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Research Overview

Network design and performance analysis 

for reliable inference in distributed systems

How can we leverage network structure to better understand and design socio-technical systems?

Modeling, analyzing, and controlling

spreading processes in social networks
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IEEE ICC ’21 (Best Paper Award)
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Thrusts

Contributions

Ongoing, 

future work
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Research Overview

Network design and performance analysis 

for reliable inference in distributed systems

∑

How can we leverage network structure to better understand and design socio-technical systems?

Formal characterization of strength of 
connectivity of ‘random K-out graphs’ 

Privacy-scalability frontiers in

distributed & decentralized learning

Modeling, analyzing, and controlling

spreading processes in social networks
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Contributions

Ongoing, 

future work

Theme
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Research Overview

Network design and performance analysis 

for reliable inference in distributed systems

∑

How can we leverage network structure to better understand and design socio-technical systems?

Analyzing spreading processes

trigerred by evolving contagions

Proceedings of the National Academy of Sciences, ’23

IEEE ICC ‘23

Decentralized contentent moderation

Cross-platform interactions & information spread 

Formal characterization of strength of 
connectivity of ‘random K-out graphs’ 

Privacy-scalability frontiers in

distributed & decentralized learning

Modeling, analyzing, and controlling

spreading processes in social networks
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Research Overview

∑

IEEE Transactions on Information Theory ’21, ’23

IEEE ICC ’21 (Best Paper Award)

ISIT ’21, ’20, CDC ‘20, Globecom ’19

How can we leverage network structure to better understand and design socio-technical systems?

Analyzing spreading processes

trigerred by evolving contagions

Proceedings of the National Academy of Sciences, ’23

IEEE ICC ‘23

Formal characterization of strength of 
connectivity of ‘random K-out graphs’ 

(Today’s focus)

Network design and performance analysis 

for reliable inference in distributed systems

Modeling, analyzing, and controlling

spreading processes in social networks

(Joint work with O. Yagan and E. C. Elumar)
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For K ≥ 2, connected with high probability (with probability → 1 as # nodes →∞ ).

(for K = 1, disconnected with high probability)

[Fenner and Frieze ’82]

Random -out 
Graphs 

K
ℍ(n, K)

Connectivity
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K-out: 


sparse-connected-distributed

For K ≥ 2, connected with high probability (with probability → 1 as # nodes →∞ ).

(for K = 1, disconnected with high probability)

Random -out 
Graphs 

K
ℍ(n, K)

With average degree ~ 4, we get connectivity whp

[Fenner and Frieze ’82]
Connectivity
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K-out: 


sparse-connected-distributed

For K ≥ 2, connected with high probability (with probability → 1 as # nodes →∞ ).

(for K = 1, disconnected with high probability)

With average degree ~ 4, we get connectivity whp

In contrast Erdos Renyi random graphs
require average degree ~  for connectivity whplog n

scales with n

Erdos Renyi 
Random Graphs
𝔾(n, p)

[Fenner and Frieze ’82]

Random -out 
Graphs 

K
ℍ(n, K)

Connectivity
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For K ≥ 2, connected with high probability (with probability → 1 as # nodes →∞ ).

(for K = 1, disconnected with high probability)

[Fenner and Frieze ’82]

[  is connected ] = ℙ ℍ(n, K) 1 − Θ(1/nK2−1), K ≥ 2

Theorem
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[Sood and Yagan, ICC’21*]

Random -out 
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*Best Paper Award
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For (homogeneous) random -out graphs,K
So far…

pconnectivity = 1 − Θ(1/nK2−1), K ≥ 2

What if some nodes make fewer than 2 selections?

Inhomogeneous Random -out GraphsK
• Each node is assigned a type which determines the number of selections

• Nodes can make fewer than 2 selections

What if  is not same for all nodes?K



Label nodes independently as 
Type-1 wp μ ( >0),   Type-II wp 1-μ

n: number of nodes

Inhomogeneous K-out Random graph (n = 6,  Kn = 3)
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Label nodes independently as 
Type-1 wp μ ( >0),   Type-II wp 1-μ

Type-1 nodes select 1 node,             

Type-II nodes select  ( ≥2) nodes 
(uniformly at random from all n-1 nodes)

Kn
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∑

IEEE Transactions on Information Theory ’21, ’23

IEEE ICC ’21 (Best Paper Award)

ISIT ’21, ’20, CDC ‘20, Globecom ’19

How can we leverage network structure to better understand and design socio-technical systems?

Formal characterization of strength of 
connectivity of ‘random K-out graphs’ 

Network design and performance analysis 

for reliable inference in distributed systems

(Joint work with O. Yagan and E. C. Elumar)

Research Overview
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Key References


[A’ 82]

k-connectivity1-connectivitya ‘giant’ component

|Cmax| = n|Cmax| =  Ω(n) ensures connectivity despite
any k-1 node failures

Cmax

Increasing strength of connectivity

How to quantify strength of connectivity?



StrongestWeakest

Increasing strength of connectivity

k-connectivity

(k ≥ 2)

1-connectivitya ‘giant’ component

Inhomogeneous 

Random -out 

Graphs

K

|Cmax| = Ω(n)

Related work

Homogeneous 

Random -out 

Graphs

K
Kn ≥ 2 Kn ≥ 2k

|Cmax| = n

ℍ(n, μ, Kn)

ℍ(n, Kn)
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[Eletreby & Yagan, ’19]

[Fenner & Frieze ’82]
[Fenner & Frieze ’82]

Kn = ω(1)

? ?

?

?
Tighter bounds?

what if a random 

subset of nodes fail?
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Research Overview

∑

How can we leverage network structure to better understand and design socio-technical systems?

Formal characterization of strength of 
connectivity of ‘random K-out graphs’ 

Network design and performance analysis 

for reliable inference in distributed systems

(Joint work with O. Yagan and E. C. Elumar)
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Σiwi
wi

Setting:
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compute  

without revealing 

Σiwi
wi

Setting:

⃗w2 ⃗w3

⃗w4

⃗w1

Approach: add pairwise masks 

that cancel in aggregate

-out graphs in action: Distributed pairwise maskingK

[Sabater et al. ’20], [Bell et al. ’20], …
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Σiwi
wi

Setting:

⃗w2 + + ⃗w3 + +

⃗w4 +

+ + +⃗w1

Approach:

-out graphs in action: Distributed pairwise maskingK
add pairwise masks 

that cancel in aggregate

[Sabater et al. ’20], [Bell et al. ’20], …
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Σiwi
wi

Setting:

⃗w2 + + ⃗w3 + +

⃗w4 +

+ + +⃗w1

Approach:

better 

connectivity

Performance trade-off:

but 

raises communication costs

 better masking⟹

[Sabater et al. ’20], [Bell et al. ’20],

-out graphs in action: Distributed pairwise maskingK

…

add pairwise masks 

that cancel in aggregate
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Random -out graphs have been proposed 

to balance sparsity with connectivity

K

-out graphs in action: Distributed pairwise maskingK
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[Sabater et al. ’20], [Bell et al. ’20], …
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Setting: Approach:
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connectivity

Performance trade-off:

but 

raises communication costs

 better masking⟹

Random -out graphs have been proposed 

to balance sparsity with connectivity

K
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compute  

without revealing 

Σiwi
wi

Setting: Approach:

better 

connectivity

Performance trade-off:

but 

raises communication costs

 better masking⟹

Random K-out graphs have been proposed 

to balance sparsity with connectivity⃗w2 + + ⃗w3 + +

⃗w4 +

+ + +⃗w1

 What if there are multiple corrupt nodes?

Is the subgraph of honest nodes connected?


Can we charaterize the size of connected subgraphs of honest nodes?

….

[Sabater et al. ’20], [Bell et al. ’20],

-out graphs in action: Distributed pairwise maskingK

…

add pairwise masks 

that cancel in aggregate
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Our results in action: Distributed pairwise masking

 What if there are multiple corrupt nodes? 

How to select  to ensure privacy properties for the subgraph of honest nodes?Kn

Suppose  nodes chosen uniformly at random from  are corrupt 

Let  denote the subgraph of honest nodes
δn ℍ(n, Kn)

𝕊(n, Kn, δn)
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Our results in action: Distributed pairwise masking

How to select  to ensure as  varies that:


•  is connected whp?


•  whp?

Kn δn

𝕊(n, Kn, δn)

|Cmax(𝕊(n, Kn, δn)) | ≥ Tn

 What if there are multiple corrupt nodes? 

How to select  to ensure privacy properties for the subgraph of honest nodes?Kn

Suppose  nodes chosen uniformly at random from  are corrupt 

Let  denote the subgraph of honest nodes
δn ℍ(n, Kn)

𝕊(n, Kn, δn)
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Our results in action: Distributed pairwise masking

How to select  to ensure as  varies that:


•  is connected whp?


•  whp?

Kn δn

𝕊(n, Kn, δn)

|Cmax(𝕊(n, Kn, δn)) | ≥ Tn

  n(1 − o(1))

o(n), ω(1)
 Kn = Ω(log(δn))

Kn ≥ 2

 What if there are multiple corrupt nodes? 

How to select  to ensure privacy properties for the subgraph of honest nodes?Kn

Suppose  nodes chosen uniformly at random from  are corrupt 

Let  denote the subgraph of honest nodes
δn ℍ(n, Kn)

𝕊(n, Kn, δn)



StrongestWeakest

Increasing strength of connectivity

k-connectivity

(k ≥ 2)

1-connectivitya ‘giant’ component

Key Contributions

Homogeneous 

Random -out 

Graphs

K
Provide  required to ensure 


a given   whp as a function 

of size of random node failures

Kn
|Cmax |

Kn ≥ 2

pcon = 1 − Θ(1/nK2−1), K ≥ 2

Kn ≥ 2k

pcon → 1 even after  nodes failo( n)ℍ(n, Kn)

42

[Fenner & Frieze ’82]
[Fenner & Frieze ’82]

|Cmax| = Ω(n) |Cmax| = n

(additional results for 
other failure regimes)
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Increasing strength of connectivity

k-connectivity

(k ≥ 2)

1-connectivitya ‘giant’ component

For any 
Kn ≥ 2

|Cmax | = n − O(1)
Kn = Ω(log n)Inhomogeneous 


Random -out 

Graphs

K

Key Contributions

Homogeneous 

Random -out 

Graphs

K
Provide  required to ensure 


a given   whp as a function 

of size of random node failures

Kn
|Cmax |

Kn ≥ 2

pcon = 1 − Θ(1/nK2−1), K ≥ 2

Kn ≥ 2k

pcon → 1 even after  nodes failo( n)

after  nodes failo(n)

(even after O(1) nodes fail)

(whp)

ℍ(n, μ, Kn)

ℍ(n, Kn)

43

[Eletreby & Yagan, ’19]

[Fenner & Frieze ’82]
[Fenner & Frieze ’82]

Kn = ω(1)

|Cmax | = n(1 − o(1))

|Cmax| = Ω(n) |Cmax| = n

(additional results for 
other failure regimes)
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Research Overview

∑

IEEE Transactions on Information Theory ’21, ’23

IEEE ICC ’21 (Best Paper Award)

ISIT ’21, ’20, CDC ‘20, Globecom ’19

How can we leverage network structure to better understand and design socio-technical systems?

Analyzing spreading processes

trigerred by evolving contagions

Proceedings of the National Academy of Sciences, ’23

IEEE ICC ‘23

Formal characterization of strength of 
connectivity of ‘random K-out graphs’ 

(Today’s focus)

Network design and performance analysis 

for reliable inference in distributed systems

Modeling, analyzing, and controlling

spreading processes in social networks

(Joint work with O. Yagan and E. C. Elumar)
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Research Overview

Network design and performance analysis 

for reliable inference in distributed systems

∑

IEEE Transactions on Information Theory ’21, ’23

IEEE ICC ’21 (Best Paper Award)

ISIT ’21, ’20, CDC ‘20, Globecom ’19

How can we leverage network structure to better understand and design socio-technical systems?

Analyzing spreading processes

trigerred by evolving contagions

Proceedings of the National Academy of Sciences, ’23

IEEE ICC ‘23

Decentralized contentent moderation

Cross-platform interactions & information spread 

Formal characterization of strength of 
connectivity of ‘random K-out graphs’ 

Privacy-scalability frontiers in

distributed & decentralized learning

Modeling, analyzing, and controlling

spreading processes in social networks
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