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Detection by Time Reversal: Single Antenna
José M. F. Moura, Fellow, IEEE, and Yuanwei Jin, Member, IEEE

Abstract—This paper studies the binary hypothesis test of de-
tecting the presence or absence of a target in a highly cluttered envi-
ronment by using time reversal. In time reversal, the backscatter of
a signal transmitted into a scattering environment is recorded, de-
layed, energy normalized, and retransmitted through the medium.
We consider two versions of the test—target channel frequency
response assumed known or unknown—and, for each version, con-
trast two approaches: conventional detection (where no time re-
versal occurs) and time reversal detection. This leads to four al-
ternative formulations for which we derive the optimal detector
and the generalized likelihood ratio test, when the target channel
frequency response is known or unknown, respectively. We derive
analytical expressions for the error probabilities and the threshold
for all detectors, with the exception of the time reversal generalized
likelihood ratio test. Experiments with real-world electromagnetic
data for two channels (free space with a target immersed in 20
scatterers and a duct channel) confirm the analytical results and
show that time reversal detection provides significant gains over
conventional detection. This gain is explained by the empirical dis-
tribution or type of the target channel frequency response—richer
scattering channels induce types with heavier tails and larger time
reversal detection gains.

Index Terms—Adaptive waveform, detection, empirical distribu-
tion, matched filter, time reversal, type, waveform reshape.

I. INTRODUCTION

CHANNEL multipath significantly affects the performance
of traditional detectors, e.g., the matched filter. Usually,

multipath is thought to be detrimental and a negative whose
effects should be minimized. Time reversal presents the oppo-
site opportunity—multipath as a positive, the more the better.
In time reversal signal processing, a signal is first radiated
through a rich scattering medium. The backscattered signal is
then recorded, delayed, time reversed, energy normalized, and
retransmitted. The technique of time reversal is not new, but
a thorough theory of detection for this setting is lacking. This
paper addresses this gap. We study time reversal detection of a
target immersed in a rich scattering environment. We focus on
determining the performance gain, if any, provided by the time
reversal based detector over conventional detection techniques.
We carry out the following plan.

1) Formulate a time reversal approach to detection and con-
trast it with the conventional approach.

2) Derive the detectors for each of these approaches.
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3) Detail the performance of the detectors analytically and
experimentally.

4) Test the detectors with real electromagnetic (EM) data col-
lected with two different laboratory experiments.

Our results are conclusive.
1) Time reversal detection provides significant gains over

conventional detection.
2) The time reversal detection gain is verified experimentally

for the first time with electromagnetic real-world experi-
ments.

3) The time reversal detection gain is directly related to the
type1 of the target channel frequency response—the gain is
larger for heavy tailed channel types.

4) The time reversal detection gain arises because the trans-
mitter reshapes the waveform to best match the channel.

A. On Time Reversal

Time reversal (TR), known in optics as phase conjugation,
has been used to increase resolution by exploiting scattering
and multipath in inhomogeneous channels. Fink and collabora-
tors have published extensively on time reversal in acoustics and
ultrasound [2]–[6]. These works demonstrated superresolution
focusing in the ultrasound domain. In their work, an ultrasound
source is placed in a water tank with a large number of scatterers.
The scattered acoustic signal is recorded by an array of sensors
and retransmitted through the same medium after being time re-
versed. Their experiments demonstrate that the acoustic energy
refocus at the source with much higher resolution than predicted
by the Rayleigh resolution limit, i.e., they demonstrate super-
resolution focusing. More recently, large-scale acoustics exper-
iments in the ocean confirmed the resolution ability of time re-
versal in real acoustic propagation environments [7], [8]. There
is a growing literature on time reversal in these acoustic and ul-
trasound fields, as well as on studies of time reversal in random
environments [9] and in several applications domains, including
imaging [10], [11] or communications [12]–[14]. Focusing in
the electromagnetic domain has recently been demonstrated in
[15] and [16]. In [17], we presented a TR-based interference
canceller to mitigate the effect of clutter in the electromagnetic
domain. None of these works has studied the problem of detec-
tion using time reversal, derived the detectors, and studied time
reversal detection analytically and by experimentation with real
electromagnetic data. This is what this paper pursues and ac-
complishes. To stress the focus on the impact of time reversal,
we consider the detection of a target in clutter with a single an-
tenna. This precludes the use of narrow-band multiple signal
classification and subspace type algorithms where the number
of clutter returns is restricted to be smaller than the number of
array elements.

1The expression type is used in its information theoretic sense of empirical
distribution [1].
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The remainder of this paper is organized as follows. In
Section II, we describe the time reversal measurement protocol
and present the statistics of the measurements. Section III
formalizes the single binary hypothesis test problem with a
single receiving antenna under study—target present or absent
in high clutter, the two approaches—conventional and time
reversal—that we consider, and their two versions—ideal
and realistic—where the target channel response is known
or unknown, respectively. The section presents the optimal
detectors and the generalized likelihood ratio tests for the ideal
and realistic versions of each approach. The section derives
analytical expressions for the thresholds and error probabilities
for each detector, with the exception of the time reversal gen-
eralized likelihood ratio test. Section IV derives an expression
for the detection gain provided by time reversal detection over
conventional detection in the ideal case of known target channel
response. Section V tests all detectors in real-world scenarios
with electromagnetic data. The section presents experiments
with two channels (free space with many scatterers and a
duct channel) that confirm the analytical results and show that
time reversal delivers significant detection gains. The section
illustrates how these detection gains relate to the empirical
distribution or type of the target channel frequency response.
We summarize our results in Section VI.

B. Notation

Lower case boldface letters denote vectors and upper case
boldface letters denote matrices; stands for conjugate,

for transpose, and for Hermitian transpose;
and are the real and the imaginary parts of , respectively;

is the Hadamard product or component-wise product
of two vectors or two matrices (with the same dimensions),
while is the Kronecker product of and ; is the
expected value of a random quantity; is the identity matrix
of order stands for the column vector that results
when we stack the columns of the matrix and is
a diagonal matrix whose diagonal is the vector is the
vector or matrix Frobenius norm; finally, we recall that the
probability density function of the -dimensional complex
circular Gaussian random vector with mean and covariance

, e.g., [18], is

(1)

When the vector is white, , and is referred to as
the variance of the random vector.

II. TIME REVERSAL MEASUREMENTS

We consider an active radar (or sonar) system with a single
receiving antenna. The transmitted signal is a wide-band
signal with duration 2 and bandwidth . Its dis-
crete Fourier transform is

, and is a constant. For real-valued
time-dependent signals , the discrete Fourier transform of
its time reversed version , where is a sufficiently
long delay, is simply given by ; in other words,
besides a phase shift, time reversal becomes phase conjugation
in the frequency domain (see, e.g., [19]).

This paper studies the impact of time reversal in target detec-
tion in cluttered environments. We assume that we have inde-
pendent measurements of the clutter when no target is present
and that the clutter remains stationary. To emphasize the impact
of the channel propagation effects (multipath) induced by the
clutter and to keep the focus on the role of time reversal on de-
tection, we consider in this paper the extreme case of either a
single antenna in the monostatic context or a single transmitting
antenna and a single receiving antenna in the bistatic problem.

We introduce two frequency responses: 1) the clutter fre-
quency response , which is the re-
sponse of the clutter when no target is present; and 2) the target
channel frequency response , which
is the difference between the channel response when a target is
present and the channel response when no target is present. As
such, represents all the changes to induced by
the presence of the target and, in particular, includes secondary
backscatter, i.e., backscatter from the clutter to the target that is
then radiated back to the receiving antenna.

The problem we consider is the following. We assume that
there is an initial phase where the clutter frequency response

can be learned. Then, the deterministic part2 of the re-
sponse that can be computed by propagating the transmitted sig-
nals through will be subtracted out and we work with
the resulting signals. We call this background subtraction. We
explain this next.

A. Clutter Response

This phase learns the clutter response . Assume that
no target is present. The single antenna probes the channel with
the wide-band signal , with energy

(2)

We repeat the probing to obtain independent snapshots
where

(3)

In (3), is additive, zero mean, circular complex white
Gaussian noise with diagonal covariance . The minimum
mean square error estimate of the clutter response is

(4)

For sufficiently large, the clutter response is well estimated
from the probing snapshots, i.e.,

(5)

so, we safely assume in the sequel that is accurately
known.

2This assumption may not be applicable in many radar/sonar environments
where the scattering characteristics must be described stochastically.
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B. Clutter Suppression—Background Subtraction

Because the clutter response is assumed known, we can sup-
press the clutter by simple background subtraction. Background
subtraction is widely used in many applications from radar to
image or video processing. Assume that the backscatter of the
channel when probed by a signal is . Part of this
signal is the backscatter from the clutter. The clutter suppressed
signal is then

(6)

We will formulate the detection problems that we study in this
paper in terms of the residual signals rather than the sig-
nals .

C. Time Reversal: Measurement Protocol

We assume that the clutter response has been learned as ex-
plained in (4). The second phase monitors the channel. The
monitoring protocol in Section III when we use time reversal
is in two steps, which are repeated times to obtain snap-
shots.

1) Probing: This step transmits at the th snapshot, the
signal . When a target is present, the
channel backscattered signal received by the antenna is

(7)

where is additive, zero mean, circular complex white
Gaussian noise, with diagonal covariance . In (7),
is the target channel response, which, as explained above, is the
difference between the channel response when clutter and target
are present and when only clutter is present. By background
subtraction [see (6)], the clutter suppressed signal is

(8)

2) Time Reversal: In this step, we use time reversal,3 which,
as observed before, corresponds to phase conjugation in the fre-
quency domain. Time reversing the clutter suppressed received
signal in (8), we obtain

(9)

Next, the signal is normalized to the energy of the
original signal by an energy normal-
ization factor

(10)

Note that the energy normalization factor changes from
snapshot to snapshot but is known since it is computed from the
received data .

3Global travel time delays are ignored.

The received signal is for all
:

(11)

If no target is present, in (11). The term
, is a circular

complex zero mean white Gaussian noise with variance .
As in (8), the known component from the

backscattered signal received by the antenna is subtracted out.
The resulting signal is,

(12)

(13)

The setup just described assumes that the clutter remains static
or invariant so that the simple background subtraction in (8) and
(12) effectively suppresses the clutter response.

For detection by time reversal, we have both the direct signals
in (8) and the time reversal signals in (13),

, and .

D. Time Reversal Measurements: Vector Notation

Before we state formally the hypothesis testing problem, we
express the time reversal measurements in vector notation. We
collect for each snapshot the frequency responses in
a -dimensional vector and then stack these vectors in the

-dimensional vector , i.e.,

(14)

(15)

Similarly, the -dimensional vectors , and
collect the spectrum of the transmitted signal , the signals

in (13), the target channel frequency response ,
and the noises and . The vectors and

are then stacked in the -dimensional vectors and
, respectively. Finally, we introduce

(16)

(17)

(18)

(19)

(20)

The vector vectorizes the energy normalization gains, while
the diagonal matrix has these gains in the diagonal. The

-dimensional vector is a vector of ones. The 2 -dimen-
sional vector vectorizes all the and data
for snapshot . However, we use a slightly different notation
for the 2 -dimensional vector . This vector

(21)
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concatenates the vectors and rather than simply stacking
the vectors . The vector stacks the data for all the snap-
shots. We emphasize that in and , we stack the time re-
versed, i.e., the conjugates, and with and , respec-
tively.

We now use these vectors to write compactly the signals at
the different phases of the time reversal measurement protocol,
using the Hadamard product introduced in Section I. We have

(22)

(23)

(24)

(25)

(26)

where in (22) and (24), we indicate explicitly the entries of
and , respectively. Equations (23)–(26) assume a target is
present. If no target is present, then , and the received
data and are simply the noises and , respectively.

Remark: In the setup described in Section II-A, we collect
a total of 2 data snapshots, i.e., snapshots of and

snapshots of , where each is obtained by transmit-
ting the corresponding time reversed signal . In practice,
other transmission strategies may be adopted while keeping the
total number of data snapshots unchanged. For instance, we can
transmit a single snapshot of and
snapshots of , keeping . It is anticipated
that the performance of time reversal detection will vary with
different transmission strategies. In this paper, we use the simple
strategy where we alternate each transmission with an
transmission, i.e., .

E. Noise and Data Statistics

Finally, to complete the model, we summarize the statistics
assumed. The noise vector is a circular complex Gaussian
random vector, i.e.,

(27)

See (1) for the notation used and the explicit expression for
the probability density function. The real and imaginary com-
ponents of are, respectively,
and , e.g., [20]. Similarly, the noise
vector is the complex Gaussian random vector

(28)

The noises and are uncorrelated and independent of the
transmitted signal.

We now consider the statistics of the data and . When
no target is present, , and it is straightforward to derive
from the statistics of and that

(29)

(30)

where is the tensor product introduced in Section I. We ex-
plicitly indicate to emphasize that the vectors and

are the result of stacking vectors of dimension . From
(29) and (30), and noting further that, when no target is present,

and are statistically independent, the probability density
function of , denoted by , is given by

(31)

When a target is present, the statistics of are still straight-
forward

(32)

(33)

however, the statistics of , under the time reversal protocol, are
more complicated due to the energy normalization factors .
We indicate the conditional statistics of given the gains s.
Then, conditioned on the vector of energy normalization factors

, see (19)

(34)

(35)

where is the diagonal matrix of normalization factors de-
fined in (20). To get the statistics of , we need to consider the
cross-statistics of and conditioned on all ; we will not
provide details here. After some manipulations, we find that the
probability density function of when a target is present, de-
noted by , is [see (36) at the bottom of the page].

III. TIME REVERSAL DETECTION: SINGLE ANTENNA

We consider now the hypothesis test of detecting a target
buried in a rich cluttered environment with a single antenna.
Under the null hypothesis , the data are target signal free,
while under the alternative hypothesis , the measured data

(36)
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contains a target signal. We start by detailing in Section III-A the
detection problems we consider. In the remaining parts of this
section we describe the detectors and their error performance.

A. Detection Problems

Under the measurement protocols described in the previous
section, we first learn the clutter and then use background sub-
traction. This allows us to derive a simpler equivalent detection
problem where, under , the measured data, after canceling
the effect of the clutter, are equivalent to the signals
and , given by
(8) and (13), or are equivalently described by (23) and (26). For
detection purposes, we can then ignore the role of the clutter re-
sponse and assume the equivalent signal model
and , where only
the effective target channel response is explicit.

1) Ideal and Realistic Scenarios: For this detection problem,
we consider two different versions. In the first one, which we
refer to as the ideal scenario, the target channel response
or, in vector form, , is assumed known. In the other ver-
sion, termed realistic, the target channel response is assumed
not known. Although unrealistic, the ideal scenario provides
straightforward bounds on the detection performance achiev-
able by the realistic scenario and enables an analytical expres-
sion for the performance gain provided by time reversal.

2) Time Reversal and Conventional Detection: We develop
two approaches to the target in clutter detection problem: the
conventional approach and the time reversal approach. In the
conventional approach, the measurements are simply the direct
measurements . In the time reversal detection, besides
the direct measurements , we also have the time reversed
measurements . We study conventional detection so that
we can benchmark the detection gain, if any, provided by time
reversal detection. In terms of the measurement protocol, it re-
duces to the probing step 1. As with time reversal, we will con-
sider two scenarios: 1) ideal, where we know the target channel
response ; and 2) realistic, where we do not know the target
channel response .

3) Detectors: We have then four detection problems. The
next four sections consider the following detectors:

1) conventional detector channel matched filter (CDCMF) for
the ideal conventional detection problem;

2) time reversal channel matched filter (TRCMF) for the ideal
time reversal detection problem;

3) change detection generalized likelihood ratio test
(CD-GLRT) or energy detector (ED) for the realistic
conventional detection problem;

4) time reversal generalized likelihood ratio test (TR-GLRT)
for the realistic time reversal detection problem.

The first two detectors, CDCMF and TRCMF, and the last two
detectors, ED (also called CD-GLRT) and TR-GLRT, are the op-
timal detectors and the generalized likelihood ratio detectors for
the corresponding detection problems. Next, we will state each
of these detection problems formally, then determine the cor-
responding likelihood ratio test statistic, the probability of false
alarm , the threshold , and, the probability of detection .
Before we do this, we recall a few preliminaries needed.

a) Preliminaries: The likelihood ratio test statistic
is [21],

(37)

where and are the probability density functions
of the data conditioned on and , respectively. The fac-
torization on the right-hand side of (37) follows because condi-
tioned on either hypothesis the measurements for different snap-
shots are independent.

Recall the definitions of and . If is the threshold

(38)

(39)

where and are the probability density
functions of the test statistic under the null hypothesis and
the alternative hypothesis , respectively. We use the error
function

(40)

B. Ideal Conventional Detection: Channel Matched Filter
(CDCMF)

We start by studying the conventional approach to the target
in clutter detection problem. We use the equivalent formulation
presented in Section III-A.

1) Detection Problem: The ideal conventional detection
problem is equivalent to the following binary hypothesis
problem:

(41)

We recall that, in this ideal scenario, in (41) is known.
The data probability density functions (pdfs) and

conditioned on and follow from (33) and (29)
and are, respectively [see, e.g., (1) for the expression of complex
Gauss pdfs]

(42)

(43)

where we used the conditional independence assumption of the
data snapshots.

2) Likelihood Ratio Test : Replacing (42) and
(43) in (37), taking the logarithm of the resulting expression,
discarding the constant terms, and normalizing by the constant

yields the linear statistic for the CDCMF detector

(44)



192 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 1, JANUARY 2007

The test statistic (44) shows that the detector uses the knowledge
of the target channel response—the detector is a (target) channel
matched filter, i.e., it is matched to the known signal component

at the output of the channel.
3) Probability of False Alarm : In the null hy-

pothesis , standard manipulations show that the variable in-
side the parenthesis in (44) is a circular Gaussian complex vari-
able . This leads to

(45)

From (38) and (45), the probability of false alarm
for the CDCMF-detector is

(46)

Using the error function in (40), is compactly
written as

(47)

Threshold : From (47), the detection threshold is

(48)

where is the inverse error function.
4) Probability of Detection : In the alternative

hypothesis , standard manipulations show that the quantity
in parenthesis in the expression of the decision statistic (44) is

, where

(49)

The pdf of the test statistic under is then

(50)

The detection probability follows from (39) and, by
making use of the error function (40), it is simply

(51)

C. Ideal Time Reversal: Channel Matched Filter (TRCMF)

1) Detection Problem: Because the target channel response
is assumed known, we need to consider only the data

and received under the time reversal step 1. These
signals are modified from (13) and (35) by assuming the noise

under the alternative hypothesis and by setting all energy
normalization factors to the deterministic known constant

(52)

The detection problem is equivalent to

(53)

Note that, because is assumed known, the transmitted signal
can be generated by the transmitter with no need for the

probing step 1. The data pdfs under and follow from the
assumptions on

(54)

(55)

2) Likelihood Ratio Test : Replacing these ex-
pressions in the expression of the likelihood ratio (37), taking
the logarithm, discarding constant known terms, and normal-
izing the test statistic by the known quantity 2 ,
yields the linear test statistic

(56)

3) Probability of False Alarm : The test statistic
given by (56) is linear and, given the assumptions on the noise

, it can be shown that the quantity inside in (56) is
a complex random variable with probability density function

. This implies [20] that

(57)

Just like for the CDCMD detector, we find that is

(58)

which is exactly like (47).
4) Threshold : The threshold for the

TRCMF detector follows by inverting (48)

(59)

5) Probability of Detection : It is straightforward
to show that, conditioned on , the pdf of is

(60)

where

(61)
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The detection probability is obtained as for the CDCMD de-
tector. We get

(62)

D. Realistic Conventional Detection: Energy Detector

1) Detection Problem: We now consider the conventional
detection problem when we do not know the target channel re-
sponse . The setup of the problem is like in (41) for ideal con-
ventional detection, except that now is unknown. The data
pdfs and under and are given again
as in (42) and (43), respectively.

2) Likelihood Ratio Test : Because is unknown,
we adopt as detector the generalized likelihood ratio test
(GLRT)

(63)

We could refer to this detector as the change detection general-
ized likelihood ratio detector (CD-GLRT). However, as will be
shown below, the detector has an energy detector-like structure.
Thus, we refer to this detector as the energy detector (ED).

The maximum in the numerator of (63) is at the maximum
likelihood estimate of under

This yields

(64)

Using (64) in (63), taking the logarithm, neglecting constants,
yields

(65)

Normalizing (65) by results finally in

(66)

3) Probability of False Alarm : In the null hy-
pothesis and noise only case, the test statistic for the energy
detector is given by

(67)

where, like before,
are circular complex Gaussian random vari-

ables. Since the real and imaginary parts of are inde-
pendent and each of them is , this implies that each
term in the sum in (67)

Therefore is the sum of the
squares of two random variables, and so a central

-square distribution with two degrees of freedom. This im-
plies that has a central -square distribution with 2
degrees of freedom

(68)

From (68), we compute the probability of false alarm .
Let denote the cumulative distribution function of a
noncentral -square random variable with degrees of freedom
and noncentrality parameter . Then is

(69)

where is the threshold.
4) Threshold : Inverting (69) gives the threshold for

the energy detector as

(70)

where is the inverse function of the cumulative distri-
bution .

5) Probability of Detection : The test statistic under
the alternative hypothesis is

(71)

where
. Each term

(72)
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i.e., it is noncentral -square distributed with two degrees
of freedom. It follows that is noncentral -square
distributed with 2 degrees of freedom

(73)

where the noncentral parameter is given by

(74)

Hence, the detection probability for the energy detector
takes the form

(75)

The probabilities of false alarm and detection ,
and the threshold can be found by standard approximations
to the -square distribution as found, for example, in [23] or as
tabulated in standard scientific computation packages.

E. Realistic Time Reversal: Generalized Likelihood Ratio Test
(TR-GLRT)

1) Detection Problem: The detection problem is now the fol-
lowing:

(76)

where and are the means given in (33) and in (35). It is
important to note that in the detection formulation in (76), we
have conjugated the data received in the probing step . This is
of course an information-preserving transformation, so no loss
or gain of information is achieved. However, it greatly simpli-
fies the target channel response estimate as we will see below.
The detection problem in (76) is difficult to study analytically.
We consider the approximate problem where we neglect the in-
formation provided by the energy normalization factors . In
the study of this detector, we will take to be deterministic.
This is actually a good approximation. In our simulations in
Section V, we will observe that has small variability. Also,
we have performed a noise analysis elsewhere that shows that
the second order moment of is small in either the high or
low signal-to-noise ratio (SNR) regimes.

Let

(77)

The pdfs and conditioned on under
hypotheses and are given by

(78)

(79)

(80)

2) Likelihood Ratio Test : Like for the realistic
conventional detection problem in Section III-D that led to the
energy detector, here we do not know . We adopt again the
generalized likelihood ratio test; see (63). Taking the logarithm
of the ratio of the two pdfs (79) and (80) evaluated at the max-
imum likelihood estimate of , the test statistic is

(81)
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where is the maximum likelihood estimate of
to be determined below. This is not a linear test statistic, which
is to be expected given that the channel is no longer known.

3) Maximum Likelihood (ML) Estimate Under : We
derive the maximum likelihood estimate of under . Like
before, we neglect the dependency of the energy normaliza-
tion factors on the target channel response and so it is
only an approximation to the true ML estimate. Taking the
partial derivative of with respect to ,
and ignoring the constant terms yields, after noticing that

, [24]

(82)

(83)

After dividing the numerator and the denominator by , we
obtain

(84)

Equation (84) completes the structure of the TR-GLRT test
statistic. It is a surprisingly intuitively pleasing expression for
the estimate of the target channel response. The fractions in
the denominator are approximate channel input SNRs for the
probing and time reversal steps, respectively, while the fractions
in the numerator are approximately these SNRs normalized by
the target channel response. If the noises and are small,
the numerator is then approximately the denominator times

, so that the right-hand side, and so the ML channel es-
timate, is close to the true value of the target channel response.
A final note regarding the ML estimate (84) is that this intuitive
expression results because we formulated the time reversal
detection problem using the time reversed signal received in
the probing step 1.

In Section V, we study the probabilities of false alarm
and detection , and the threshold

by Monte Carlo simulation since it cannot be
determined analytically.

IV. TIME REVERSAL DETECTION GAIN

We now quantify the performance gain provided by time re-
versal detection over conventional detection, i.e., what is the
gain in performance achieved by the TRCMF over the CDCMF
for the known target channel. We notice that, for both detectors,
the threshold under a fixed false alarm probability is exactly the
same; see (48) and (59). This observation allows us to compare
the two detectors by computing the ratio of and defined in

(61) and (49), respectively [21], [22]. In other words, the SNR
gain (SNRG) provided by time reversal is

SNRG

(85)

where the signal energy is and we
assumed that . We have the following result.

Result 1: The SNRG of the time reversal matched filter over
the conventional matched filter is

SNRG (86)

Equality holds when , where is a
nonnegative constant.

Proof: The result follows by direct application of Schwartz
inequality. We can factor the denominator in (86) as

(87)

with equality when

(88)

There are a number of interesting observations we can make
regarding Result 1.

1) Time Reversal Gain: Equation (86) shows that the
TRCMF has a net performance gain over the CDCMF. How
large this gain is depends on the target channel response .
For instance, for a flat channel, e.g., single point scatterer
and no multipath, where is a constant,
SNRG . When the target response has large variations across
a frequency range as induced by a rich scattering environment,
the gain can be very significant. This observation will be
experimentally verified in Section V, where we measure the
target channel response for real electromagnetic channels and
compute SNRG.

2) Time Reversal: Joint Optimization at the Receiver and
the Transmitter: Both detectors, the time reversal TRCMF and
the conventional CDCMF, are perfectly matched to the (noise-
less) signal at the output of the channel, i.e., they are channel
matched. They are optimal for their corresponding detection
problems. The performance gain of the time reversal matched
filter detector over the conventional matched filter detector is
the result of the implicit optimization achieved by time reversal
at both the transmitter and the receiver. However, besides opti-
mizing the SNR at the receiver, the TRCMF detector also opti-
mizes automatically the signal at the transmitter.
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3) Time Reversal—Waveform Reshaping: The time reversal
detection gain can be explained by the automatic reshaping of
the signal achieved by the transmitter, which adjusts better the
transmitted signal to the target channel frequency response. The
target channel frequency response is induced by the scattering
environment since the backscatter from the target is not simply
the direct path from the target to the receiver but is also the
secondary scattering from the scatterers to the target and then
from the target to the receiver. A richer scattering environment
induces a richer target response.

4) Time Reversal and Target Channel Type: There are poten-
tially large gains to be achieved by time reversal. To see this, we
rework the expression of the gain. We discuss the simpler case
where the transmitted signal is a (time domain) sinc pulse, so

. Then the gain (86) can be rewritten as

SNRG

(89)

We define the target channel type4 as the empirical distribution
of the (magnitude) of the target channel response. If we con-
sider the empirical distribution, i.e., the normalized histogram,
of the values of the target channel response (89) is
interpreted as the ratio of the fourth-order absolute moment
over the square of the second-order absolute moment of the
empirical distribution or target channel type

(90)

The ratio is not the kurtosis , which is the ratio of the fourth-
order centered moment over the square of the variance. We will
compute for real channels in Section V. Here, we get an in-
tuitive feeling for SNRG by looking at the value of the kur-
tosis for a few distributions for which it is readily available.
For a normal random variable, dB. Of interest
will be leptokurtic5 distributions. For example, the Laplace (or
double-sided exponential) standard distribution has

dB, while the student or -distribution with five degrees of
freedom has dB.

V. PERFORMANCE STUDY: EXPERIMENTAL RESULTS

This section studies with a mix of real electromagnetic (EM)
data and simulated noise the performance gain provided by time
reversal detection over conventional detection. We recall from
Section III that the CDCMF and ED address the conventional
detection problem (41) where no time reversal occurs, while
the TRCMF and TR-GLRT consider the time reversal detection

4As noted in Section I, the expression type is used as an information theoretic
concept to refer to the empirical distribution [see [1]] of the channel frequency
response.

5Leptokurtic distributions have a positive kurtosis excess, i.e., a kurtosis
larger than three, the kurtosis of the normal distribution.

Fig. 1. Channel I: Free space. Transmit antenna A and receive antenna B are
horn antennas. Operating frequency range is 4–6 GHz. Scatterers are a mixture
of 20 copper and solid dielectric pipes, represented as circles. The target is a
copper pipe, represented as a triangle.

problem (76) where the time reversed backscattered signals are
retransmitted. Also, the CDCMF and the TRCMF, which are
channel matched, assume full knowledge of the target channel
response , while the ED and TR-GLRT have no knowl-
edge of the channel and are the generalized likelihood ratio tests
for the corresponding problems. Accordingly, we pursue the fol-
lowing performance comparisons.

1) Time reversal gain over conventional detection—Target
channel response known: we compare the TRCMF with
the CDCMF.

2) Time reversal gain over conventional detection—Target
channel response unknown: we compare the TR-GLRT
with the ED.

3) Performance loss due to lack of knowledge of the target
channel response: We compare the TRCMF with the
TR-GLRT and the CDCMF with the ED.

The test statistics for the four detectors were derived in
Section III. In that section, we also studied analytically the
performance of the three detectors—the CDCMF, ED, and
TRCMF—deriving analytical expressions for the probabilities
of false alarm and detection , as well as the thresh-
olds , in terms of either the error function or the cumulative
distribution function of -square variables. For the TR-GLRT,
we cannot derive these analytical expressions. We study its
performance experimentally.

We start by describing the two experimental setups used to
collect the electromagnetic data: channel I is propagation in free
space in a cluttered environment and channel II is propagation
in a duct. We detail each of these.

Channel I—Free Space Propagation in Cluttered Environ-
ment: The experimental setup is in Fig. 1. The time-domain
waveform is produced by stepped frequency synthesis. The
transmitted signal has 2 GHz bandwidth with center frequency
at 5 GHz, which corresponds to a wavelength 6 cm.
This signal is generated with an Agilent 89610A block vector
network analyzer (VNA) in Fig. 1. We capture both the in-phase
(I channel) and quadrature (Q channel) streams of the impulse
response. The transmitter and receiver antennas are two horn
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Fig. 2. Channel II: Duct. Operating frequency range is 2–3 GHz. Three-meter
metal pipe duct with diameter of 0.3 m with metal caps. Transmitting and re-
ceiving antennas are monopole probes.

antennas, indicated by the letters A and B in the figure, both
with operational bandwidths from 4 to 6 GHz. These two
antennas are mounted in a slider that moves in rails as shown
in the figure, with their positions computer controlled; Fig. 1
shows in dark and light gray two different possible positions for
the antennas A and B. The baseline separating these antennas
can be up to 2 m (roughly 33 ), as shown in the figure. The
total 2 GHz bandwidth is divided evenly into
bins. The radiated signal is scattered by 20 scatterers, shown as
circles in Fig. 1. The scatterers are a mixture of copper pipes
and solid dielectric pipes with 1.3 cm diameter and 3.2 cm
outer diameter, respectively. The scatterers are placed in front
of an absorbing wall that is 2.6 m (roughly 43 ) away from
the antennas. A target, represented as a triangle, is immersed
in the cloud of scatterers. The target is simply an additional
copper pipe of the same 1.3 cm diameter. The impulse response

of the scattering environment of Channel I is the top plot
in Fig. 3. The observation time window length is 100 ns.

Channel II—Duct: The experimental setup is shown in Fig. 2.
Again, the stepped frequency synthesis is performed to pro-
duce the time domain signal. The signal is transmitted through
a 3 m metal pipe with metal caps. The diameter of the duct
is 30.5 cm. It operates like a resonant cavity, with a rich scat-
tering environment. The transmitting and receiving antennas
are monopole probes. The transmitted signal has 1 GHz band-
width with center frequency at 2.5 GHz, which corresponds to
a wavelength cm. This signal is generated with the
same block VNA as with the channel I. We capture both the
in-phase (I channel) and quadrature (Q channel) streams of the
impulse response. The total 1 GHz bandwidth is divided evenly
into bins. The impulse response is the bottom
plot in Fig. 3. The observation time window length is 200 ns.

We first study the type of each of these two channels and com-
pute the corresponding SNRG given by (85). The plot at the top
of Fig. 4 shows the magnitude and phase of the target channel re-
sponse for channel I, while the plot in the middle shows
its type or empirical distribution. The plots in Fig. 5 show the
corresponding results for the channel II. Note the longer, heavier
tail of the type of channel II. Although the number of frequency
bins is for both channels , we compute the SNRG
(85), or the ratio in (90), with only the 40 equally spaced bins
that are used below in studying the performance of the four de-
tectors. We obtain SNRG dB and SNRG dB,
respectively. These gains show that the richer the scattering en-
vironment is the larger the gains to be expected.

Fig. 3. (Top) Impulse response h (t) of Channel I: free space propagation scat-
tering environment. (Bottom) Impulse response h (t) of Channel II: duct. Both
time-domain impulse responses are obtained by the inverse fast Fourier trans-
form of the frequency measurements, i.e., stepped frequency synthesis. Channel
I is measured between 4–6 GHz with center frequency of 5 GHz; Channel II is
measured between 2–3 GHz with center frequency of 2.5 GHz.

We now study experimentally the error performance of the
four detectors. We follow the setup explained in Section II
where we first learn the clutter frequency response
when no target is present and then use background subtraction
to suppress the clutter. This leads to the conventional detection
problem defined by (41) and to the time reversal detection
problem defined by (76) in Section III. To study performance,
we plot the probability of detection as a function of the
SNR for a fixed probability of false alarm . To obtain
noisy backscatterer at different SNR, we add numerically
generated zero-mean white Gaussian noise to the real data EM
backscatter. The SNR is defined by

SNR (91)

This noise is background noise. Through the experiments, we
set , and .
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Fig. 4. Channel I: (Top) jH (! )j and phase of H (! ). (Bottom) Type or
empirical distribution of target channel response H (! ).

The total signal energy is scaled to meet different
SNR levels.

We determine the threshold , the , and the by Monte
Carlo for the TR-GLRT when we fix the . We gen-
erated 8000 independent trials and computed the test statistic
given by (81), using the ML-estimate for the target channel re-
sponse in (84). The resulting 8000 test statistics are sorted in
ascending order. The threshold is then selected to result in a

. Once the threshold is chosen, to compute the ,
we generate 8000 new independent data snapshots containing
both target and noise. We then compute the test statistic and
compare it with the corresponding threshold. The percentage of
the number of times that the test statistic exceeds the threshold
when the target is present is counted as the detection proba-
bility .

For the other three detectors CDCMF, TRCMF, and ED, the
thresholds and the at fixed can be determined analyt-
ically with the expressions provided in Section III. To confirm
the validity of the experiments, we used the same procedure and
the same 8000 independent trials to compute the thresholds
and the probabilities and for each of these detectors.
We repeated the study for a different value of the false alarm

Fig. 5. Channel II: (Top) jH (! )j and phase of H (! ). (Bottom) Type or
empirical distribution of target channel response H (! ).

probability, namely, , with 40 000 Monte Carlo in-
dependent runs.

Figs. 6 and 7 show, for and , the
analytical and experimental results for channel I, with target
channel response in Fig. 4, for the four detectors CDCMF,
TRCMF, ED, and TR-GLRT. The analytical results correspond
to the plots labeled with the prefix “Ana.” In Figs. 8 and 9, we
show the corresponding experimental results for channel B,
i.e., the duct channel, whose type is shown in Fig. 5.

We make a few comments. First, we note that there is very
good agreement between the experimental results and the theo-
retical performance predictions in Section III for the CDCMF,
TRCMF, and ED detectors; this gives a good indication that the
number of independent snapshots used to determine the thresh-
olds and the error probabilities is statistically significant.

A second comment is with respect to the detection gain
SNRG provided by time reversal over conventional detection.
From the plots, we see that SNRG for channel I is about 2.4 dB
and about 9 dB for channel II, in agreement with the theoretical
predictions computed from the channel type plots in Figs. 4
and 5, respectively.
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Fig. 6. Detection probability versus SNR for CDCMF, TRCMF, ED, and
TR-GLRT for channel I (Fig. 4). False alarm rate P = 10 . The total
number of data snapshots is two: for CDCMF and ED,M = 2; for TRCMF,
M = 2; and for TR-GLRT,M = 1 andM = 1.

When the target channel response is not known and we use the
generalized likelihood ratio tests, the time reversal gain is about
1 dB for channel I and 2 dB for channel II. Also, the performance
loss when the target channel response is not known with respect
to when it is known can be significant. For instance, there is
about a 9 dB loss at the target detection probability of
shown in Fig. 6. This loss can be mitigated if more snapshots are
available. Further, note that even for the same total number of
snapshots, the performance gain provided by time reversal over
conventional detection can increase significantly if, as noted in
the Remark in Section II-B, the number of snapshots of the
time reversed signal is increased while the number of snapshots
of the direct signal is decreased. Thus we keep

. In the limit, we can set and .

Fig. 7. Probability versus SNR for CDCMF, TRCMF, ED, and TR-GLRT for
channel I (Fig. 4). False alarm rate P = 10 . The total number of data
snapshots is two: for CDCMF and ED, M = 2; for TRCMF, M = 2; and
for TR-GLRT, M = 1 and M = 1.

VI. SUMMARY

This paper studies the question of how much detection gain
time reversal provides over conventional detection. For each
of these two approaches to the target in clutter binary hy-
pothesis testing, we consider two scenarios: ideal detection,
where we assume known the target channel frequency response

, and realistic, where is assumed unknown. We
derive the corresponding test statistics in Section III: the con-
ventional detection channel matched filter, the time reversal
channel matched filter, the energy detector, which is the gen-
eralized likelihood ratio test for the realistic conventional de-
tection problem, and the time reversal generalized likelihood
ratio test for the realistic time reversal detection problem. For
the first three detectors, we derive analytical expressions for
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Fig. 8. Detection probability versus SNR for CDCMF, TRCMF, ED, and
TR-GLRT for channel II (Fig. 2). False alarm rate P = 10 . The total
number of data snapshots is two: for CDCMF and ED,M = 2; for TRCMF,
M = 2; and for TR-GLRT,M = 1 andM = 1.

the threshold and for the error probabilities. Finally, we test all
four detectors with real electromagnetic data collected in the
laboratory for two channels—free space cluttered environment
channel and a duct channel.

The analysis and experiments show that time reversal can
provide significant detection gains and that these gains are
directly related to how rich the target channel response is:
channels where the clutter induces a richer target channel fre-
quency response will lead to larger gains for time reversal
detection over conventional detection. Time reversal provides
a simple methodology to adapt the transmitted waveform to
the channel. It is this automatic adaptation that explains the
detection gains.

Fig. 9. Detection probability versus SNR for CDCMF, TRCMF, ED, and
TR-GLRT for channel II (Fig. 2). False alarm rate P = 10 . The total
number of data snapshots is two: for CDCMF and ED,M = 2; for TRCMF,
M = 2; and for TR-GLRT,M = 1 andM = 1.

A more comprehensive experimental study comparing time
reversal detection with matched filter detection is carried out
in [25].
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