
Fast Scalable FPGA-Based Network-on-Chip Simulation Models

Michael K. Papamichael
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, USA

Email: papamix@cs.cmu.edu

Abstract—This paper presents a set of two FPGA-based
Network-on-Chip (NoC) simulation engines that composed the
winning design of the 2011 MEMOCODE Design Contest in
the absolute performance class. Both simulation engines were
developed in Bluespec System Verilog (BSV) and were imple-
mented on a Xilinx ML605 FPGA development board. For
smaller networks and simpler router configurations a direct-
mapped approach was employed, where the network to be
simulated was directly implemented on the FPGA. For larger
networks, where a direct-mapped approach is not feasible due
to FPGA resource limitations, a virtualized time-multiplexed
approach was used. Compared to the provided software ref-
erence implementation, our direct-mapped approach achieves
three orders of magnitude speedup, while our virtualized time-
multiplexed approach achieves one to two orders of magnitude
speedup, depending on the network and router configuration.

Keywords-Network; Network-on-Chip; Simulation; Time-
multiplexing; Virtualization; FPGA;

I. INTRODUCTION

The objective of the 2011 MEMOCODE Hard-
ware/Software Codesign Contest was to build the fastest
simulator for a class of simple Networks-on-Chip (NoCs)
that precisely replicates the cycle-by-cycle behavior of a
given software reference simulator. Our FPGA-based sub-
mission won the Absolute Performance category providing
up to three orders of magnitude speedup over the software
reference design on a Xilinx ML605 FPGA development
board.

The contest reference design supported a large number
of design parameters, which led to a very large design
space consisting of different router configurations, network
topologies and traffic patterns. To effectively cover this vast
design space and at the same time stay within the re-
source limitations of our FPGA development platform, we
implemented two network simulation designs: i) a high-
performance direct-mapped design that laid out the entire
simulated target network on the FPGA and ii) a virtualized
time-multiplexed design used to efficiently simulate larger
network configurations that would not fit using the direct-
mapped approach.

This paper describes our contest submission and is orga-
nized as follows. Section II describes the problem in more
detail and Section III outlines the design principles we ad-
hered to when developing our contest submission. Section IV

provides a high-level overview of our NoC simulator, while
Section V discusses the architecture and implementation
of the two developed NoC simulation engines. Finally, we
present implementation results in Section VI and conclude
with a discussion on related and future work in Section VII.

II. PROBLEM DESCRIPTION

This year’s MEMOCODE Design Contest called for im-
plementing a fast parameterized network simulator that mod-
els a wide range of simple NoCs. Each NoC instance consists
of a collection of routers that can be arbitrarily connected
through bidirectional links that carry data and credits for
flow control. Data links have a single-cycle latency, while
flow-control links may either have single-cycle or multi-
cycle latency. Routers need to support multiple virtual chan-
nels (VCs) and employ a fixed-priority allocator for packet
scheduling that is invoked every cycle. Packets can be single-
or multi-flit and are generated by traffic sources that are at-
tached to each router. Multi-flit packets are allowed to lock
resources as they traverse the network, which requires extra
book-keeping at each router and complicates the allocator
implementation.

The simulator takes two inputs: i) a NoC configuration
that specifies the parameters of the simulated target network
and ii) a traffic pattern. The main parameters specified in
the NoC configuration file are:

• Network topology (list of links between routers)
• Number of routers (up to 256)
• Number of input and output ports per router (up to 16)
• Number of virtual channels per router (up to 8)
• Credit delay cycles (up to 16)
Each traffic pattern input specifies the following informa-

tion for each router:
• Routing information (output port for each destination)
• Number of packets to send (up to 1024)
• Individual packet information (number of flits and VC)
The goal of the contest was to build the fastest NoC sim-

ulator that precisely replicates the behavior of a provided
reference software implementation. During validation con-
testants were given 24 hours to produce NoC simulator in-
stances for a set of five NoC configuration inputs. A set of
traffic patterns was afterwards used to measure the perfor-
mance and verify the correctness of each design against the

MicroBlaze
 NoC Simulator
 (direct-mapped
 or virtualized)

Commands

 Results

Host PC

Figure 1. High-level block diagram of platform consisting of Host PC connected to a Xilinx ML605 Development Board.

reference simulator. For the full contest description please
refer to the official contest document [1].

III. DESIGN PRINCIPLES

Given the strict contest deadline and the short implemen-
tation window we adopted a set of design principles to spend
the available time as efficiently as possible.

Correctness First. Instead of directly implementing a
highly optimized design we split our design time into two
distinct phases, a correctness and an optimization phase.
During the first phase we only focused on producing a cor-
rect design and ignored performance or FPGA resource uti-
lization issues. Correctness was ensured through the use of
python scripts that compared the output of an instrumented
version of the reference simulator against simulation out-
put for individual modules, as well as the entire system.
Only once the entire system was fully validated, did we
start optimizing each component. During each step of the
optimization phase we diligently reran our validation tests.

Parameterization and Modularity. Instead of incremen-
tally adding support for the various network and router pa-
rameters, which would potentially require revisiting each
module multiple times, we directly implemented parame-
terized versions of all the modules in the simulator utiliz-
ing Bluespec’s [2] powerful parameterization mechanisms.
In addition to the parameterization, we tried to carefully de-
velop standard interfaces for each module early in the design
phase to promote modularity and allow for easier localized
optimizations within each module.

Harnessing the power of Bluespec. Overall the use of
Bluespec System Verilog greatly accelerated both the design
and verification time. Bluespec’s static elaboration mecha-
nisms allowed us to quickly design parameterized modules
and define clean module interfaces. Even when substantial
interface changes were required later in the design cycle,
we were able to rely on Bluespec’s powerful type checking
system to quickly identify all of the affected code regions
that required modification and eliminate potential bugs.

IV. DESIGN OVERVIEW

Figure 1 shows a high-level block diagram of the platform
we used, which consists of a host PC that has JTAG and se-
rial (RS232) connections to a Xilinx ML605 development

board [3]. The FPGA on the ML605 hosts the NoC simu-
lation engine and a MicroBlaze processor. Both the direct-
mapped and virtualized implementations of the NoC simu-
lator expose a common FIFO-based interface for accepting
initialization commands from and streaming out simulation
results to the MicroBlaze. Since the MicroBlaze and NoC
simulator might run at different clock frequencies, the FIFOs
between them are asynchronous to allow crossing between
the two different clock domains.

Running Simulations. To setup the FPGA for a given
NoC configuration, the Bluespec compiler is invoked to gen-
erate the Verilog code for the set of parameters specified in
the NoC configuration. The produced Verilog code is then
fed to the Xilinx XST synthesis tool and the resulting netlist
is then connected to the MicroBlaze processor as a periph-
eral on the PLB bus [4]. Once the FPGA is configured,
scripts are used to convert each traffic pattern to MicroBlaze
code that will initialize the traffic tables for each router in the
network along with other simulation parameters. Since the
traffic tables are allowed to contain hundreds of thousands
of entries, the initialization data can grow very large and is
thus stored in off-chip DRAM.

Once the MicroBlaze has initialized all of the traffic and
routing tables through the Commands FIFO, a final com-
mand is sent that triggers the traffic sources and starts the
simulation. The MicroBlaze then starts polling the Results
FIFO until the NoC simulator detects that the simulation has
terminated – either because the traffic is done or because the
maximum number of cycles has elapsed – at which point
the number of simulated cycles along with other statistics
are enqueued in the Results FIFO and then printed by the
MicroBlaze through the serial port.

V. ARCHITECTURE AND IMPLEMENTATION

In order to efficiently cover the vast design space of
different possible NoCs and stay within the resource lim-
its of the ML605 FPGA platform, our contest submis-
sion consists of two separate NoC simulation engines: i) A
high-performance direct-mapped simulation engine that sup-
ports up to moderately sized networks (∼100 routers) with
medium-complexity routers (e.g. 5 ports w/ 4VCs) and ii) a
highly scalable virtualized simulation engine that can handle
the entire design space – including the largest network/router

configurations – by time-multiplexing all target routers in the
simulated NoC using a single virtualized router.

In the direct-mapped approach, the actual simulated tar-
get network is implemented on the FPGA. In other words,
a fully functional prototype of the target network, including
all individual routers, links, traffic sources, etc, is laid out in
its entirety on the FPGA. The benefit of such an approach
is that all routers in the network are simulated in parallel,
thus yielding very high speedup compared to the reference
software simulator. Moreover in our specific implementation
there is a one-to-one mapping between host and target1 cy-
cles, i.e. each cycle on the FPGA corresponds to a cycle
in the simulated network. In hindsight, we discovered that
an additional benefit of having a simulator implementation
that closely mimics the actual network is that the simulator
can be easily converted to a general-purpose network with
minimal changes to the source code.

Even though a direct-mapped approach can provide very
high performance, it is not able to fit all possible NoC
configurations on the ML605. To fill this gap and sup-
port the remaining NoC instances that would not fit on the
direct-mapped engine, we also developed a virtualized time-
multiplexed NoC simulation engine, that uses the FPGA re-
sources in a very efficient manner. In this approach, instead
of simulating all routers at the same time, each router is
simulated in successive FPGA cycles. Even on a moderately-
sized FPGA board, like the the ML605, such a design can
easily scale to support even the largest allowed network
configurations, consisting of hundreds of high-radix routers
with many VCs. However, compared to a direct-mapped ap-
proach, a time-multiplexed implementation has to deal with
additional complications, which are discussed later in this
section.

A. Direct-Mapped Implementation.

In a direct-mapped implementation the network is build as
a collection of router instances that are connected according
to each NoC configuration. Figure 2 shows the architectural
block diagram of a single such router. Each router module
receives flits through a set of input ports and sends flits
through a set of output ports. The first input port of each
router is connected to a traffic source that injects packets
according to a traffic pattern table that is populated during
initialization. Similarly, the first output port is connected to a
traffic sink that drains packets once they have reached their
destination. The remaining input and output ports of each
router are either used to create links with other routers in
the network or may remain unconnected. For each flit link
connecting two neighboring routers there is a corresponding
credit link going in the opposite direction for flow-control.

1Throughout the rest of this paper the term host will be used to refer to
the system on which the network simulator is executed and the term target
will be used to refer to the network that is being simulated.

Out1 (credits)

Out4 (flits)

Out4 (credits)

Out1 (flits)

Out0

…

Flit Buffers

…

VC 0
VC 1

In Ports

In0

In1 (flits)

In1 (credits)

In4 (flits)

In4 (credits)

R
o

u
ti

n
g

A
rb

it
ra

ti
o

n

Sink
Sink

Out Ports

Flit Links

Router Logic

Flit Buffers

Credits

Route Tables

Other Scheduler State

Virtualized Router

Virtual Links

Flit Links

Credit Links

Flit/Credit Conn. Table

Traffic Sources

Traffic Table

≤ 16 BRAMs

≤ 32 BRAMs

≤ 15 BRAMs

≤ 39 BRAMs

≤ 1088 Kbits LUT RAM

≤ 96 Kbits LUT RAM

2 BRAMs

≤ 40% Logic
Runs @ 2-40 MHz

≤ 256 BRAMs

…

Source

VC 0
VC 1 …

VC 0
VC 1 …

R
o

u
ti

n
g

Switch

A
rb

it
ra

ti
o

n

…

Router

Traffic
Table

Arbitration & Flow Control State

VC 0
VC 1

VC 0
VC 1

VC 0
VC 1

Figure 2. Architectural block diagram for direct-mapped router.

During each clock cycle a router receives and stores new
flits from its input ports and forwards previously received
flits through its output ports. Each incoming flit is first pro-
cessed by routing logic to determine the proper output port
it needs to be forwarded to and is then stored in single-entry
flit buffers according to the virtual channel that it belongs
to. To determine which flits will be scheduled to depart from
the router, arbitration logic considers flit buffer occupancy
and credit availability to decide which flits will traverse the
switch and be forwarded through the output ports. In ad-
dition to scheduling flits, the arbitration logic is also re-
sponsible for respecting VC and port priorities, as well as
preventing flits from different multi-flit packets from being
interleaved on the same virtual channel.

Termination Conditions. Additional logic monitors the
system to detect when the simulation has finished, which
can either happen because the maximum number of allowed
cycles has been reached or because all of the packets and
credits in the network have been delivered. The first case
simply requires logic that compares the current simulation
cycle against the maximum number of allowed cycles that
was set during initialization. To deal with the second case the
simulator each cycle constantly monitors all flit and credit
links – including all intermediate links in the presence of
additional credit delay – for activity. If all links are found
to be idle, the simulation is terminated and the results are
printed.

B. Virtualized Implementation.

To minimize FPGA resource usage, our virtualized imple-
mentation of the NoC simulator performs time-multiplexing
using a single virtualized router that simulates a different
target router during each FPGA cycle. Figure 3 shows a
block diagram of the implemented virtualized simulator, at
the heart of which is the Virtualized Router module. In terms
of functionality this module is very similar to the direct-
mapped router, discussed earlier, with the exception that it

Flit Links

Router State

Router Logic

Flit Buffers

Credits

Route Tables

Scheduler State

Virtualized Router

Virtual Links

Flit Links

Credit Links

Flit/Credit Conn. Table

Virtual
Sources

Traffic Table

Delay

Figure 3. Architectural block diagram for time-multiplexed simulation
engine.

only consists of combinational logic; it does not store any
state, but is only used to transform state. Each cycle, it re-
ceives the current state of a router in the system along with
the incoming flits and credits destined to this router. Based
on this information it generates the new router state and
sends any outgoing flits and credits. Once all routers in the
simulated system have been processed by the Virtualized
Router, the simulation proceeds to the next target cycle.

The remaining modules of the virtualized simulator are
used to maintain the state of the various routers in the net-
work and to facilitate flit and credit transfers. In particular,
the Router State module stores the state for all of the routers
in the simulated system, such as flit buffers, credits, route
tables and other scheduling information. Since in the virtu-
alized implementation only a single router is active at any
given cycle, the Router State only requires using a single-
port memory; in contrast, the direct-mapped implementation
requires using multiple memories, because all routers need to
access their state every cycle. In addition to requiring fewer
memory ports, due to the discretization of on-chip FPGA
memory, the virtualized implementation also makes more
efficient use of on-chip memory, because it consolidates and
stores all of the routers’ state in a single monolithic memory.

The Virtual Sources and Virtual Links modules are re-
sponsible for injecting packets into the network and moving
flits or credits between routers. Since only a single traffic
source is active at any given cycle, the Virtual Sources mod-
ule employs the same time-multiplexing techniques as the
Virtualized Router module, thus making more efficient use
of FPGA resources. The Virtual Links module manages a set
of buffers that store flits and credits until it is time to deliver

them to one of the simulated routers. Connection tables, that
are specific to each NoC configuration and are initialized at
the beginning of each simulation, hold information about the
NoC topology and determine the proper set of buffers to be
used by the currently simulated router.

Time-multiplexing and Network Simulation. As has
been shown in previous work [5], [6], time-multiplexing in
the context of network simulation requires special care to re-
tain proper ordering of events and careful state management
to ensure that all routers in the network have a consistent
view of the system. For instance, within a single target cycle,
a router might send traffic to routers that were simulated in
previous host cycles, but also send traffic to routers that will
be simulated in subsequent host cycles. To avoid ordering
violations and properly simulate the concurrent exchange of
flits between all routers, the simulator needs to isolate events
that belong to different target clock cycles.

To deal with such issues our virtualized implementation
employs double-buffering for all flit and credit links in the
network. During each target clock cycle, incoming flits and
credits are read from one set buffers and outgoing flits and
credits are stored in a different set of buffers. In the next
target clock cycle these two buffers are swapped to allow the
network to make progress, but also ensure that events from
different target clock cycles are isolated from each other. If
the simulated NoC specifies extra credit delay, an additional
set of delay buffers is introduced before the existing double
buffers that handle credits.

Termination Conditions. As was the case with the direct-
mapped implementation, additional logic is required to de-
tect when the simulation is finished. However, the time-
multiplexed design requires slighly different logic, because
only a subset of the flit and credit links are exposed each
cycle. Thus instead of monitoring all links each cycle, the
virtualized design keeps track of the number of idle target
cycles. If the number of idle target cycles exceeds the max-
imum link delay in the network, then the simulation has
finished. For networks that specify additional credit delay,
the number of idle cycles, after which the simulation is con-
sidered to be finished, needs to be adjusted to ensure that no
traffic is still active at any of the intermediate credit links.

Critical Path. The router implementation in both the
direct-mapped and the virtualized approach are single-cycle
designs, both to mimic the behavior of the reference simu-
lator and to also minimize FPGA resource usage. This leads
to a long critical path, which is dominated by the arbitra-
tion logic that takes care of assigning output ports to differ-
ent inputs and VCs, while at the same time respecting the
scheduling rules that apply to multi-flit packets.

The fixed-priority arbiter employed in the reference de-
sign considers all VCs, inputs and outputs in succession,
which inevitably creates a very long combinational chain
when implemented in hardware, that grows proportionally
to the number of inputs, outputs and VCs. Since all the

networks specified in the contest need to support single-flit
packets, the arbitration logic cannot be pipelined, because, in
the worst case, a new arbitration decision needs to be made
every cycle. The effect of this long combinational path is
reflected in the synthesis results presented in the next sec-
tion.

VI. RESULTS

To first get a sense of how the two presented NoC simu-
lator implementations scale in terms of FPGA resource us-
age and clock frequency, we present FPGA synthesis results
for both the direct-mapped and virtualized simulator imple-
mentations. We then show more detailed results for the five
specific networks that were used in the contest validation.
TODO: Finally we present with a brief case study that looks
at one of these five networks in more depth.

Direct-mapped Implementation Results. As mentioned
earlier, the direct-mapped implementation of our NoC simu-
lator is a collection of interconnected router modules. Table I
shows FPGA resource usage and clock frequency synthesis
results for different router configurations targetting a Xilinx
Virtex-6 LX760T FPGA. All reported results are for a sin-
gle router within a 256-node network, the largest network
allowed in the contest. As expected, increasing the number
of router ports and VCs leads to higher LUT counts and
negatively impacts clock frequency.

LUTs / Clock Frequency (in MHz)
Router Config. 2 VCs 4 VCs 8 VCs

4 in/out ports 785 / 152 1393 / 101 2848 / 59

8 in/out ports 3243 / 81 6134 / 54 12754 / 33

12 in/out ports 7717 / 62 11596 / 36 19198 / 20

16 in/out ports 11655 / 45 28294 / 30 33689 / 14

Table I
SYNTHESIS RESULTS FOR SINGLE ROUTER IN DIRECT-MAPPED DESIGN.

Virtualized Implementation Results. Table II shows
synthesis results for different router configurations using our
virtualized implementation of the simulator to model a 256-
node network. Since the virtualized implementation relies
only on a single instance of a time-multiplexed router to
model the entire network, the presented results are for the
entire network and not for an individual router, as was the
case for the direct-mapped implementation results. To get
a better feeling of the scalability differences between the
two designs, note that the cost of four routers in the direct-
mapped implementation is comparable to the cost of the
entire 256-node network in the virtualized design. In fact,
the largest allowed contest router and network configuration
only occupies 13% of a Xilinx LX760T FPGA.

Results For Contest Networks. To validate and compare
the performance of different contest submissions, a set of
five network and router configurations were provided by the

LUTs / Clock Frequency (in MHz)
Router Config. 2 VCs 4 VCs 8 VCs

4 in/out ports 3050 / 66 4117 / 56 6346 / 34

8 in/out ports 7912 / 35 11833 / 28 28859 / 17

12 in/out ports 13653 / 30 28461 / 16 48081 / 10

16 in/out ports 30399 / 17 52288 / 12 101500 / 7

Table II
SYNTHESIS RESULTS FOR ENTIRE NETWORK IN VIRTUALIZED DESIGN.

contest organizer, which are listed in Table III. Note that
all network configurations lie on the ”edge” of the design
space as they all max-out at least one of the configuration
parameters. Moreover three of the five given networks are
very large, consisting of more than 250 routers.

Network Name Routers Ports/Router VCs Credit Delay
butterfly 112 3 8 1

highradix 16 16 8 15

mesh 253 5 4 3

torus 252 7 5 2

hypercube 256 9 1 1

Table III
CONFIGURATION OF CONTEST NETWORKS.

Table IV shows actual implementation results for the five
contest network configurations running on the ML605 board
that is built around the Xilinx Virtex-6 LX240T FPGA. To
give a sense of how our simulator would perform on a
larger FPGA, we include synthesis results for a larger Xilinx
Virtex-6 LX760T FPGA. For each network and FPGA we
also indicate the chosen simulation engine – direct-mapped
(DM) or virtualized (V) – and report the average speedup
compared to the reference software simulator running on an
Intel Xeon X3460 processor at 2.8GHz.

Due to the large size of the contest networks and the lim-
ited resources on the LX240T FPGA, we were only able to
map one of the five networks (butterfly) to our fast direct-
mapped engine, in which case we achieved three orders
of magnitude speedup over the software reference design.
For the remaining networks, which were implemented using
the virtualized approach, speedup values range from 5x to
30x, leading to an overall average speedup of 470x. How-
ever, when using the larger LX760T FPGA, three out of the
five contest networks can be implemented using the high
performance direct-mapped approach, leading to significant
speedup improvements; overall average speedup in that case
is ∼1570x.

Deterministic Performance. A nice property of the two
developed NoC simulation engines is that performance is
fully deterministic for any given network and router con-
figuration. In a system with N routers running at Freq
frequency the performance of the simulator, measured in

simulated target cycles per second, is equal to Freq for a
direct-mapped implementation and Freq/N in the case of a
virtualized implementation.

Xilinx LX240T Xilinx LX760T
Network DM/V %LUTs Speedup DM/V %LUTs Speedup
butterfly DM 86% 1511 DM 27% 2330

highradix V 63% 5 DM 93% 421

mesh V 3% 28 DM 96% 4281

torus V 8% 7862 V 2% 7892

hypercube V 8% 21 V 2% 33

Table IV
IMPLEMENTATION RESULTS FOR CONTEST NETWORKS.

VII. DISCUSSION

Multiple Virtualized Routers. Even though our virtual-
ized simulation engine can scale to very large network and
router configurations, this scalability comes at the cost of
lower performance compared to the direct-mapped approach.
To bridge this gap, one idea for future work is to use multiple
virtualized routers that run concurrently. To maintain proper
event ordering in such a setting, the system needs to ensure
that only independent (i.e. not neighboring) sets of routers
are simulated at the same time. This issue has been studied
in previous work [5] and a straightforward way to resolve
it would be through a separate preprocessing step that iden-
tifies independent sets of routers in the network and then
generates a fixed valid simulation schedule.

An Alternative Approach to FPGA-based NoC simual-
tion. Another interesting approach to FPGA-friendly NoC
simulation is FIST [7], a simulation technique previously
explored by our group that abstractly models each router
as a set of load-delay curves, which are obtained through
training using a software-based cycle-accurate NoC simula-
tor. In addition to high simulation speed and scalability, an
important benefit of such an approach is reduced implemen-
tation complexity. In contrast to the two NoC simulation
approaches presented in this paper, FIST does not require
implementing the actual router in hardware; instead it relies
on the presence of a software-based model that will be used
for training purposes.

Automatic Network Generation. Given that the direct-
mapped design is already fully parameterized and essentially
builds a working prototype of the target network on the

2During validation, one of the supplied traffic patterns deadlocked the
torus network. In such cases, even though the network is stuck, the soft-
ware reference simulator needlessly continues simulation until it reaches the
maximum number of simulation cycles. Our implementation, however, can
detect a deadlock in the network, in which case it immediately terminates
the simulation and prints the results. Since deadlock occured early in the
particular simulation our implementation was able to achieve a very high
speedup for that traffic pattern. This also explains why the torus network
achieves a speedup that is comparable to the direct-mapped engine, even
though it is using the virtualized engine.

FPGA, an interesting extension to this work would be build-
ing a flexible configurable NoC generator. Such a tool could
prove useful to FPGA designers that need an FPGA-friendly
NoC that is custom-built to meet the specific needs of their
application. In fact, a heavily modified version of the direct-
mapped NoC code base is currently used as the interconnect
within the CoRAM project [8].

VIII. ACKNOWLEDGMENTS

We thank Prof. James C. Hoe, Eric Chung, Gabe Weisz
and the rest of the members of the Computer Architecture
Lab at Carnegie Mellon (CALCM) for the helpful discus-
sions and comments. We thank Xilinx for their FPGA and
tool donations. We thank Bluespec for their tool donations
and support.

REFERENCES

[1] D. Chiou, “MEMOCODE 2011 Hardware/Software CoDesign
Contest”, https://ramp.ece.utexas.edu/redmine/attachments/25/
MEMOCODE2011 DesignContest.pdf

[2] Bluespec Inc, http://www.bluespec.com

[3] Xilinx, “ML605 Hardware User Guide”, http://www.xilinx.
com/support/documentation/boards and kits/ug534.pdf

[4] Xilinx, “LogiCORE IP Processor Local Bus (PLB) v4.6”,
http://www.xilinx.com/support/documentation/ip documentation/
plb v46.pdf

[5] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer,
“HAsim: FPGA-Based High-Detail Multicore Simulation Us-
ing Time-Division Multiplexing”, HPCA, 2011

[6] P. Wolkotte, P. Holzenspies, and G. Smit, “Fast, Accurate and
Detailed NoC Simulations”, NOCS, 2007

[7] M. K. Papamichael, J. C. Hoe, and O. Mutlu, “FIST: A
Fast, Lightweight, FPGA-Friendly Packet Latency Estimator
for NoC Modeling in Full-System Simulations”, NOCS, 2011

[8] E. Chung, J. C. Hoe, and K. Mai, “CoRAM: An In-Fabric
Memory Abstraction for FPGA-based Computing”, FPGA,
2011

