
Consensus Based Detection in Sensor Networks:
Topology Optimization under Practical

Constraints

Soummya Kar1 and José M. F. Moura2?
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Abstract. We consider a distributed hypothesis testing problem in sen-
sor networks with possibly correlated sensor observations. The inter-
sensor communication is constrained by the underlying communication
network to sensors exchanging information only with their neighbors.
The network has no central fusion center. We show that, under reason-
able assumptions, the global test statistic can be computed locally at each
sensor by a distributed iterative consensus algorithm. We consider the
problem of optimizing the sensor network topology with respect to the
rate of convergence of iterative consensus under different practical design
constraints. For nonrandom topologies with fixed intersensor communi-
cation costs, the class of Ramanujan graphs is optimal when the underly-
ing communication graph is regular, the communication is noiseless, and
the intersensor communication costs are constant across the network. In
contrast, when communication among links exhibits different costs, links
may fail, the optimal topology under an overall communication cost con-
straint is obtained by solving a semidefinite programming optimization
problem.
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1 Introduction

We consider a problem of distributed detection with a network of N sensors. Each
sensor makes an observation and computes its local decision statistic. To reach
a more reliable global decision, the network fuses the individual local statistics.
Traditional network architectures consider a central fusion center: the individual
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sensors send their local observations (quantized or unquantized) to the fusion
center that then computes the global decision. This communication architecture
requires only O(N) communication for every sensor to learn the global deci-
sion: in step 1, the sensors transmit their observation to the center node, and in
step 2, the center broadcasts to all sensors its decision. But this architecture is
not practical in many scenarios. For example, for N large, the fusion center is an
information bottleneck that may cause the system to collapse. In this paper, we
restrict the communication among sensors by a connectivity graph where each
sensor can exchange information only with its neighbors. Under reasonable as-
sumptions on the network connectivity graph, each sensor can iteratively achieve
the performance of the optimal global test (with a central fusion center) in a
distributed manner by a consensus averaging algorithm.

Distributed consensus is a well-studied problem with an extensive literature
(see, for example [1–3] and the references therein.) This literature does not ad-
dress the problem of optimizing the sensor network topology, under different con-
straints. The paper describes our studies on how the underlying sensor network
topology impacts the rate of convergence of this iterative distributed decision,
illustrating how some networks converge orders of magnitude faster than others.

Section 4 considers distributed detection in a fixed (non-time varying) topol-
ogy environment and designs the optimum topology, subject to a constraint on
the number of network links (or equivalently a constraint on the total communi-
cation cost, assuming equal costs across different network links.) Prior work on
this (see [4, 5]) restricted attention to classes of random networks, particularly,
small-world networks. In [6, 7], we show that the class of non-bipartite Ramanu-
jan graphs are essentially optimal for this scenario and perform much better
than graphs with nearest neighbor topology, as well as other random networks
(see also [8].) In Section 5, we extend the framework of Section 4 to analyze
the detection problem in sensor networks with noisy communication channels.
In particular, we assume that at each iteration, the data exchange is corrupted
by additive noise. We study this problem in [9] where we showed that there
exists an optimal number of iterations before reaching a decision. Section 6 con-
siders another very practical communication channel model in sensor networks
where the quality of a communication channel between two sensors is quantified
by the probability of reliable transmission, which in turn is determined by the
signal-to-noise ratio (SNR) allocated to the channel. In a typical scenario, a net-
work transmission is either received correctly or the channel decides an error.
It is also reasonable to assume that the errors across different channels occur
independently of each other and across time. In this Section, we model such un-
reliable communication by assigning to each network link a probability of correct
reception. This results in a network model where the links fail randomly inde-
pendent of each other and across time. We analyze the convergence properties
of the consensus algorithm in this scenario (see [10, 11]) subject to a constraint
on the total power or communication cost in the network. We describe how this
problem can be formulated as a convex optimization problem, thus admitting
efficient numerical solutions.



2 Background

The sensor network topology is captured by an undirected graph G = (V, E).
The set V collects the sensor nodes with |V | = N . The set E is the set of graph
edges or links with edge (n, l) ∈ E iff there is a link or communication channel
between nodes n and l. We let |E| = M . For any graph G, we can define the
following standard objects in graph theory. The N ×N adjacency matrix A is

An,l =
{

1 if (n, l) ∈ E
0 otherwise (1)

The neighborhood of a vertex or node is

Ωn = {l ∈ V : (n, l) ∈ E} , ∀n ∈ [1, ..., N ] (2)

The degree of a node is the number of edges incident to it

dn = |Ωn|, ∀n ∈ [1, ..., N ] (3)

The N ×N Laplacian matrix L is

L = D −A (4)

where D = diag(d1, ..., dN ) is the degree matrix. The Laplacian L is a symmetric
positive-semidefinite matrix. We order its eigenvalues as,

0 = λ1(L) ≤ λ2(L) ≤ ... ≤ λN (L) (5)

For a connected graph λ2(L) > 0 (see [12].) A graph where all nodes have the
same degree d is d-regular.

3 Distributed Detection

We formulate the distributed detection problem. Consider the binary hypothesis
testing problem

under Hp : y = mp + ξ, p = 0, 1 (6)

where y ∈ RN×1 denotes the vector of sensor observations. We assume m1 =
−m0 = m and

ξ ∼ N (0, K) (7)

where, 0 ∈ RN×1 is the vector of all zeros and K is the positive definite covariance
matrix of ξ.

In a centralized fusion architecture, the minimum probability of error Bayes
detector is

l(y) =
2
N

mT K−1y ≷H1
H0

0 (8)

where l(y) is the (global) sufficient statistic. Thus implementing the optimum
global test is equivalent to computing the statistic l(y).



We now discuss the distributed version of this centralized detector by not-
ing that eqn. (8) can be realized at each individual sensor through distributed
averaging. Rewrite l(y) in (8) as

1
N

N∑
n=1

ln(yn) (9)

where ln(yn) = ωnyn, i = 1, ..., N, are local statistics, i.e., can be computed at
each sensor from their own measurement. Distributed detection is now equivalent
to computing in a distributed fashion the average (9). This can be done by
average consensus algorithms.

Although a simplified observation model is considered here, it should be
noted that consensus based detection is applicable to a much wider class of
models, having a global sufficient statistic that is a separable function of the
observations (see also [?] and the references therein for general separable function
computation.)

4 Fixed Sensor Network Topology with Noiseless
Communication Channels

In this section, we consider the distributed detection problem in sensor networks
with fixed (not varying with time) topology. Section 3 reduces the detection
problem to an average consensus problem. The performance of the distributed
detector is then determined by the convergence rate of the equivalent average
consensus algorithm, which in turn is a function of the underlying sensor network
topology, as we have considered in our previous work [6, 7, 9, 11]. Subsection 4.1
reviews the distributed average consensus algorithm and analyzes the influence
of network topology on the convergence rate of the consensus algorithm. Subsec-
tion 4.2 presents relevant performance bounds for the distributed detection (and
hence consensus) problem and motivates the topology optimization problem, the
performance metric being the rate of convergence. In Subsection 4.3, we describes
our work, [6, 7, 9], that shows that the class of non-bipartite Ramanujan graphs
are essentially optimal when we constrain the number of network links (equiv-
alently, constrain the total communication cost, assuming equal costs across all
links.) Finally, Subsection 4.4 addresses the construction of Ramanujan graphs.

4.1 Distributed Average Consensus

In its simplest form, the distributed average consensus algorithm involves dis-
tributed linear iterations to compute the global average of local data. For our
case, x(0) = [x1(0) · · ·xN (0)] is the vector of initial sensor observations. Denote
the vector of averages as

xavg = r1 (10)



where 1 is the vector of ones and r is the average of initial data given by

r =
1
N

1T x(0) (11)

The goal is to compute the average r at each sensor using distributed linear
iterations involving only local communications. To this end, the sensors perform
local state updates by

xn(i + 1) = Wnnxn(i) +
∑

l∈Ωn

Wnlxl(i), n = {1, ..., N} (12)

or equivalently in vector-matrix format as

x(i + 1) = Wx(i) (13)

where W is a weight matrix. The non-zero entries of W are determined by the
underlying sensor network connectivity. In particular, if n 6= l, then (n, l) /∈ E
implies Wnl = 0.

The algorithm converges, i.e.,

lim
i→∞

‖x(i)− xavg‖ = 0 (14)

if
lim

i→∞
W i =

1
N

J (15)

where J = (1/N)11T . In [2], it is shown that, if the network is connected,
there exists W satisfying eqn. (15). For a given network topology, the choice
of the W matrix plays a significant role in determining the convergence rate
of the consensus algorithm; reference [2] addresses the problem of finding the
optimum W leading to the fastest convergence for a given network. A commonly
used choice for link weights is the optimum equal weights; the corresponding W
matrix is

W = I − αL (16)
with

α =
2

λ2(L) + λN (L)
(17)

In this paper, we consider the optimum equal weights assignment. Then , we
showed (see [7]) that the consensus algorithm progresses as

‖x(i)− xavg‖ ≤ ρi ‖x(0)− xavg‖ (18)

where ρ is given by

ρ =
1− λ2(L)/λN (L)
1 + λ2(L)/λN (L)

=
1− γ

1 + γ
(19)

It follows that for a connected graph |ρ| < 1 and the consensus algorithm con-
verges in the sense given by eqn. (14). Also, eqn. 18 suggests that the smaller
ρ is, the faster the convergence rate is. We note that, ρ being a function of
only the network topology, it provides the influence of network topology on the
convergence speed and we have

fast convergence ⇒ small ρ ⇒ large γ (20)



4.2 Performance Bounds and Topology Optimization Criterion

It follows from eqn. (9) in Section 3 that, if we initialize the consensus algorithm
by xn(0) = ln(yn), n ∈ [1 · · ·N ], the sensor states converge to the global suf-
ficient statistic l(y), provided the network is connected. Consider the following
local test at sensor n at time i:

xn(i)
H1

≷
H0

0 (21)

Let Pn
e (i) be the corresponding probability of error. Also let Pe be the probability

of error associated with the optimal global test (eqn. 8). Then, assuming that
the network is connected, the convergence of x(i) to l(y) implies

lim
i→∞

Pn
e (i) = Pe, n = 1, ..., N (22)

and the rate of convergence is determined by the convergence rate of the con-
sensus algorithm, which in turn depends on the network topology through the
factor γ, as given in eqn. (20). In fact, for the simplified case of m = µ1 and
K = σ2I, it follows from standard detection theory that

Pe = erfc

(
µ
√

N

σ

)
(23)

where erfc(z) = 1√
2π

∫∞
z

e−z2/2dz. Also, it can be shown that (see [6, 9])

Pe ≤ Pn
e (i) ≤ erfc

(
µ
√

N

σ
√

1 + ρ2i(N − 1)

)
(24)

which is just a formal restatement of eqn. (20).
Eq. (24) shows that as N tends to infinity the probability of error Pn

e (i) of
each local test does tend to the probability of error Pe of the global test, i.e., the
test at the fusion center. This means that the problem that is left to consider is
the rate at which

Pn
e (i) −→ Pe

i.e., what is the topology that leads to the fastest convergence rate for the consen-
sus (and hence distributed detection) algorithm. This problem is only of interest
if there is a constraint on the number of links, or else we obtain the trivial solu-
tion of the complete topology where every sensor is linked to every other sensor.
To this end, define the average degree of a graph as

davg =
2|E|
N

(25)

Also let M be the maximum permissible number of network links. The topology
optimization problem is then stated as

max γ =
λ2(L)
λN (L)

(26)



subject to the constraint

|E| ≤ M or davg ≤ 2M

N
(27)

(clearly, davg = d for d-regular graphs.) This is indeed a difficult combinatorial
optimization problem and there is no closed form solution for finite N . How-
ever, using a spectral graph theory result by Alon and Boppana (see [13]) we
have shown that the class of non-bipartite Ramanujan graphs are essentially
asymptotically (N →∞) optimal; this is the content of the next subsection.

4.3 Ramanujan Graphs: Asymptotically Optimal

We describe here our results on the optimality of the class of non-bipartite
Ramanujan graphs with respect to the convergence speed of the consensus (and
hence distributed detection) algorithm. In other words, given a constraint on the
average degree davg, the non-bipartite Ramanujan graphs maximize the eigen-
ratio γ = λ2(L)/λN (L) as the number of sensors N goes to infinity. The rest
of Subsection 4.3 gives a brief description of Ramanujan graphs and provides
brief arguments about their optimality (for detailed analysis and discussion, the
reader is referred to [9, 7].)

The Ramanujan graphs are a class of d-regular graphs with extreme expan-
sion properties (see, for example, [14]). We define a family of d-regular graphs
to be a sequence of d-regular graphs with the number of nodes N → ∞. Then
(see [9]) for each member (i.e., for every finite value of N) of a family of d-regular
non-bipartite Ramanujan graphs

γ =
λ2(L)
λN (L)

≥ d− 2
√

d− 1
d + 2

√
d− 1

(28)

However, it can be shown from a result by Alon and Boppana ([13]) that, the
lower bound in eqn. (28) is in fact an asymptotic (as N → ∞) upper bound
for almost all classes of d-regular graphs (see [9].) This means that the class
of non-bipartite d-regular Ramanujan graphs approach the bound from above,
while other classes of d-regular graphs stay below the bound as N → ∞. This
establishes the asymptotic optimality of the non-bipartite Ramanujan graphs,
with respect to the convergence rate, among the class of d-regular graphs (see [9]
for full details.)

The last paragraph established the optimality of non-bipartite Ramanujan
graphs among the class of regular graphs. We now present a brief argument
that shows that heterogeneity in degree distribution does not favor a large value
of γ, and hence the Ramanujan graphs are expected to perform better than
most families of non-regular graphs also. Let dmin and dmax be the minimum
and maximum node degrees, respectively. Then, it can be shown from results in
spectral graph theory that (see [15])

γ =
λ2(L)
λN (L)

≤ dmin

dmax
(29)



Thus, networks with large spread in the degree distribution (for example, scale
free networks or small world networks) will not favor very high values of γ, and
hence the search space for optimal topology may be restricted to regular graphs
(see [6, 9] for discussions and numerical studies that corroborate this fact.)

We thus established that the class of non-bipartite Ramanujan graphs are
essentially optimal (asymptotically) solutions of the topology optimization prob-
lem given in eqn. (26). In the following subsection we address the issue of explicit
constructions of Ramanujan graphs.

4.4 Explicit Constructions of Ramanujan Graphs and Numerical
Studies

Explicit constructions of d-regular Ramanujan graphs (both bipartite and non-
bipartite) were given independently by Lubotzky-Phillips-Sarnak (LPS) [16] and
Margulis [17], for the case d−1 is a prime. The LPS construction was extended to
cover the cases where d−1 is a prime power by Morgenstern [18]. Recently, several
probabilistic methods have been developed for constructing expander families.
In particular, [19] develops a new graph product which constructs expanders of
arbitrary degree and size with high probability.

Fig. 1 shows a 6-regular non-bipartite Ramanujan graph on N = 42 vertices,
obtained by the LPS ([16]) construction.

In [7], we perform detailed numerical studies and the results show that, even
for finite values of N , the non-bipartite Ramanujan graphs perform much better
than graphs with nearest neighbor topology, or small world type graphs, or
Erdös-Renýi random networks. Also, the relative performance of the Ramanujan
graphs increases steadily as the number of sensors N increases, thus verifying
the asymptotic arguments in Subsection 4.3.

5 Fixed Sensor Network Topology with Noisy
Communication Channels

In this section, we extend the distributed detection framework of Section 4 to the
case where the network links are noisy or non-ideal. That is, at each iteration,
the individual sensor updates get corrupted by the channel noise. We model
this imperfection in the data exchange step by the following noisy state update
equation (see [9]):

x(i + 1) = Wx(i) + n(i) (30)

where {n(i)}∞i=0 is the i.i.d. Gaussian noise sequence with

n(i) ∼ N (0, R), R = diag[φ2
1 · · ·φ2

N ] (31)

Such a model arises, for example, when the channel noises are independent of
each other. Also, as in Section 4, we initialize the sensor states by xn(0) =
ln(yn), n ∈ [1 · · ·N ].



Pajek

Fig. 1. Non-bipartite LPS Ramanujan graph with number of vertices N = 42 and
degree d = 6 (figure generated using software Pajek.)

In [9], we analyze the above model. We present part of the results here with-
out proof. It turns out, that, because of the additive noise incurred at each step,
the sensor states do not converge to the global sufficient statistic required for the
optimum global test. Thus, in practice, we can never achieve the performance
of the optimal global detector, i.e., Pn

e (i) 9 Pe. But there exists an interesting
trade-off between the number of iterations performed and the performance (in
terms of local probability of error) achieved. Qualitatively, there exists an opti-
mal number of iterations, i∗, after which the detrimental effect of noise addition
overpowers the desired effect of mixing the local statistics. In particular, at each
sensor n, Pn

e (i) decreases till i∗, but starts increasing after that.
In [9] we actually compute this optimal number of iterations under a rea-

sonable set of assumptions. The reader is also referred to [20] that studies the
design of W for a given network topology for distributed consensus in additive
noise.

6 Randomly varying Network Topology

In this section we consider the distributed consensus problem in sensor networks
with randomly varying network topology (the reader may refer to the discussion
in Section 1, which motivates this problem.) In Subsection 6.1, we formulate
the problem and analyze the influence of network topology (statistics of link
behavior) on the convergence properties of the consensus algorithm. Finally,



Subsection 6.2 considers the problem of optimally allocating link failure proba-
bilities (which may be viewed as proxies for the link SNRs), given a constraint
on the total power or communication cost.

6.1 Consensus with Random Network Links: Influence of the
Topology

Consider a network of N sensors. Let E denote the set of realizable edges, i.e.,
E defines the node pairs that can possibly exchange information. We model the
unreliability of link (n, l) by assuming that it fails randomly with probability
1 − Pnl. Collecting all these probabilities, we can define an N × N symmetric
matrix, P , called the probability of edge formation matrix, given by

Pnl =
{

Probability of edge (n, l) if (n, l) ∈ E
0 otherwise (32)

This means that the edge set E(i) at time i is a random subset of E , chosen
according to the P matrix. In other words, at each time i, the network graph
is a random instantiation with edge set E(i). Consequently, all the network
matrices (A(i),L(i)) are random matrices. It follows that the mean Laplacian,
L = E[L], is given by (see [10])

Lnl =
{∑N

m=1 Pnm if n = l
−Pnl otherwise

(33)

In [10], we analyze the distributed consensus algorithm in such a network with
the following state update:

x(i + 1) = W (i)x(i) (34)

where
W (i) = I − αL(i) (35)

We note that the weight matrices are now random matrices because the networks
L(i) are random. The constant α is an user-defined parameter and must be
chosen to guarantee satisfactory performance. Also, as usual, we initialize the
sensor states by the local statistics ln(yn). It follows from eqn. (34) that the
sensor updates are now random and hence the convergence properties of the
consensus algorithm are to be interpreted in some probabilistic sense.

We end this subsection by presenting a convergence result from [11] without
proof.

Theorem 1. A necessary and sufficient condition for mean square (mss) and
almost sure (a.s.) convergence of the consensus algorithm is λ2(L) > 0. In other
words, if λ2(L) > 0, then there exists an α, for which the consensus algorithm
converges in mss or a.s sense.

Thus Theorem 1 relates the convergence properties of the consensus algorithm
in eqn. (34) to the statistics of the mean Laplacian matrix, L, which in turn
depends on the P matrix.



6.2 Topology Optimization under Communication Constraints

In Subsection 6.1 we analyzed the influence of the network link formation statis-
tics on the convergence rate of the distributed consensus algorithm (see [10] that
studies the influence of P on the mss convergence rate.) The discussion in Sec-
tion 1 shows that the link formation probabilities may be viewed as proxies for
the channel SNRs. Hence a relevant optimization problem is the optimal allo-
cation of channel SNRs under a power or communication cost constraint. Since
choosing the optimal SNRs is equivalent to designing the optimal P (or equiva-
lently L), we treat L as the optimization variable. Due to the lack of space, we
do not consider this optimization problem in detail here, but refer the interested
reader to [11]. In [11], we show that the optimization problem involves maximiz-
ing the algebraic connectivity of the mean Laplacian L, under a set of convex
constraints.

7 Conclusion

In this paper, we considered the distributed detection problem in sensor networks
under different communication paradigms and addressed the problem of topol-
ogy optimization under practical network constraints. In particular, we showed
that for a fixed (non-time varying) network with ideal communication links, the
class of non-bipartite Ramanujan graphs are essentially optimal, given a con-
straint on the number of network links. We extended the framework to a noisy
communication link scenario, and showed the existence of an optimal number
of iterations before taking a decision. Finally, we analyzed a random link fail-
ure model in Section 6 and considered the problem of optimal allocation of link
SNRs leading to the fastest mss convergence rate under a constraint on the total
power or communication cost.
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