows. Section 5.1 introduces the problem formally.
The optimum stationary power adaptation strategies are derived in Section 5.2. Two
kinds of power constraints are considered, which result in different policies. Section

5.3 demonstrates the performance of these techniques under various scenarios.

5.1 Problem Formulation

As in the previous chapters, we assume a flat fading channel in AWGN, that is i.i.d.
block-fading. It is assumed that the average power per transmitted symbol is Fj.
Both the receiver and transmitter are assumed to have perfect knowledge of the
channel gain of the past and current blocks, but not the future. We require that
the system have a low probability of outage. The stationary version of the K-block
outage probability problem should ideally be posed as below.

Given the sequence of channel power gains {g;,i = ...,—1,0,1,...}, and given

the target rate Ry, and power P, per transmission

t

minimize average{ P] Z log(1+ P,g;) < KRy] } such that (5.1)
i=t—K+1
P> 0 Vi=..,-1,0,1,... and
average{P,} < P, (power constraint)

where the minimization is over the powers P; transmitted during the i block (a causal
function P;(¢" _))), and average refers to the time average lim,_,, ﬁ S ().

The quantity within the P[-] denotes an outage event. The optimum solution to this

problem requires storing K state variables, which makes the solution very complex.
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Therefore we deal with a modified problem, where the K-block window is approxi-
mately captured by an exponential window, as shown below.

Mathematically the modified problem is,

¢
minimize average{ P| Z e D ]og(1 + Pig;) < Ro) } such that
P, > 0 Vi=...,—-101,... and
average{P;} < P, (power constraint) (5.2)

where the various variables are as defined above, and « is a positive scalar. With this
problem formulation, the delay-constraint is captured by the ‘exponential window’
e~*() ysed to discount the transmission rates log(1 + Pg) of the past blocks. The
smaller « is, the larger the allowable delay. The stationarity of the scheme is captured

by the fact that the average probability (averaged over t) is minimized.

5.2 Optimal Solution

The optimum strategies can be found using dynamic programming [51].

5.2.1 Optimal scheme

The problem posed earlier is called an average reward problem in dynamic program
theory. The solution of the problem is obtained by solving a specific linear program.
The optimal solution is a randomized solution. i.e. the power transmitted at a
given state is not deterministic. The solution can be precomputed and stored in the
transmitter and receiver. When transmission actually occurs, the transmitter simply

chooses the right power using a table lookup.
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Whereas the theoretical basis for using a linear program to obtain the solution

can be found in [51], it can also be understood intuitively. We begin by defining

t
R = 3 et-Dlog(1 + Py

1=—00

S = {Rt—la gt}

C(St, Pt) = lF(eiaRtfl -+ log(l + Ptgt) Z R())

R, is the discounted rate up to time ¢, s; is the state variable at time ¢ (Conversely,
its two elements are written as R(s;) and g(s;)), c(ss, P;) is a ‘reward function’, and
1p(-) is the indicator function that is 1 if the event (-) is true and 0 otherwise. Note

that
Rt = €_aRt_1 =+ log(l —+ Bgt)

Thus, we can find an optimal policy P; that depends only on s;. i.e. P = P(sy).
We discretize the variables Ry, P;, g;, so that numerical methods can be used. Denote
the sets of discretized Ry, P;, g, as Bg, Bp, B, respectively. Denote By = Bg x B,.

The optimization can now be expressed by the linear program,

Maximize Z Z c(s, P)z(s, P) such that

seBg PéBp

> x(G,P) = Y Pi|sP| - a(s,P) ¥ jeB,

PeBp seBs PeBp
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z(s,P) > 0 V seB;, PeBp

Z Z z(s,P) = 1

seBs PeBp

> Pea(s,P) < PR (5.3)

seBs PeBp

z(s, P) can be thought of as the probability that the Markov chain will be in state s
and choose power P to transmit in that block. Then, the linear program maximizes
the probability that the discounted rate R; exceeds R,. The constraints are easy to
understand. Note in particular that the power constraint is expressed as in (5.3).
The transition probability that the Markov chain in state s and choosing power P

will transition to state j is given by

Pljls, Pl = P[R(5),9(j) | R(s),9(s), P]
Plg=g(j)] if log(l+ Pg(s)) +e *R(s) = R(j)

0 else

Solving the linear program for the unknown variables z(s, P) results in the optimum
power control strategy. To obtain the strategy P} = P;(s), we note that if for a fixed
s the optimum z(s, P) = 0, then for those P whenever s, = s, we never transmit
P, = P. In general, the optimum power control will be randomized. It will be
deterministic for those s, for which only one P results in a non-zero z(s, P). So,
the power control can be defined as follows. If s; = s, then transmit P, = ) with
probability (s, Q)/(>_px(s, P)). As the discretization increases, we would expect
the optimum strategy to become completely deterministic. The linear program has

O(|Bg| - |Bg| - |Bp|) variables, and O(|Bg| - |B,|) equations.
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5.2.2 Sub-optimal scheme

A simpler scheme can be obtained by artificially adding more power constraints. This
results in a scheme with less computational complexity, but with worse performance
than the optimum scheme. In this scheme, the power constraint (5.2) is modified to

the constraint

E [P(s))] = E [P(Ri-1,91)]

gt€Byg 9teBy

< K V Ri_1 e Bpg

With this modification, the average reward problem can be solved using the method
of policy iteration [51]. This involves finding a value function V(R) and scalar ¢ such

that

V(R)+c¢ = max Ple “R+1log(1+ P(g9)g) > Ry ]

+ E [ V(eT*R +1og(1+ P(g)9) ] V Re Bg

geBy

where the maximization is over all functions P(g) > 0 such that }% [P(g9)] < B.
gebyg
Policy iteration involves optimization and solving linear equations, done alternately.

These have a complexity of O(|Bg| - |By| - |Bp|?), and O(|Bg|®) respectively.

5.3 Simulation and Discussion

We demonstrate the capacity improvement afforded by the online power adaptation
scheme over a constant power scheme in a Rayleigh fading channel. Figure 5.1 shows
the outage probability achieved at various SN Rs, Ry = 4 nats, and a = 0.3. An SNR

gain of around 2 — 3 dB is obtained over the constant power scheme, by adapting the
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power.

Further, the sub-optimal scheme has a small penalty over the optimal scheme. A
similar improvement is seen at low SN Rs, such as those occurring in CDMA (Figure
5.2). Increasing the discretization for the various parameters increases the SN R gain
achieved to some extent. An interesting observation comes from Figure 5.3 which
shows the histograms of the state R, for a sample run. The upper histogram is
for the constant power scheme, while the lower histogram is obtained by using the
(suboptimal) power adaptation scheme. It can be observed that the power adaptation
tends to bunch the discounted rate R; into discontinuous sets, unlike the constant

power scheme. Also, the power adaptation reduces the variance of R;.

A true ‘K-block sliding window’ approach would require K state variables, in-
stead of the { Ry, g;} variables in our formulation. That is because the power would
depend on the past K gains. By using an exponential window, rather than the rect-
angular window that the K-block approach demands, we have succeeded in reducing
the complexity of the algorithms. A better approximation to the K-block formulation

would be to use two exponentials for the window,

t
minimize  average{ P| Z Bre~ 1= 1og(1 + Pig;) +

1=—00

Boe 2 log(1+ Pig;) < Ro| }

By choosing aq, as, 51, 2 appropriately, we can approximate a rectangular window.
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This formulation requires two state variables besides g; as below

RY = Z e~ log(1 + Pig;)
t o
R? = 3 e log(l+ Pg,)

We can approximate the K-block formulation better, using even more exponentials

to design the window, at the cost of increased complexity.
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Figure 5.1: Outage probability at high SNRs for Ry = 4, a = 0.3. Solid lines refer
to the new algorithms, while the dotted line refers to constant power transmission
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Figure 5.2: Outage probability at low SN Rs for Ry = 0.15, o = 0.3. Solid lines refer
to the new algorithms, while the dotted line refer to constant power transmission
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Figure 5.3: Histogram of state R; for a sample run, at SNR =10dB, Ry =4, a = 0.3



Chapter 6

Adaptive Antennas for Space-Time

Codes in Outdoor Channels

6.1 Introduction

Space-time coding is a direct example of the use of the outage capacity measure.
Space-time codes can be used in transmission systems that have multiple transmit
antennas, in environments where the channel undergoes Rayleigh fading. The design
of these codes involves using the minimum error probability performance metric,
which should converge to the outage probability as the codes become more powerful.
However a union bound argument is used for the error probability, and hence the
design is really based on minimizing the (union) error bound. Thus, strictly speaking
the error probability may not converge to the outage probability as the codes become

more powerful. Yet the the design of these codes retains an outage capacity flavor.
Space-time coding for the general case of Multiple-Input Multiple-Output (MIMO)

38



6.1. INTRODUCTION 89

channels has been studied in [61, 52, 64, 63, 60] and space-time codes have been re-
cently introduced in multipath fading environments [8, 44, 37, 55, 13] to improve
mobile system performance. In the block time-invariant environment (where channel
is time-invariant during transmission of one block of data) [56], it has been shown
that using multiple antennas at the base station and mobile allows one to achieve a
maximum diversity of mn, where m and n are the number of mobile and base sta-
tion antennas respectively. Delay diversity codes were shown to be special cases of
space-time codes, that were capable of achieving maximum diversity. However, all
the work to date in this subject assumes a multipath channel model in which the
fading from each base station antenna to any mobile antenna is independent, or at
least non-degenerate. i.e. If we collect the mn fading gains into a vector, then the
auto-covariance matrix of the vector is full rank. This assumption requires that both
the base station and the mobile be surrounded by local scatterers, or that the base
station antennas must be spaced far apart, so that their signals are uncorrelated. In
several situations, the base station is placed high above the ground, and practical-
ities dictate that its antennas are spaced close together. In this situation, the base
antenna array will be a phased array. i.e. have completely correlated signals. In
this case, an L-multipath channel model such as the one proposed in [52] would be
valid. In this chapter, we will consider the above scenario (Figure 6.1). The mobile,
being at ground level, is assumed to have a diversity array. Thus, the fades of each of
the L-multipaths at the base are completely correlated, but those at the mobile are
uncorrelated. The case that assumes complete correlation at the mobile also, would
give essentially the same results as those derived in this chapter. We will discuss
schemes that would achieve diversity as well as SNR gain in this scenario. We will

only consider the downlink case (Base station to mobile link) in this chapter. The



90 CHAPTER 6. ADAPTIVE ANTENNAS FOR SPACE-TIME CODES

uplink would require a different approach, which we believe would be more along the
lines of classical beamforming. We have considered two distinct cases. The first is the
case in which all the the multipaths have the same delay, which results in a channel
that is free of Inter-Symbol Interference (ISI). In the second case, the multipaths have
different delays, causing ISI in the receiver. We have published some of these results

in in [43]. The results of this chapter are joint work with Ardavan Maleki-Tehrani.

The chapter is organized as follows. The problem is formulated for the ISI-free
case in Section 6.2. In Section 6.3 we show that for the ISI-free case, an appropriate
scheme for achieving the maximum diversity of m/L, and obtaining an SN R gain, is
to combine beamforming with a space-time code such as a delay diversity code. The
optimum beamformer is derived for this case and is seen to be very different from
the classical beamformer. In section 6.4 we formulate the problem for the case with
ISI, and show that whereas using more than one base antenna does not increase the
diversity, it does provide a large SNR gain. We will provide suboptimal results for

the SN R gain solution. Section 6.5 illustrates these ideas with simulations.

6.2 Problem Formulation

The problem is to design ‘space-time coding schemes’ [54] that achieve low frame error
rates. In various papers [8, 16, 17, 54, 56, 55], space-time coding schemes have been
discussed that essentially assume that the elements of the channel matrix FA (see
below) are non-degenerate, even if they are dependent. In the scenario we consider
however, this is not true. Further, for our case, we show explicitly how the concepts
of beamforming and space-time coding can be combined. It will be shown that such

a combination can provide diversity as well as SN R gain.
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Figure 6.1: Illustration of the physical multipath channel

6.2.1 MIMO Wireless System

The downlink system equation in the time domain can be written as
L
Ve =Y ay-a(b,) s(kT —7,) + vy (6.1)
p=1

where T’ is the symbol period, L is the number of multipaths, 7, is the time delay as-
sociated with the pth multipath. i, & denote discrete time, while ¢ denotes continuous
time. s(t) is the n x 1 signal vector waveform transmitted, using the n base station
antennas, y; and vy are the m x 1 vector of the signal and noise respectively, received

using the m mobile antennas. s(¢) can be written in terms of the data symbol vectors
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X; as

s(t)= Y x;-g(t—iT) (6.2)

i=—00
g(t) is the pulse response of the transmit signal. Assume that ¢(¢) is normalized as
9(0) =1.
o, is the m x 1 vector of the fading channel gains at the m mobile antennas, for
the pth multipath, while a(6,) is the 1 x n vector of the base station antenna array
response to the pth multipath, that is incident on the base array at an angle ¢,. For

example, for a linear array: a(f) = (1 e/2min(6) ... ei2mo(n=1)sin(d))

6.2.2 Assumptions

The system model (6.1) is valid because it is assumed that the base station does
not have any local scatterers and that the base antennas are spaced close together,
and hence the base array is a phased array (i.e. completely correlated response
at all antennas for each multipath). Also, the mobile is assumed to be at ground
level, so that the local scatterers cause uncorrelated fading at its antennas. Further,
the L multipaths are assumed uncorrelated and having equal power, since they’re
presumably reflected by objects well separated in space. Thus, the fading channel
gains a,s haveii.d. elements, which are assumed complex Gaussian random variables
of variance o} each. The angles {f,} are assumed to be distinct. Note that if the
power of the L multipaths is measured and unequal, this can be easily incorporated in
the theory that follows, by absorbing the powers in the a(6,)s . This trivial case is not
considered for simplicity of presentation. The noise vector vy is assumed to consist
of zero mean i.i.d. complex Gaussian random variables (white noise) of variance o2

each. The transmitter is assumed to have knowledge of the multipath angles {6,},



6.3. ISI-FREE MIMO SYSTEM 93

since these are expected to change slowly, and so can be estimated. However, it does
not know the fading channel gains a,s due to the high doppler rate. The mobile is
assumed to have knowledge of the entire channel state information (CSI). The a,s

are assumed to remain constant for several symbol intervals (block-fading model).

6.3 ISI-free block time-invariant MIMO system

Consider a Multiple-Input Multiple-Output (MIMO) system with L multipaths, all
of which have the same delay 7 = 0. In that case, there is no ISI, and s(t) =
> e Xk - 0(t — kT). The downlink system equation in the time domain can be

written as

L

Ye = Z cpa(l,)x; + Vi (6.3)

p=1

All notations are as defined in Section 6.2.1. Consider a block transmission scheme,
wherein a frame of data consisting of a sequence of [ vector symbols {x;,k =0,1,...,]—
1} is transmitted. The channel is assumed to be constant during this interval. We

can write the block transmission in matrix form as below
Y =FAX+V (6.4)

where Y = (yo - ¥y121), X = (x0 -+ x1), F = (ay -+ ), and A =
(a(0)T --- a(HL)T)T. Since the fading is assumed constant over a frame, system
equation (6.4) is valid. The performance criterion is obtained in a manner similar to
[54]. Since the mobile knows the ideal CSI, and the noise is assumed white Gaus-

sian, hence the probability of the decoder deciding in favor of code matrix X = X,
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when in fact the code matrix X = X, was transmitted (i.e. matrix X in (6.4)) is

approximated by

P(Xo = X.[FA) < exp(—|[FA(Xo - X.)|[3/402) (6.5)

Now, if n =1 (Single-Input Multiple-Output case), then FA collapses into a column
vector of m independent random variables, and it is clear that a diversity of m is
achievable. Whenever n > L, a maximum diversity of mL is achievable. This is

because we can write

[FA(Xo - X)|[Z = #{FVAV*F]

where A(Xo—X,)(Xo—X)*A* = VAV™ is the singular value decomposition. FV is
an m X L matrix with i.i.d. complex Gaussian elements. If one designs the codebook
such that for every pair of codewords, VAV™ has full rank L, then the exponent
in (6.5) is a x? random variable with 2mL degrees of freedom ([48]) and hence the

diversity gain is mL. This is possible if and only if n > L.

We will assume subsequently that a diversity gain of mL is always the target.
In that case, it is easy to show that n = L and even a simple delay-diversity code

achieves the diversity of mL.

Now the question arises as to the benefit of using more than L antennas at the
base station. We can show that by using an appropriate concept of beamforming at
the base, we can get an SINR gain over the system that uses only L antennas. Both
systems however, have the same diversity gain of mL, since that’s the maximum
achievable. However when using more than L transmit antennas the SN R advantage

is not insignificant, especially when the target frame error rate is high. Hence, the
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advantage of using n > L. In the following, we derive the beamforming concept that

is applicable in this case.

When n > L, to achieve a diversity of mL, we begin with a diversity-L achieving
space-time code (such as a delay-diversity code) as the core code. Call the L x [
Toeplitz code matrix of this code as C. Now we map the L x 1 vector symbol at each
transmission (i.e. a column of C) into an nx 1 transmit vector using a linear transform
represented by the n x L matrix W. Thus, the final code matrix transmitted from
the n antennas is X = WC. If (and only if) W is chosen such that the product AW
is full rank, then this coding scheme will achieve a diversity of mL. Now we optimize
W so as to get the largest SN R gain possible. To this end, note that the SINVR gain

is maximized by maximizing the determinant [54]
det[AW (Cy — C,)(Cy — C.)"W*A"] (6.6)

for any pair of code matrices {Cg, C.}. Since the codewords have already been chosen,
we can take det[(Cy — C,)(Cy — C.)*] as a constant. Therefore, the optimization

problem reduces to

max‘}vmize det AWW™*A*] (6.7)

subject to  tr[WW*] =L

The constraint (6.7) arises due to total transmitted power constraint
tr[W Elcic;] W*|] = P, which occurs because the space-time code used by the L
base antenna system allots power P/L to each antenna.

The solution to the maximization problem in (6.7) is found using standard linear

algebra (see Appendix A.3) to be W = Q. where Q. is found from the SVD of A
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as:

A= TEQ = T (540 (Qu |O)

nxL

and the value of the maximum is g(n, L) = (det[X4])>. The SNR gain when using
an n antenna system, over an L antenna one, is given by {g(n, L)/g(L, L)}'/*. It is
clear that this is more than 1.

In fact, for the linear array case where n/L is an integer, we can (somewhat)

easily show the lower bound to be

{9(n,L)/g(L, L)} > (6.8)

=S

See Appendix A.4 for the proof.

6.4 MIMO Wireless System with ISI

We now develop the case where the MIMO channel has ISI. We shall see that the
issues that come up in this case are qualitatively different from the case without ISI.

Using (6.1), the multipath channel with ISI can be modeled as below:

L 1

Y = Z Z ap . a(ﬁp) cXp—i g(zT — Tp) + Vi

p=1i=—Ip

where the pulse response is assumed to be of finite length less than 2{;, +1+mazx, 27,.
All notations are as defined in Section 6.2.1. Except for the introduction of ISI, all
other assumptions in Section 6.2.2 still hold. As in Section 6.3, if we consider a block

of I vector symbols {xx,k = 0,1,...,1 — 1} transmitted, then the channel equation
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can be written in matrix form as below:

/ Xk+1p, \

gl al0) -+ gha) - g a6
yi=F. T OO S Y T R )

g%, al) --- gy a(r) --- g alr)

oy

where for ease of notation, we define ¢ = ¢g(iT — 7,). The {x;} are assumed to
be zero outside the interval {k = 0,1...,1 — 1}. As earlier, F = (ay --- ay).
If {r,7o,...,7}are all distinct, both SIMO and MIMO will have the same diver-
sity mL, but MIMO potentially will have higher SNR gain, which depends upon
{61,0o,...,0.}. eg. If {0, =0, =--- =0}, then the SNR gain would be n. This is
the case we consider here. Assume that a diversity of mL is the target here.

Now suppose we use a powerful code for the SIMO system that achieves diversity
mL (this implies that Ugrso defined below has full rank) that has the L x [ code

matrix
Ty, Tp4r o T4l
Usrso =
Ty, T_pp4+1 " Tptl-1
Then we can use the same code for the MIMO case, by mapping the scalar input xy

to the n x 1 vector x; = b x; using the beamforming vector b. This results in the

following simplification of (6.9):
Y = FBGUg/50 + V (6.10)

where, as earlier Y = (yo --- y;—1), B = diag(a(f,)b,---,a(f;)b), and G is the
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pulse shaping matrix

g o g - g
G — . . .
gh, - gt - gf

Equation (6.10) allows us to maximize the SN R gain by maximizing the determinant
[54]
det[BG(Ugzso — Usrs0) (Uszso — Uszso)"G™B] (6.11)

U250 and U4, refer to a pair of distinct codeword matrices of the SISO code.
Assuming that G(U%,50 — US60)(U%160 — U%rs0)*G* is full rank (otherwise even
the SISO code will not achieve diversity mL), and noting that only B depends on
the weight vector b, we see that we need to maximize det(BB*). Thus, for optimum

performance, we need to solve the following

I 1/L
maximize P(b) = (H|a(9p)b |2> (6.12)

subject to |b|*’=1

The normalization || b ||*= 1 ensures that the transmitted power is the same as the
SIMO case. The SNR gain over the SIMO case is simply P(bgy).
The maximization problem in (6.12) has a non-convex cost function, which seems

difficult to solve exactly. However, a sub-optimal solution for b is given by:

b — 2;521 +a*(6,)
I3, £a*(0) |l

(6.13)

where the £ sign indicates that we choose that sign for each a*(6,), such that P(b)
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is maximized. In simulations, we search over all 27 sign combinations of a*(6,)s, and
choose the one that leads to the maximum gain P(b).
It is clear that the pulse response does not affect the SNR gain. If the multipaths
are well-separated in time, then G is ‘more orthogonal’, and the SN R gain is larger
for both the SIMO and the MIMO cases.

Note the interesting feature of our scheme: we are able to separate the signal
processing and the coding aspects of the problem. In other words, one can choose
a fixed SISO code (over time only), and adapt it to the multiple transmit antenna

environment (over space only), using the weight vector b.

6.5 Simulation Results

Since the results obtained for the IST and ISI-free cases are so different qualitatively,

we report, the simulation results for each case separately.

6.5.1 The ISI-free Case

The ideas described in Section 6.3 were tested by simulating a MIMO system with
m = 2, L = 2 and different values of n. The base station was assumed to use a linear
array with antenna spacing d = 0.5 wavelengths.

In Figure 6.2, we show the histograms of the SNR gains g(n, L)'/*, g(L, L)*/*
and {g(n,L)/g(L, L)}'/* for n = 8, when the two multipath arrive randomly within
an angle of 60° of each other. In the histograms, the X-axis represents gain in dB
units, whereas the Y-axis represents the frequency with which the gain occurs. It is
clear from the figure that {g(n,L)/g(L,L)}'/* > n/L. In fact, it is usually much

greater than the lower bound. The factor of n/L can be understood as the gain
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in classical beamforming due to better directivity of the antenna array. However,
a second effect occurs wherein the n antenna array is better able to resolve the L
multipaths than the L antenna array (i.e. the A matrix is ‘more’ orthogonal). This

/L ig seen to have a

further increases the SN R gain. In fact, the histogram of g(n, L)
lower variance than that of g(L, L)'/*, due to the same reason. Thus the n antenna,

array ‘better guarantees’ a given (large) SN R gain than the L antenna array.

x 10 Histogram of sqrt[g(8,2)] in dB units
2 T T T T T T T
151 *
1 L -
05 *
O | | | | | | 1
-30 -25 -20 -15 -10 -5 0 5 10
Histogram of sqrt[g(2,2)] in dB units
400
300
200
100
0
-30 -25 -20 -15 -10 -5 0 5 10
Histogram of sqrt[g(8,2) / g(2,2)] in dB units
6000 T T T T T T
4000 - |
2000 - T
0 | | 1 | | .
6 7 8 9 10 11 12 13

Figure 6.2: Histograms 1/¢(8,L),/g(L,L),\/g(8,L)/g(L,L),L =2

The entire MIMO transmission system was simulated by transmitting and maximum-
likelihood (Viterbi) decoding, using the delay diversity code with a QPSK signal con-

stellation. The frame length was chosen as 100, and 10, 000 frames were transmitted.
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Two different multipath angle pairs, {50°,60°} and {20°,60°}, were chosen to illus-
trate the performance. Figures 6.3 and 6.4 show the frame error rate (FER) as a
function of the SN R for the cases n = 2,4,8. SNR is defined as SNR = LE,0% /07,
where &, is the transmitted signal energy per transmission. Thus SNR is the SNR

per mobile antenna per symbol, assuming omnidirectional transmission.

It can be seen that the SNR gain allows better performance at a given SNR
when n increases. The SNR gain is significant, especially in the case of the angle
pair {50° 60°}, where the multipaths are not well separated in space. This again

illustrates the idea that using a higher n helps to resolve multipath better.

Frame error rate

0 2 4 6 8 10 12 14 16 18 20
SNR in dB

Figure 6.3: FER v.s. SNR; ISI-free case; angle pairs {20°,60°}
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Figure 6.4: FER v.s. SNR; ISI-free case; angle pairs {50°,60°}

6.5.2 The Case with ISI

As in Section 6.5.1, a MIMO system is simulated with m = 2, L = 2 and different
values of n. The base station is assumed to use a linear array with antenna spacing
d = 0.5 wavelengths. However it is assumed that one of the multipaths arrives with

a one symbol delay with respect to the other, thus causing ISI.

In Section 6.4, we proposed a sub-optimal solution to the beamforming vector
b, that would maximize the SINR gain over the SIMO case. In Figures 6.5 and 6.6,
we show the histograms of the SN R gains P(b) for n = 4 and n = 8, when the two
multipath arrive randomly within an angle of 60° of each other. As in the ISI-free

case, the gain is > n/L. The gain is usually much greater than the lower bound. The
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gain upper bound of n is achieved when the multipaths are spatially close together.

1.8 1

161 B

1.2 1

3 35 4 45 5 5.5 6 6.5
Coding gain in dB

Figure 6.5: Histograms of the SNR gain P(b) for n =4

The entire SIMO and MIMO transmission systems were simulated by transmit-
ting and maximum-likelihood (Viterbi) decoding, using the delay diversity code with
a QPSK signal constellation. The frame length was chosen as 100, and 10, 000 frames
were transmitted. Here we considered two multipath angle pairs, different from the
ones used in previous section, {30°,35°} and {30°,75°}, to illustrate the performance
of the system. Figures 6.7 and 6.8 show the frame error rate as a function of the SNR
for the above cases, for n = 1,4,8. SNR is defined as in Section 6.5.1. It can be seen
that when n increases, the SNR gain allows better performance at a given SNR,

even though the diversity is the same in all cases. And as discussed in Section 6.4,
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Figure 6.6: Histograms of the SNR gain P(b) for n =8

the SN R gain is significant, especially in the case of the angle pair {30°,35°},where

the multipaths are spaced close together.
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Chapter 7

Blind OFDM Symbol

Synchronization in ISI Channels

7.1 Introduction

Recently, there has been considerable interest in using Orthogonal frequency division
multiplexing (OFDM) systems for wireless transmission [65], such as in Digital Audio
Broadcasting (DAB) and digital television. OFDM is a transmission scheme in which
data is simultaneously explicitly sent over several frequency bands. The resilience of
OFDM systems to frequency selective fading can be attributed to the cyclic prefix
inserted between symbols, that allows decomposition of the channel into independent
subchannels by use of the Fast Fourier Transform (FFT). However, a consequence
of this ‘frame’ structure of an OFDM symbol, is that it becomes important for the
receiver to identify the beginning of each new symbol. This is the problem of symbol

synchronization. Usually, once the correct symbol synchronization has been achieved,

107
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tracking this position is a simpler problem. The previous chapters dealt with flat fad-
ing channels (frequency selective fading was considered in Section 6.4, but detection
issues were glossed over). Frequency selective fading introduces an additional com-
plication, because of intersymbol interference. However, OFDM is an example of a
wideband system to which the results of Chapter 2, 3, 4 can be applied with only
minor modifications. log(1+ P,g,) is replaced with the sum of capacities over the N
frequency slots Z,ivzl log(1 + Pyngkn). In this chapter however, we switch topics and
show how frequency selectivity causes complications in the detection of the signal; in

particular we look at the problem of symbol synchronization.

Symbol synchronization can be achieved by transmitting pilot symbols. However,
this is an unnecessary waste of bandwidth, especially in broadcast systems, where the
transmitter would have to keep transmitting pilot symbols periodically to allow new
users to synchronize. Therefore various schemes have been proposed [57],[29],2],[47]
that use only the transmitted symbol statistics for symbol synchronization. These
blind methods essentially exploit the redundancy in the cyclic prefix, and therefore

do not require additional pilot symbols.

However, the blind synchronization methods proposed to date assume in their
analysis that the channel is free of Intersymbol Interference (ISI). Whereas they are
extremely efficient in their use of symbol statistics, they do not guarantee correct
synchronization when the channel has ISI. Also, they assume that the various tones
in a symbol carry data that is i.i.d. In particular, if the symbol is shaped by a non
constant power profile, special techniques may be required by these algorithms to

handle the pulse shape [26]. See [36] for a comparison of some of these methods.

This chapter presents a new algorithm for blind symbol synchronization, which
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given sufficient signal statistics, is guaranteed to achieve correct symbol synchroniza-
tion even in the presence of ISI. The algorithm is necessarily more complex than any of
the algorithms proposed earlier, and requires more statistics. However, the guarantee
of correctness is an attractive feature, especially in fixed receiver broadcast systems,
where a particular user may not have much choice in the (nearly time-invariant)

channel it sees. We have presented some of the results of the chapter in [41].

The chapter is organized as follows. The problem is formulated in Section 7.2. In
Section 7.3 we present the theoretical basis on which the new algorithm is based. It
will be shown that the ranks of certain autocorrelation matrices convey information
about the correct symbol synchronization position. In Section 7.4, we show how these
ideas can be used in a realistic scenario, where we only have a noisy estimate of the

autocorrelation matrices. Section 7.5 illustrates these ideas with simulations.

cyclic discard

prefix prefix

9 {n.} "
g @ s E—
c & vy.}| T I
o] L I l o] 5
e : 3 Channel [ : : =
8 .|k s = O N =
o . & 5 5 tlg
=} = 3
8 ]
Lo L

Figure 7.1: Basic OFDM system
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7.2 Problem Formulation

7.2.1 Notations

Standard notations are used in this chapter. Bold letters denote vectors and matrices.

Other notation are as follows.

)
)

()t Transpose

()"

(-)1/ 2 (any) Square root of positive definite matrix
|

Hermitian

n n X n Identity matrix
(+) Estimate of (+)

R,(1) = E{zz}

p[()] Rank of matrix (-)

7.2.2 OFDM System

The basic baseband-equivalent OFDM system is shown in Figure 7.1. The system

equations in the time domain can be written as

z; = Hx; (7.1)

Yi = Z+1n;

Xi = (TiyTig1, s TNqwgio1) , vector of length N + v

n; = (N, Mg, ONgr—Lotio1) , similarly z;,y; are of length N + v — Ly
hr, <+ ho 0 0

H = 0 0 = (hg,...,hxy, 1)

0 0 hp - ho
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where
N Number of OFDM tones
v Cyclic prefix length
Ly Maximum length of channel allowed
L Length of specific channel (A = Ly — L > 0)
1 Time subscript

{hi;i=0,...,L}  Channel impulse response

{z;,i=...,0,...} Time domain transmitted data
{ni,i=...,0,...} Time domain noise

{z;,i=...,0,...} Time domain noiseless output (unmeasurable)
{y;,i=...,0,...} Time domain noisy output (measured)

Note that {xXg,Xni,,Xoni20,-..} are the successive transmitted symbols, each a
vector of length N + v. The cyclic prefix in the symbols implies =z pniy) =
xi—l—N—Fp(N—H/)’ 1= 0, Y 1, i p.

Figure 7.2 illustrates the notation defined above.

7.2.3 Assumptions

It is assumed that the transmitted symbol vectors {xo, Xy, ...} are identically dis-
tributed. Thus, the sequences {z;}, {z:}, {v:} are cyclo-stationary with period N + v.

The channel is assumed to be at least one tap shorter than the cyclic prefix
(i.e. maximum channel length Ly < v). This assumption is slightly stronger than
the assumption normally used, i.e. Ly < v. This assumption is usually satisfied in
OFDM systems by appropriate choice of parameters N, v.

The channel will be assumed to be time-invariant (or at least slowly time-varying)
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Figure 7.2: Notation for the data and received signal sequences

so that second order statistics of the output signal can be collected. This assumption

is valid for fixed receiver broadcast OFDM systems.

The noise will be assumed to be additive, white and Gaussian (AWGN). The
transmitted data {z;} will also be assumed to be Gaussian. This is a valid assumption
for OFDM, when N is large. The assumption is required so that the MDL criterion

can be used to estimate the ranks of certain matrices [59].

It is further assumed that the transmitted data (except for the cyclic prefix) is
statistically non-degenerate, i.e. if we strip the cyclic prefixes from the transmitted
data, then with probability one, no data element in the resulting sequence can be
expressed as a linear combination of other elements in the sequence. This assumption
will be weakened in Section 7.4.3, where a modified algorithm will be described. Note

that no assumption is made on the resulting sequence being i.i.d., unlike [57],[29]. In
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particular, we allow for the transmitted symbols to bear any pulse shape.

7.2.4 Problem Formulation

The problem of blind symbol synchronization in OFDM is to use only the statistics
(in our case, second-order statistics) of the received signal, to identify the correct
positions 7 where the OFDM symbols begin. For a channel of length L, this amounts
to identifying any one of the positions i = —A, ..., —1,0. For these positions, due
to the cyclic prefix, an N-point FFT can be used to decompose the channel into N
parallel independent subchannels [50].

Earlier approaches to this problem (see [36] for a survey) have concentrated on
using the autocorrelation function of the sequence {y;}. They use the information in

the correlation function
(@) = y(k)y*(k + N) (7.2)

Though these algorithms are derived for flat-fading channels, yet they work remark-
ably well in mild-ISI channels. However, they breakdown in the presence of stronger
ISL.

Our goal is to derive algorithms that explicitly account for ISI in channels. Specif-
ically, we would like to use the autocorrelation matrices {Ry (%)} of the noisy output
vectors {y;}. Note that these matrices are well defined because the sequence {y;} is
cyclo-stationary with a period N + v. Also, note that only {t =0,1,..., N +v —1}
need be considered, because of the cyclo-stationarity.

However, in practice, only an estimate R v (%) of these matrices is known, say by

time-averaging over P vectors; Ry (i) = 5 Zp 0 Yitn(N-+0)Y it p(N-+0)-
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The problem is therefore, given the estimates {ﬁy (¢),i=0,...,N+v—1} (these
matrices are known in the correct order, but without knowing which one corresponds

to i = 0), to identify any one of the positions {—A, ..., —1,0}.

7.3 Theoretical Basis For Blind Symbol Synchro-

nization

In this section, we describe the basic theorems that will be used for blind symbol
synchronization. We first assume knowledge of the exact autocorrelation matrices
{R,(i),i = 0,...,N + v — 1}, and make some fundamental observations about the
behavior of their ranks. It will be shown that the ranks can be used to identify the

correct synchronization positions.

We first begin by bounding the ranks.

Lemma 4 The rank of the autocorrelation of the noiseless output vector can be

bounded as

a(t) < p[RL(7)] < gu(7) where the functions

. N+li|l—Ly i=-v,...,0,...,v
a(@) =
N+v—-Ly, i1=v,...,N

N+|’L| i=—(V—Lo),...,o,...,(l/—Lo)

gu(i) =
N+V—L0 i:(V—Lo),...,N+L0

Proof: See Appendix A.5 for the proof. O
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Lemma 4 indicates that the rank of the R,(7) matrices may be of use in deter-
mining the correct symbol synchronization. The bounds depend on the position ¢
selected. They are minimum for the correct synchronization position ¢ = 0. More
importantly, the lemma shows that the R, (7) matrices have a rank of at least N — L,
a fact that will be used in Section 7.4 to simplify the computations.

Next, we state the main theorem, that describes the behavior of p[R,(7)] in detail.

Theorem 4 For a channel where L = Ly, p[R,(7)] has the following behavior

PR, — )] — i i=-v,...,—(v— L)

pR,(i—1)] -1 i=—-(w—Ly—1),...,0
PR(1)] = q pRLGE+1)]—1 i=0,...,(v—Ly—1)

PR, G+ 1) =i i=w—Lo),...,v

| N+v—Lg i=v,...,N

where p; € {0,1} are unknown integers.

Proof: See Appendix A.6 for the proof. O

Theorem 4 provides a clear idea of the synchronization method that can be
adopted. It shows that as the chosen position 7 gets closer to the correct synchro-
nization position (i = 0) from either side, the rank of R, (%) is non-increasing, and in
fact decreases near 1 = 0. This shows that the correct position ¢ = 0 is the position
of minimum rank for the matrices {R,(¢),s =0,..., N +v — 1}. It is also clear that
the rank cannot decrease by more than v.

Theorem 4 is restrictive because it assumes a channel of length exactly Ly. In
most realistic scenarios, the channel will be shorter than the maximum allowed. The

next corollary extends Theorem 4 to this general case.
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Corollary 1 For a channel where L < Lo, p[R,(7)] has the following behavior

PR (G =] —p; i=-v,...,—(v—1L)
plRz(i—1)] -1 i=—-w—-L-1),...,—-A

SR = 0 pIR(0)] i=-A,...,0
pRz(i+1)] -1 i=0,...,(v—Lo—1)
PR (i +1)] =i i=(v—Lo),...,(v = A)
| N+v—Lo i=w=-A4),...,N

where p; € {0,1} are unknown integers.

Proof: A was defined earlier as A = L — Ly. See Appendix A.7 for the proof. O

The Corollary shows that the effect of a short channel L < Lg is to increase
the number of positions of minimum p[R,(7)] from {i = 0} only, to the set S, =
{ili = =A,...,—1,0}. Noting that the positions of correct symbol synchronization
are indeed the set S, for a channel of length L, we conclude that the minimum rank
criterion can yet be used for symbol synchronization.

The behavior of p[R,(7)] is illustrated in Figure 7.3 for the case N = 128, v =
32, Ly = 26 for channels of various lengths. It is clear that the positions of the minima
can be used to identify the correct synchronization position.

All the previous observations assumed knowledge of R, (), which can only be

obtained in the absence of noise. The next theorem (trivially) extends these results

to the case of AWGN.

Theorem 5 In the case of a frequency-selective AWGN channel for which L < v,
and the noise variance o2 is known, the correct symbol synchronization positions
Se=(i=—-A,...,—1,0) can be identified by seeking those i, for which the number

of singular values of Ry (i) that are equal to o2, is mazimum.



7.3. THEORETICAL BASIS 117

145
Upper bound on rank
- - - Lower bound on rank
140 - N
Rank for various channgls
¢ ¢
135 R

130

ol R(0)}

125

120

115

| | | | |
-40 =30 -20 -10 0 10 20 30 40
Synchronization position i

110 : :

Figure 7.3: Theoretical behavior of p[R,(7)] for some channels: N =128, v =32, L, =
26

Proof: Corollary 1 shows that p[R,(7)] is minimum for all i = —A,..., —1,0, and

only for these positions. These are the positions of correct symbol synchronization.

In the AWGN case with noise variance o2, we can write

Ry(i) = Ry(i) +02Iysui,

By the spectral shift theorem, we see that

p[R.(7)] = (N +v — Ly) — (number of singular values of p[Ry(7)] that equal o?)

Therefore, the positions of correct synchronization can be identified as specified in
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Theorem 5. O

7.4 Practical Considerations

The ideal method to estimate the correct position(s) of symbol synchronization would
be to jointly estimate the ranks of the matrices {R,(7),i = 0,...,N +v — 1} (from
matrices {Ry (i)}, making use of the spectral shift theorem), and then use Corollary
1 to estimate the position. The optimum solution to this is non-obvious.

As a first attempt, we could simply find the minimum rank R, (i), and thus the
correct synchronization position, as specified in Theorem 5. Therefore, the problem
reduces to estimating the rank of matrices {R,(i),i =0, ..., N+v—1} separately, and
searching for the minimum. In practice, however, we only have estimates {f{y(z)} of
{Ry(7)}. Since this is invariably noisy, it becomes important to use a mathematically
plausible method for the rank estimation. We use a modification of the well-known
rank estimation method proposed in [59], that’s based on Rissanen’s Minimum De-

scription Length (MDL) criterion.

7.4.1 Estimation with o2 known

It is shown in Appendix A.8 that the MDL criterion to compute an estimate p[R, ()]

of the rank of R,(7), applied to the case of known o2, reduces to

> >

PIRL(1)] = argmin { ZO (log(—p)Jr(/\—Z))

ke{N—Lg,...,N+v—Lo} p=N—Lo+1 D

(k2(N+v—Lo) —k+1)+ 1)} where
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A, p=1,...k
A = "
o2 p=k+1,...,N+v—1L
and {\1, ..., Avso_r,} are the singular values of f{y(z’), arranged in decreasing order

of magnitude. Note that only the smallest v singular values need to be computed.
Note again that P is the number of vectors averaged to calculate f{y(z)

Therefore, the algorithm for symbol synchronization is as below:

Algorithm Symbol synch() :
1. Compute {f{y(z),z =0,1,...,N 4+ v — 1} by time-averaging over P received

. S0 P-1 .
signal vectors; Ry (i) = %szo Yitp(N+)Yitp(N4v)"

2. Use the {Ry(i)} to compute {p[R,()],i =0,1,..., N +v — 1}, using the MDL

criterion described above.

3. Estimate the position(s) of correct synchronization as the set S,

Se = {ii= argmin {p[R.(i)]} }
i€{0,.... N+v—1}
4. Since the algorithm works with noisy data, we check for the validity of the result
using Corollary 1. i.e. We check that the function p[R,(¢)] (as a function of
i) behaves as specified in Corollary 1. If not, we have the option of applying
heuristics (such as checking for a ‘reasonable match’). Alternately, we could
declare a mis-estimation due to lack of statistics, and repeat from step 1 again,
using a larger value of P. This is not necessarily a lot more computation, be-
cause the recomputed singular values will be close to the previous set, and so the

previous set can be used as a good initialization point for the re-computation.
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7.4.2 Estimation with 02 unknown

When o2 is unknown, one could think of using the method described in [59] (Wax-
Kailath method), which jointly estimates rank and o2. The problem however, in
applying the method directly to our case, is that the method essentially estimates
rank based solely on the clustering of the smallest singular values - it does not take
into account their absolute magnitude. Therefore, it is possible that it would declare
a low rank for f{z(z) even though it is ‘supposed to be full rank’.

Therefore, our approach is to use the Wax-Kailath method to compute {p[R(7)], ¢
0,..., N+ v —1}. This then gives us an estimate of the ‘noise variance’ 62 for each
i. Since ideally, the smallest singular value is equal to o2, hence we choose the lowest
of the computed noise variances, and declare it as 2. Then we can use the algorithm

in Section 7.4.1 to estimate the correct symbol synchronization position.

7.4.3 Computational Complexity

The new algorithm seems to be prohibitively computation intensive, since it requires
N + v singular value decompositions, each on a (N + v — L) x (N + v — L) matrix.
However, a closer look at the proof of Theorem 4 and Corollary 1 shows that it is
sufficient to consider matrices Ry (%) in place of the matrices R, () respectively, where

the vectors u; are
¢
u; = (Zz Zi+1 """ Ri4v—1 EN—Lg—1 RN—-Ly " ° ZN+u—L0—1) (7-3)

i.e. the vectors u; are formed from the top and bottom v elements of the vectors z;
respectively.

R, (%) satisfies Theorem 4 and Corollary 1, except that the maximum rank is
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now 2v instead of N 4+ v — Ly. Therefore, the correct symbol synchronization can be
identified by applying Theorem 5 on matrices Rq () in place of the matrices Ry(7)

respectively, where the vectors q; are defined as

& = (Y Vi1 ** Yitw—1 YN—Lo—1 UN—Lo *** YN+v—L0—-1)" (7.4)

Thus, the modified algorithm requires (N + v) SVDs, each on a 2v X 2v matrix
only. Since v is usually much smaller than N, hence this offers substantial savings in
computation.

Another direct benefit of this modified algorithm is that it is no longer necessary
to insist on non-degeneracy of the transmitted signal (Section 7.2.3). In fact, often
transmission is turned off in some OFDM tones, which would result in a degenerate
signal. However, as long as the number of active tones is at least 4v, the various
R (7) matrices (Appendix A.6) are always full rank, and thus the various proofs hold.
Therefore, even in such a case, the algorithm achieves the correct synchronization.

Further savings in computation can be achieved by using the following two ob-

servations

1. The MDL rank estimation procedure described in Section 7.4.1 shows that only
the smallest v singular values need to be computed for each f{y (7). This is also
true for f{q(z’). Various specialized algorithms can do this quickly [21].

2. The matrix f{q(i + 1) can be obtained from f{q(i) by replacing a two rows and
two columns. To recompute the singular values therefore takes only O((2v)?)

operations [21].

Either of these observations can be used to gain significant computational savings.
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7.4.4 Consistency of Algorithm

It is shown in [59] that the rank estimation method presented there is consistent.
i.e. The estimator yields the correct rank with probability one, as the sample size P
increases to infinity. A similar argument can be made to show that the algorithms
proposed in this chapter are also consistent. Thus, we will always identify the symbol
synchronization positions correctly, provided we are willing to wait and collect suffi-
cient statistics. This is in contrast to the methods presented in [57],[29],[2], where no

guarantees can be made for ISI channels.
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Figure 7.4: Impulse response of SEN channels
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Figure 7.5: Decision functions used by Beek-Sandell algorithm. Synchronization po-
sition estimate is the maximum of the decision function

7.5 Simulation Results

To demonstrate the performance of our method , we choose the case N = 128, v =
32, Ly = 26. We compare the performance to that of the maximum likelihood based
synchronization algorithm proposed in [57] (Beek-Sandell), which is typical of the
auto-correlation function based algorithms (see also [29],[2]). We first illustrate how
the proposed algorithm handles ISI better. We choose a strong ISI case, as in Figure
7.4, at an SNR of 30 dB. Such channels occur in Single Frequency Networks ([47]).
In all cases, o2 is assumed known. Frequency offset is assumed to be negligible (or

corrected by an appropriate algorithm).
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for channel A
66 T

|
0 20 40 60 80 100 120 140 160
position i

for channel B
66 T

56 I I I I
0 20 40 60 80 100 120 140 160

position i

Figure 7.6: Decision function used by the proposed algorithm. Synchronization posi-
tion estimate is the minimum rank position

Both algorithms were run on these channels, and the estimated position of cor-
rect synchronization was found by collecting data from 600 symbols. In the case of
the Beek-Sandell algorithm, the estimated position was considered to represent the
center of the channel, as suggested in [57]. In the case of our method (we use the
modified method described in Section 7.4.3), the estimated position was found using
the algorithm described in Section 7.4.1 (without step 4, so as to illustrate some limi-
tations). Figure 7.5 shows the decision functions used by the Beek-Sandell algorithm.
For both channels A and B, the algorithm determines the position of synchroniza-
tion, as the maximum of the decision function, erroneously shifted from the correct

position ¢ = 0. In contrast, Figure 7.6 shows that the proposed algorithm correctly
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Figure 7.7: Impulse response of channels used for simulation: Channel C5 has more
ISI than channel C;

points out the synchronization position (minimum rank position) as i = 0.

We next choose three cases that will further illustrate the differences between the
two methods. The first two use channels Cy and C, (Figure 7.7) respectively and i.i.d.
data symbols. The third case is that of channel C; but dependent data symbols (i.e.
non-diagonal Ry (0)). Tables 7.1 and 7.2 show the results for these cases. Table 7.1
lists the normalized ‘wall energy’ (i.e. the energy of the channel taps that fall outside
the cyclic prefix, once the method has been used to synchronize the symbols) for an
SNR of 30 dB, but using different number of training symbols P. Table 7.2 lists the

normalized wall energy for P = 2400 symbols, but at different values of SNR.

The tables show that whereas the Beek-Sandell algorithm works well on channels
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with mild ISI (case 1), it can be misled when the channel has a reasonable amount
of IST (case 2) or when the input data symbols are not i.i.d. (case 3). Higher values
of SNR or P do not help in alleviating this problem.

On the other hand, the new method is seen to work reasonably well, and more
importantly, always gives the correct result, provided either SN R or P is large enough.

This is because the method explicitly allows for ISI and colored input data.

(4, i.i.d. data | Cy, i.i.d. data | C', colored data

P New B-S | New B-S New B-S
150 | 0.9957 0 1 0.1296 | 0.9957 1
300 | 0.0028 0 1 0.1296 | 0.9957 1
600 | 0.0005 0 0 0.1296 | 0.9957 1
1200 0 0 0 0.1296 | 0.9957 1

2400 0 0 0 0.1296 | 0.0005 1
4800 0 0 0 0.1296 0 1

Table 7.1: Normalized wall energy after synchronization, using the new method and
using the Beek-Sandell algorithm, for various values of P, and SNR = 30 dB

SNR | Cy,1i.d. data | (s, i.i.d. data | C4, colored data

(dB) | New | B-S | New B-S New B-S
10 | 0.9957 0 0.0130 | 0.1296 | 0.9957 1
18 | 0.9957 0 0 0.1296 | 0.9957 1
26 0 0 0 0.1296 | 0.9957 1
34 0 0 0 0.1296 0 1
42 0 0 0 0.1296 0 1
50 0 0 0 0.1296 0 1

Table 7.2: Normalized wall energy after synchronization, using the new method and
using the Beek-Sandell algorithm, for various values of SN R, and P = 2400 symbols



Chapter 8

Conclusion

This thesis explored the effect of a delay constraint on optimum transmission strate-
gies. Here, the delay constraint was in terms of the fading rate of the channel process
rather than in terms of the symbol rate. A block fading channel model was consid-
ered, and a delay constraint was imposed on data transmission. Thus, processing of
data was assumed to occur in (a small number of) K blocks, each block itself being of
(large) length Ty. The idea was to capture the non-ergodicity of the fading process for
the duration of the data processing, due to the small K, while at the same time allow
limiting arguments to be used to calculate ‘capacity’, facilitated by the large T;. A
general cost function p(z) was considered in solving the delay constrained transmis-
sion problem. Two kinds of power constraints were considered, the short term and the
long term power constraints. The solution to the long term power constraint is better
(results in a higher maximum) because it is a more relaxed constraint. Since the
power adaptation that maximized the cost function had to be causal, hence dynamic

programs were found to provide the optimum power adaptation solution.

The general cost function was then specialized to the case of expected capacity,
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by choosing u(z) = z. Expected capacity is the maximum ensemble-average data
rate that can be obtained by optimizing the transmission power. It was observed
that optimizing the transmitted power does not give much benefit at high SN Rs, but
provides a substantial gain at lower SNRs. At low SNRs, it was proved that the
factor increase in capacity, due to power adaptation, was approximately % if the
channel faded according to the x3,, (Nakagami) statistics. It was also shown that
the long term power constraint solution in the expected capacity case was simply the

memoryless strategy of ‘time-waterfilling’ [20].

The case of outage capacity was considered next. Outage capacity is defined as
the maximum error-free data rate that can be supported at a given outage probability.
Here, outage is the event that a given target rate Ry cannot be supported by a fading
channel over a given time period. It was shown that the optimum power adaptation
solution to the long term constraint problem gives a substantial SNR gain at both
low and high SN Rs. The solution to the short term constraint problem however does
not provide any SNR gain at high SNRs. It was shown that whereas the outage
probability is inversely related (with a power of m) to the SNR in the short term
case, it is related at least exponentially in the long term case. Thus we can expect
the SNR gain of the long term constraint solution over no power adaptation, to
increase with decreasing outage probability. However, the effect of discretization of
the dynamic program state space reduces the SNR gain. Random coding bounds
were also considered for the outage capacity case. These are non-trivial because in
this case, the codewords span K fading blocks. It was seen that 7, = 100 may be

enough to get the decoding error probability close to the outage probability.

A stationary version of the outage probability problem was also considered. The
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formulation used an exponential window which weighed the past data rates to ap-
proximate a K block window. Stationarity was introduced in the formulation by
considering a time-averaged optimization. The solution involved linear programming.
An SNR gain was observed when the optimal power control was used rather than a
constant power scheme.

Space-time codes were considered as an example of the use of outage probability.
In particular, the case of an outdoor wireless multi-antenna transmission system was
considered. It was shown that maximum diversity and SN R gain could be obtained
by simply combining space-time codes with an appropriate ‘beamformer’. Thus, we
could separate the signal processing and the coding aspects of the transmitter and
optimize each separately.

Finally, the problem of blind symbol synchronization in OFDM was considered.
It was shown that the ranks of certain autocorrelation matrices contain information
that can be used to blindly synchronize the received signal, even in the presence of
multipath. As opposed to previously existing blind synchronization methods, the new

algorithm was shown to guarantee correct synchronization asymptotically.



Appendix A

A.1 The method of bisection

The method of bisection can be used to minimize a one-dimensional convex function
®(z) over the domain 0 < z < 1 (clearly the domain can be generalized to any

bounded interval). One such variation of bisection is described below,

Algorithm Bisection() :
Initialize x1 =0, o = 0.5, 3 = 1.

Do,

1. If 29 — 21 > x3 — x5, choose 7y = “TJ’“ and reorder the points in increasing
order as, T3 — x4, To — T3, Lo —> To,T1 —> T1.
If x5 — 21 < @3 — %9, choose zp = 22522 and reorder the points in increasing
order as, Ty — T4,To — T3,To — T9,T1 — T1.

This step bisects the larger of the two intervals.

2. If ®(z3) < ®(z3), then reorder the points as o — x1, T3 — Ta, T4 — T3.
If (I>(.’L'3) > (I)(.l'g

This step rejects the subinterval that clearly does not contain the minimum.

), then do not reorder the points (simply throw away ).
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until z3 — 1 < €, where €, > 0 is some preset threshold.
Return ®(z5) as the solution.

End Algorithm

Some thought will show that this algorithm should find the minimum of any

convex (or even quasi-convex) function.

A.2 A refinement of the upper bound in Section

4.5.3

Whereas the Monte Carlo calculation in Section 4.5.1 is very complex, the dynamic
program in Section 4.5.3 results in a looser upper bound. One way to retain the
dynamic programming flavor of calculating the bound and yet yield a tighter bound
is to partition the calculation of the bound into several sums, each of which are

optimized separately as below,
< i — (K) .
Por < Xj:{ Jin gm]isj[ exp(—KTE;(p,q(X),g"",R)) | } (A1)
This is tighter than (4.24) which uses only a single set S; = g). The sets {S;}
can be any convenient partition of the set {g(!)}. In particular, we choose them
as Sj = {g(K) . Rth,j—l < R(K+1) < Rth,j}, where {Rth,o = O,Rth,l,Rth,Q,...} is
any partition of the interval [0, KRy]. Note again that R(X*1) is the target rate

remaining after K transmissions, i.e. K Ry— achieved rate. The jth summand in

(A.1) can be calculated by algorithm Calculate_error(p), with the modification
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that the initialization in step (3) is done using the indicator function,

1 Ry < REFD <Ry
vicr1(Zxi1) =
0 else
This increases the complexity of the bound calculation by a factor equal to the number
of sets §; in the partition. At the very least, we could choose two sets by choosing
Rio = 0,Rppy = KRy — KR, Ry, = KRy. In this case we can see that the 2nd
summand is optimized by p; = 0, because all ¢®)eS, result in achieving a rate

smaller than the code rate R. This modification itself should significantly tighten the
error bound (A.1).

A.3 Proof of optimal beamformer for ISI-free case

Proof: Let the SVD of A be:

A = TEQ = T (Z4]0) (Qu OV
nxL

The maximization criterion can be written as det[XVV*X*], where V=Q*W. The
criterion further simplifies to det[X, V' V% 3% | = det[X X% | det[V V], where V* =
(V% | V*). Meanwhile, the constraint trfWW?*] = L simplifies to tr[VV™] = tr[V*V] =
tr[VE V] +tr[V*V_] = L. Since V_ does not appear in the maximization criterion,

we choose V_ = 0. Thus the problem is now to

maximize  det[V* V] (A.2)

Vi

subject to tr[ViV, ] =1L
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The solution to this is to choose V, = I, which implies that W = QV = Q.. Il

A.4 Proof of lower bound on gain for linear array

Proof: The special structure of the linear array response allows us to write for the n

antenna case

where Z; = ALA} and Z, = (DAL A3DS | -+ | Dn/LALAzD;/L). Here,
A, , A are the A matrices for the n and L antenna case respectively, while the Ds
are diagonal matrices with unit magnitude diagonal entries.

Now the concavity of the logdet(Z) function for positive definite matrices Z

allows us to conclude that ([24])
det[8Zy + (1 — B8)Zo] > (det[Z])"(det[Z,])' " (A.4)

for positive definite Z,Zs and 0 < 8 < 1. So, by induction,

wind = (o) (s 27])

Y

(%)L det[ALA*] (A.5)

Noting that (det[X])? = det[AA*], the stated SNR gain inequality follows.
Note that a similar inequality would hold in a variety of antenna array configurations,

where the array response matrix has the key structure of (A.3). O
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A.5 Proof of Lemma 4

Proof: We have the inequalities [24]
plA] + p[B] -k < p[AB] < min{o[A], p[B}

where k is the number of columns in A.

Recognizing that

R,(i) = HR,(i)H",
pR.()] = p[RY*(9)],

pRx(1)] = p[RY*(i)]
we can identify A = H, B = R/?(i), AB = R//?(4), to get
pH] + p[Rx(9)] — (N +v) < p[R4(i)] < min{p[H], p[Rx(d)]}

Noticing that each repeated element in x; (due to the cyclic prefix) causes loss of rank
by one in R(7), and also, because the non-repeated elements (the data) are non-
degenerate, we obtain the bounding functions g;(7) and g¢,(7) as specified in Lemma

4. U
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A.6 Proof of Theorem 4

Proof: Case 1: Consider i € {(v — Lo),...,(v —1)}

Because of the cyclic prefix (that repeats elements), we can write (7.1) as

z; = erWz
where w; = (z T x )t
i = vye+-yLNyeoo sy TNty—19--+y LNtv—1+i) -
We can write #H; in terms of its columns as H; = (vo, Vi,...,VNii 1)

since N > Ly is assumed, we can relate the {v;} to {h;} as

Vi = hlc—l—u—z' k=O,...,N—V—i—’i—1,N,...,N+i—1

Ve = hk+y_i+hk+,j_i_N k:N—V+i,...,N—1

Similarly, we can write

Zit1 = Hi+1wi+1

with the appropriate definitions.

Again, writing H; 11 = (Vo,V1,...,Vny;) we can relate {vx} to {h;} as

Vi = hk+u—i—1 k=0,...,N—l/+i,N,...,N+i

Vi = by i +he i N k=N-v+i+1,...,N-1

135
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From (A.6),(A.7), it is clear that

Ve = {}k—}—l kIO,,N—Q,N,,N+Z—1

VN_1 = \7]\7‘*‘{/’0

Since the rank of a matrix is the maximum number of linearly independent columns,

and we are losing at most one degree of freedom in #; as compared to #;.1, hence,

plHi] = p[Hiz1] — i wi € {0,1} is an unknown constant

i.e. Rank decreases by at most one in going from #;,; to H;. By the assumption of

non-degeneracy of the input, Ry () and Ry, (7 4+ 1) are full rank, and so we can write

pIRA(1)] = p[Hi],

pRA(+1)] = p[Hin]

thus giving the result stated in Theorem 4 for this case.

Case 2: Consider i€ {—(v—1),..., (v — L)}
If we flip the column vectors z; and x; upside down (re-index their elements as
-+-3,2,1 instead of 1,2,3,---), then (7.1) will change to a new convolution equa-
tion, but with the channel taps hg,..., hr, in reverse order. The same analysis as

carried out above will apply, showing that

pRL(I)] = pRa(i =) =i i=—=(—1),...,=(v = Lo



A.6. PROOF OF THEOREM 4 137

Case & Consider i€ {v,...,N}
In this case, w; = x;, and Ry (7) is full rank. So, p[R4(i)] = p[H] = N +v — L.

Case 4: Consider i€ {0,...,(v—Lo—1)}

As in case 1, we can write

z; = H;w;,

Zit1 = HiviWip

Call the first row of H; as (H;)1, so that H; = ((H;)!,H!)!. Due to the special
structure of H;, its first row is identical to its Nth row.
By observing the structure of H; we can write

7 o
0 hp, -+ h

Hip =

ho

Now, the two observations made earlier allow us to conclude that

plH:| = p[Hi]
= p[(#il0)]
= pHin] -1
pIRA4(1)] = p[R,(i+1)] -1

Case 5: Consider i€ {—(v — Lo —1),...,0}
This can be analyzed by flipping column vectors z; and x; upside down (re-indexing

their elements as - - - 3,2, 1 instead of 1,2, 3, --) and noting that this case reduces to
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case 4.

Combining the results for the five cases proves Theorem 4. O

A.7 Proof of Corollary 1

Proof: Since L < Ly, hence (7.1) can be modified as

hy --- ho 0 0 Ti+A
z; = 0 0
0 0 hr -+ ho Lit N+v—1

Notice that if we replace {Lg,v} by {L,v — A}, then the case i € {0,1,..., N} can
be analyzed in exactly the same manner as in Theorem 4. The result found there
for this case, will apply here, with the above replacements. Note that due to the

short (L taps) channel here, at most ¥ — A prefix elements can occur in any vector
(xi—f—Aa e 7~Ti+N+u—1)t-

For the case, i € {—A,...,0}, we conclude that p[R,(7)] = p[R4(0)] because

each of these has exactly v — A prefix elements in the corresponding vector

(37i—|—A7 i axi—}—N—H/—l)t-

The analysis of the case i € {—v,...,—A} is similar to the analysis of the case

i€ {—v,...,0} in Theorem 4.

Combining these results, we get Corollary 1. O
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A.8 Rank Estimation using MDL

The MDL criterion can be used to estimate the ranks of autocorrelation matrices
[59]. Here we derive the criterion for the case of known o2. According to the MDL

criterion, the rank estimate p|R,(7)] can be obtained as

PR,())] = argming g {—log(f({y:} | R)) +

log(P
% - (number of free parameters in R)}

where the matrix R — 021 has rank k. f(-) is the likelihood function for the received
signal {y;}, given underlying autocorrelation model R. Now, the number of free
parameters in R is 2k(N + v — Ly) — k? + k, obtained by noting that the rank of the
size (N + v — Ly) matrix R — 021 is k, and that it is complex orthonormal. Further,
due to the Gaussian assumption of {z;}, {y;} are also Gaussian. For ease of notation,
define N + v — Ly = M. Define the SVD R, (i) = USU". Then,

fUy}IR) = exp(—P - Trace[Ry(i)R™!]) (A.8)

1
7™ det(R)

Therefore,

PRz ()] = argmin, g {P . Trace[f{y(i)R_l]+logdet(R)+

log(P)
2

- (number of free parameters in R)}

Using the Hadamard inequality ([24]), it is seen that the minimization over R is
partly achieved by choosing R = UXU*. Minimizing further over X, enforcing the

k rank condition of R — ¢2I, and simplifying the expression by removing constant
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terms, we obtain the MDL criterion specified in Section 7.4.1. It is sufficient to check

the minimization for ¥ > N — Ly because of the lower bound on the ranks, as shown

in Lemma 4.
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