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Time-Reversal Detection Using Antenna Arrays
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Abstract—The paper studies detection of a target buried in a
rich scattering medium by time reversal. We use a multi-static con-
figuration with receive and transmit arrays of antennas. In time
reversal, the backscattered field is recorded, time reversed, and
retransmitted (mathematically or physically) into the same scat-
tering medium. We derive two array detectors: the time-reversal
channel matched filter when the target channel response is known;
and the time-reversal generalized-likelihood ratio test (TR-GLRT)
when the target channel response is unknown. The noise added in
the initial probing step to the time-reversal signal makes the anal-
ysis of the TR-GLRT detector non trivial. The paper derives closed
form expressions for the signal-to-noise ratio gain provided by this
detector over the corresponding conventional clutter subtraction
energy detector in the two extreme conditions of weak and strong
(electronic additive) noise and shows that time reversal provides,
under weak noise, the optimal waveform shape to probe the en-
vironment. We analyze the impact of the array configuration on
the detection performance. Finally, experiments with electromag-
netic data collected in a multipath scattering laboratory environ-
ment confirm our analytical results. Under the realistic conditions
tested, time reversal provides detection gains over conventional de-
tection that range from 2 to 4.7 dB.

Index Terms—Adaptive waveforms, antenna array, detection,
imaging, localization, radar, sonar, synthetic aperture radar
(SAR), time reversal.

I. INTRODUCTION

I N time reversal (TR), a short pulse transmitted by a source
through a dispersive medium is received by an array, then

time reversed, energy normalized, and retransmitted (mathe-
matically or physically) through the same channel. If the scat-
tering channel is reciprocal and rich in multipath, the retrans-
mitted signal refocuses on the original source. A rich scattering
channel is highly dispersive and exhibits significant multipath
propagation. How rich the channel is can be assessed by the
channel type [1], [2], i.e., the empirical distribution of the (mag-
nitude) of the channel response. TR has drawn considerable at-
tention in ultrasound and acoustics [2]–[13], electromagnetics
[14], [15], and in algorithm development for TR based methods,
e.g., [16]–[18]. In [2], we studied TR based detection for a single
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antenna pair and evaluated its performance analytically and ex-
perimentally. This paper extends the single antenna TR detec-
tion to the general framework where arrays of antennas are
utilized; preliminary versions of parts of this work are in [12]
and [13].

Before we begin, we clarify the terms involving clutter and
rich scattering environment in this paper. In this paper, clutter
refers to unwanted scatterers within a scene of interest. We as-
sume that the clutter can be reliably estimated and subtracted
out from the measurement. The presence of a large amount
of unwanted scatterers creates a highly dispersive background
Green’s function for target detection. This background Green’s
function characterizes the highly scattering environment. This
paper studies the problem of detecting a target by time reversal
in rich scattering.

We consider two antenna arrays and that form a multi-
static configuration. Both can operate in transmit and receive
modes. TR detection involves three steps:

1) First, we probe the environment when no target is present.
A wideband signal is transmitted from each of the transmit-
ting antennas of array . The received signals are recorded
by array . This step, repeated times to average the
noise, learns the clutter response matrix.

2) We then monitor the scene to detect if a target or targets
entered the space of interest. When targets are present,
the measurements correspond to the target plus clutter re-
sponse matrix. The clutter response matrix learned in step
1 can be subtracted out from the measurements. If a target
is present, the residue signals contain the effective target
response at the array .

3) Finally, the residue signals received at array are time-
reversed, energy normalized, retransmitted simultaneously
from all antennas at back into the same medium, and
recorded at the antennas at array . The component of the
signal solely due to clutter is again subtracted out, which
results in the residue target signals at array . The test
statistics based on these residue signals are calculated and
compared with a predetermined threshold. A decision is
made whether a target is present or not.

We study two different scenarios where the target channel
response is 1) known or 2) unknown. For both scenarios, we
first derive the detectors and then study their performance. For
scenario 1, we present the TR detector that is matched to the
known target channel response. For scenario 2, due to the noise
that may contaminate the measurements, we estimate the target
channel response first and then derive the TR generalized-likeli-
hood ratio test (TR-GLRT). We provide an approximate closed
form of the maximum-likelihood estimate of the target channel
response.

To benchmark the gains provided by TR detectors over con-
ventional detectors, we quantify the signal-to-noise ratio (SNR)
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detection gain when detecting a target. For the TR-GLRT, this
analysis is not tractable in general. Instead, we develop closed
forms for the maximal SNR gain derived when the
noise is weak, and for the asymptotic SNR gain ,
asymptotic in the sense of large number of samples, when the
noise is strong. quantifies the performance advan-
tage of TR detection over conventional detection when the target
channel response is known; characterizes the per-
formance advantage of TR detection over conventional detec-
tion when the target channel is unknown and is estimated from
a large number of data samples. Unlike in the single antenna
pair detection problem, the employment of antenna arrays pro-
vides additional degrees of freedom and allows trading off fre-
quency bandwidth against different array configurations. The
analysis using indicates that the time-reversal de-
tector has a significant gain over the conventional detector. We
explain this gain by showing that TR based detection performs
optimal matching at the transmitter, i.e., it adaptively matches
the transmitted waveform to the target channel. The analysis
using provides the gain afforded by the TR-GLRT
over the conventional detector when the unknown channel is es-
timated with an asymptotic large number of samples and the
impact that noise and array configuration have on time-reversal
detection. For the same level of scattering, the detection gain af-
forded by time reversal over conventional detection reduces as
the array gets larger.

Our analytical results are validated with electromagnetic data
collected in a cluttered laboratory. These experiments confirm
that, for the realistic conditions tested, TR array detection pro-
vides significant gain over conventional array detection, ranging
from 2 to 4.7 dB. To further explore TR, we present detection
results with a bistatic synthetic aperture radar (SAR) configu-
ration with and without TR (TR-SAR). We show that TR-SAR
provides a gain over conventional SAR of about 2 dB using a
baseline of ten antennas. We also show how this gain is impacted
by the noise level in the time reversed signal, i.e., how noisy
the time reversed step is. The additive noise in the time reversed
signal reduces the channel estimation accuracy, reducing the de-
tection gain of TR-SAR over conventional SAR detection.

The paper is organized as follows. Section II establishes the
TR signal model. Section III formulates both the TR and the
conventional detection problems. We then present the corre-
sponding test statistics. Section IV derives closed forms for the
false alarm rate and detection probabilities. Section V shows
the connection between TR and optimal waveform shaping.
Section VI discusses the maximal SNR gain (weak noise)
and the asymptotic SNR gain (strong noise) of TR detection
over conventional detection. Section VII presents experimental
results, including TR-SAR versus conventional SAR. We
summarize our conclusions in Section VIII.

Notation: Lower and upper case boldface letters denote vec-
tors and matrices, respectively; , and stand
for conjugate, transpose, and Hermitian transpose, respectively;

and are the real and the imaginary parts of ;
is the column vector obtained by stacking the columns

of the matrix ; is the identity matrix of order ; is a
column vector of zero entries except that its th element is 1;

is the diagonal matrix whose diagonal collects the en-

tries of the vector ; and are the trace and deter-
minant of matrix ; is the vector or matrix Frobenius norm;

is the expected value of a random quantity; and is the
Hadamard product of two vectors or matrices, i.e., the vector or
matrix of their components wise product.

II. TR DATA MODEL

We extend the single-antenna-pair TR detection results in [2]
to time-reversal detection with arrays of antennas. We consider
an active radar (or sonar) system with a pair of antenna arrays
and in a multi-static configuration. Array has antennas

, and array has antennas . The ar-
rays and can switch between transmit mode and receive
mode. Suppose that the initial transmission starts from the array

. The signals transmitted from antennas are
. For simplicity, we will often assume that .

The transmitted signal is wideband, with duration , and
bandwidth . This signal is considered
wideband if the signal bandwidth, BW, is much larger than the
coherence bandwidth, , of the scattering channel. The coher-
ence bandwidth is given approximately by the inverse of the
largest channel delay spread [19]. The discrete Fourier repre-
sentation of the signal is

(1)

where is the th discrete time domain sample

and is a constant. For real valued time domain signals, the
causal representation of its time-reversal is , where
is the chosen time window length. Note that is dependent on
the channel dispersiveness. For a rich multipath channel,

. Thus, the discrete Fourier representation of is

(2)

In what follows, we use the discrete frequency representation
to describe the time-reversal signal model and omit the linear
phase term .

In typical radar stationary target configurations, the propa-
gation and scattering of electromagnetic waves are modeled as
linear processes. We introduce the following two channel fre-
quency response matrices. The clutter channel frequency
response matrix

is the response of the channel when no target is present. Its
th entry is the channel response from antenna to an-

tenna at angular frequency . We assume that
the radar channel is reciprocal. Then also represents the
channel response from antenna to antenna . Similarly, the

target clutter channel frequency response
, is the channel response when one or more

targets and clutter are both present. Let
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This denotes the difference between the channel response when
a single or multiple targets are present and the channel response
when no target is present; it represents the effective target re-
sponse, including the secondary scattering due to the interaction
between the surrounding scatterers and the target. Throughout
the paper, it is assumed that the clutter channel frequency re-
sponse , is learned and subtracted out from the mea-
surements (see a similar treatment in [2]). It suffices to focus on
the target response , to study the detection problem.

A. Data Organization

We will benchmark TR detection with respect to a conven-
tional detection problem. This section organizes the data for
both problems. We consider first the transmission from the
antennas at array A received by the antennas at array B. We
will aggregate the data received at the antennas in B, say

, in -dimensional vectors , whose compo-
nents sum up the received signals at frequency

, transmitted th snapshot, ,
by the th antenna of A. Each of the vectors is indexed
by and is a function of . We then stack these vectors for
the frequencies to obtain an -dimensional vector, say .
Finally, we collect a total of vectors to form the
dimensional Gram data matrix, say . We now explain this in
detail.

1) TR Data: In TR detection, there are two steps: the direct
step and the TR step. We assume that in either step, there are
snapshots. We discuss first the direct step.

Direct Step: For the th snapshot, , let
be the signal received at antenna transmitted

from antenna at frequency . Stacking these measurements
at all the antennas of array in the -dimensional vector

(3)

Equation (3) expresses these measurements in terms of the
th-column of the target channel response ; the scalar

Fourier representation of the signal is given in (1);
and the noise vector at frequency is . The signal

received at array is the superposition of all the
signals transmitted from the antennas at array ; it is

(4)

(5)

(6)

where and are the signal and noise vector com-
ponents of , respectively; and is the additive
noise in the th data snapshot at antenna , frequency . Col-
lecting for each snapshot , the frequency response in
an -dimension vector yields

(7)

(8)

(9)

(10)

The block diagonal matrix is , and the signal
and noise vectors are - and -dimensional, respec-
tively. We define the signal energy and the total energy
transmitted by array

(11)

(12)

where we assume that all antennas transmit the same energy.
We now discuss the TR step.

TR Step: In the TR step, each data vector is time re-
versed, energy normalized, and retransmitted back from array

to array . The -dimensional signal vector at array is
given by

(13)

(14)

where the received signal and noise vectors are

(15)

(16)

In (13), due to reciprocity, the target channel response be-
tween array and array is the transpose of the target channel
response between arrays and . The scalar is the energy
normalization factor at each antenna

(17)

For the TR detection problem, we concatenate and in
the -vector

(18)

where we used rather than . Finally, the Gram data matrix
in TR is described by

(19)

2) Conventional Detection Data: When we consider conven-
tional detection, we probe the target channel using identical sig-
nals from the array and from the array B, respectively.
Thus, the conventional detection is formulated based upon the
measurement pair , where is defined in (7), and
is given by

(20)

where

(21)

(22)
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TABLE I
LIST OF FOUR DETECTORS

(23)

(24)

The subscript denotes the illuminating signal transmitted
from array . The energy normalization factor is

(25)

Like for TR, we concatenate the data and into a vector
and collect all the available data in the Gram data matrix ,

defined by

(26)

(27)

B. Data Statistics

We collect the data statistics for both the TR and conven-
tional detection problems. The -dimensional noise vectors

and are circular complex Gaussian random vectors
across -frequencies and -array elements. Their probability
densities are

(28)

(29)

The real and imaginary components,[20], of are

(30)

(31)

Similar expressions hold for the real and imaginary components
of , with replaced by . The two noises and
are statistically independent and independent of the transmitted
signal. From the assumptions on the noise, the statistics of the
data , and follow:

(32)

(33)

(34)

where the statistics of are conditioned on the gain . The
statistics of are given in Appendix I.

III. DETECTORS

We pose the binary hypothesis test where under the null hy-
pothesis the data are target signal free, while under the alter-
native hypothesis the data contain a target signal. We con-
sider two detection problems: TR detection that uses the data
matrix and conventional detection that uses the data matrix

. For the two detection problems, the transmitted signals are

energy normalized so that, for benchmarking purposes, the av-
erage signal transmission energy is the same in both detection
problems. Within each of these detection problems, we consider
two scenarios: i) the ideal scenario where the target channel re-
sponse is assumed known and ii) the realistic scenario
where the target channel response is unknown and is es-
timated from the data. Similar to the discussion in [2], we study
the four Neyman–Pearson detectors [21], listed in Table I.

A. TR Channel Matched Filter (TRCMF)

This simplistic scenario enables deriving the detection gain
of TR over conventional detection. We assume that the noise

and the target channel response is known. In
fact, from (4), if the noise can be estimated per-
fectly. Under these assumptions, only the data vector is
relevant. We normalize the energy by

(35)

The binary hypothesis test is

(36)

The likelihood ratio test yields [22]

(37)

This detector is a channel matched filter, i.e., it is matched to the
known signal component at the output of the channel.

B. Conventional Detection Channel Matched Filter (CDCMF)

This is the ideal conventional detection problem given by

(38)

The target channel response is assumed to be known. The
likelihood ratio test statistic, [22], for the CDCMF detector is

(39)

which, again, is matched to the known signal component .

C. TR Generalized Likelihood Ratio Test (TR-GLRT)

The detection problem is

(40)
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In (40), the channel response , is assumed to be unknown.
We develop the generalized likelihood ratio test where we first
estimate the channel response . This is difficult because ,
besides appearing explicitly, also affects the energy normaliza-
tion gain . We approximate the problem by taking the power
normalization factor to be deterministic. The validation of
this assumption is in Appendix III. The impact of the noise that
is in the time-reversed signal is studied in Section VI-B.

The TR generalized likelihood ratio test (TR-GLRT) statistic,
derived in Appendix I, is

(41)

where is the channel estimate [see (141) in Appendix I].

D. Conventional Detector: Change Detection GLRT
(CD-GLRT)

The target channel responses or are assumed to be
unknown. The detection problem is

(42)

Again, we use the generalized likelihood ratio test (GLRT),
which we refer to as the change detector GLRT (CD-GLRT).
Its detailed derivation is in Appendix II. It is given by

IV. ANALYSIS OF THE IDEAL DETECTORS

In this section, we evaluate the detection performance of the
TRCMF and CDCMF given in (37) and (39), respectively. We
derive the closed form expression for the threshold given a
false alarm rate and the probability of detection . We
will resort to numerical methods to evaluate the performance of
the TR-GLRT and the CD-GLRT detectors.

A. False Alarm Rate

The false alarm probability is defined as
, where denotes the test statistics. Under , the test

statistics and given by (37) and by
(39), respectively, are the same with . The noise
vector at the antennas in is distributed in both cases as
in (29). It can be shown that the quantity inside in (37) or
(39) under hypothesis , i.e., , is a complex random
variable distributed as . This implies [20]

(43)

From (43), the false alarm probability and the threshold are
given successively by

(44)

(45)

where and are the error and the inverse error
functions, respectively [23]. Next, we compute the probability
of detection for the two detectors TRCMF and CDCMF.

B. Detection Probability

The probability of detection is defined as
, where is the test statistic. We first

compute for the TRCMF detector.
Time-Reversal Channel Matched Filter (TRCMF). Under

hypothesis , the test statistic (37) is

(46)

where

(47)

Again, the noise vector is distributed as in (29), from which
it follows that, under

(48)

which yields the detection probability

(49)

where is the detection threshold in (45). Making use
of the error function

(50)

Change Detection Channel Matched Filter (CDCMF).
Under hypothesis , the decision statistic (39) for the matched
filter is given by

(51)

where

(52)

Again, from the complex Gauss statistics of , we obtain

(53)
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The detection probability for CDCMF given the threshold is

(54)

V. TR AND OPTIMAL WAVEFORM TRANSMISSION

In this section, we show that TR is an adaptive waveform
transmission scheme. We can establish a direct parallel with
some conclusions drawn from the optimal radar literature (see,
e.g., [24]–[28]), namely, with the design of the transmission
waveform to maximize the output SNR at the radar receiver
[24]. Our proposed TR-GLRT is different from the waveform
preconditioning proposed in [29] that focuses on clutter rejec-
tion when the clutter characteristics are known. In this paper, we
reject the clutter by direct subtraction and focus on analyzing
the impact of the residual clutter and additive noise on detec-
tion performance using the generalized-likelihood principle.

We show that TR maximizes the transmitted SNR. Let
, and denote the vector representations of the trans-

mission waveform, the channel, and the receiver filter response;
and be the noise power spectrum. The optimal matched
filter at the receiver is

(55)

The output SNR at the receiver is

(56)

(57)

(58)

where for simplicity, we assume that , and
the Hermitian matrix

(59)

(60)

is the TR matrix. The waveform vector is

(61)

Next, we introduce a Green’s function representation of .
Let be the Green’s function between locations and

at frequency . It represents the channel (or medium) transfer
function from a source at and an antenna at . The Green’s
function vector responses are

(62)

(63)

We decompose the channel matrix as [11]

(64)

Let the target and antenna locations be denoted by and
(or ), respectively, and be the target reflectivity. Each

represents the medium Green’s function induced
by the presence of the target. The TR matrix is rewritten as

(65)

The waveform design problem chooses such that

(66)

subject to the constraint

(67)

where is the total transmission energy of the waveform
. In (66), the output SNR is given in (56). The

optimal at is given by the eigenvector of
corresponding to the largest eigenvalue, [30]. Since
given in (65) is a rank one matrix, the optimal solution is

(68)

where is a complex scalar. Comparing (4) and (68), we make
the following observations.

i) Assuming that the noise in the time-reversed signal is
negligible, , and adopting the vector
Green’s function representation of in (64), the
time reversed signal in (4) is, up to a constant scaling
factor, exactly the optimal transmission waveform
in (68), i.e.,

(69)

(70)

where

is a complex scalar. Thus, the TR transmission scheme
maximizes the output SNR, , at the receiver. This
result (70) shows that the TR operation reconstructs the
Green’s function vector between the target and
the array and thus adaptively adjusts the transmission
waveform to the channel characteristics.

ii) When the noise contained in the time-reversed waveform
is not negligible, the TR transmission is an approxi-
mation to the optimal transmission strategy. Part of the

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 16, 2010 at 17:50 from IEEE Xplore.  Restrictions apply. 



1402 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 4, APRIL 2009

transmission power is wasted due to the noise present
in the time reversed signals. The impact of the noise
component in the time-reversed signal will be discussed
in Section VI-B.

VI. SNR GAIN IN TR DETECTION

This section develops closed forms for the SNR detection
gains afforded by TR over conventional detection using antenna
arrays, where we define the performance comparison as the
difference of likelihood ratios [21]. We compute two gains:
the maximal SNR gain achievable by TRCMF
over CDCMF computed by assuming that the noise in the time
reversed retransmitted signal is negligible; and the asymptotic
SNR gain that quantifies the performance gain
of TR over when the
noise in the retransmitted time reversed signal is taken into
account. To simplify the analysis, we assume that the target
channel response , is known. (Note that, in this case,

is equivalent to CDCMF.)

A. Maximal SNR Gain of TRCMF

We evaluate the performance gain provided by time reversal
(TRCMF) over conventional detection (CDCMF) for a fixed
false alarm rate. We take . The maximal TR SNR de-
tection gain is given by the ratio of to

given in (47) and (52), i.e.,

(71)

The constant gains and are given in (35) and (25), respec-
tively. This expression generalizes the maximal gain expression
(see (89) in [2]) when .

The gain in (71) varies depending on the array configuration
and the variations of the target response across the fre-
quency range. To gain insight, we study two simple cases as we
trade off between , and . We resort to numerical means
to study a more general case with arbitrary , and . For
simplicity, assume that

1) Case-1, : This is when we have a single an-
tenna pair. Reference [2] shows that . Equality holds
when the amplitude of the channel response is flat. A large gain
can be achieved if the target channel response across frequen-
cies, i.e., the channel type, varies significantly.

2) Case-2, : This is called TR mirror (TRM)
in acoustics [3], [31] and in electromagnetics [14], [32]. For
TRM, a single probe source illuminates the target area and the
scattered field is recorded by an array of sensors. The array time-
reverses the signal and sends it back to the target area. This
focuses the scattered field at the location of the probe source.

We study the type or empirical distribution of the channel. The
channel matrix is

(72)

where , are the frequency responses of
the channel between the transmit antenna and the receive
antennas . The gain is

(73)

In a rich scattering environment, the channel bandwidth is de-
scribed by the coherence bandwidth [19], , which is given ap-
proximately by the inverse of the largest channel delay spread.
For a signal with bandwidth BW, the number of uncorrelated
frequency samples is then approximately given by

(74)

This is because if we take data samples at frequencies Hz
apart, we obtain practically independent information about the
scattering characteristics of the channel [19]. The richer the scat-
tering is, the smaller the coherence bandwidth of the channel
is, leading to larger number of available uncorrelated frequency
samples. Choosing implies that the channel is under-
sampled; while means the channel is over-sampled.
Next, we examine the SNR gain in (73) when the signal is nar-
rowband and wideband , respectively.

i) Narrowband : In this case, the signal
bandwidth is smaller than the coherence bandwidth of
the channel. The TR mirror (TRM) becomes a transmit
beamformer with weight vector

while the conventional detector illuminates the scattering
field with a uniform probing signal . The gain ex-
pression in (73) becomes

(75)

Equality holds when . With the conven-
tional method, the probing signals transmitted from the
two antennas can result in a null at the receiver location
when , while the TRM removes the
phase term from the received signal, thus not creating a
null.

ii) Wideband : The signal bandwidth is much larger
than the coherence bandwidth of the channel, is a
large number. By considering the empirical distribution
(or type [1]) for and , i.e., the normalized
histogram of the target channel responses over fre-
quencies, we can further analyze the potential SNR gain.
In the high frequency range, the phases of the frequency
samples or change rapidly between

. To get quantitative results, we approximate the
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empirical distribution by the normal distribution. This
computation uses the common practice of modeling
the channel and as independent complex normal
variables [19], , i.e., the multipath
Rayleigh model.1 For simplicity, we take and with
the same variance. Thus, the magnitude and are
Rayleigh distributed. Let denote a Rayleigh random
variable with degrees of freedom. The th raw moment
of , as well as the first few raw moments are [33]

(76)

(77)

where is the Gamma function [23]; in our case,
. Hence, an equivalent statistical expression

of (73) is [see (78) and (79), shown at the bottom of the
page]. Equation (79) is a function of the cross correla-
tion of the channel frequency samples and mea-
sured at the two antennas. The cross correlation depends
on the relative distance of the two antennas, as well as the
characteristics of the scattering field. A large interelement
spacing between the two antennas, for example, a few
wavelengths apart, in a rich multipath scattering implies
that the cross correlation of the two spatial channels is
small, i.e., the two channels fade independently. In this
case, the two random variables and are indepen-
dent, and we have

and , which yields for the
Rayleigh channel fading model

4.7 dB (80)

Equation (80) implies that for the Rayleigh channel when the
antennas are placed sparsely [14], [32], the TR mirror (TRM)
detector can lead to, on average, a 4.7-dB gain over the conven-
tional change detection in a rich Rayleigh multipath. We con-
duct numerical simulations to verify the analysis. The top panel

1The corresponding analysis can also be extended to a general Rician model,
or, depending on the channel empirical distribution, to other more complicated
statistical models.

Fig. 1. Top panel: ROC for Rayleigh channels. The distance between the two
ROC plots is the SNR gain of the TR Mirror given in (80). The ROC plots are
generated over 20 runs. � � ����. Bottom panel: simulation verification for
(104) by computing the Pearson’s correlation coefficient �.

in Fig. 1 shows the SNR gain by TRM detection using two an-
tennas. The two channels are characterized by Rayleigh models.
The ROC plot shows that TRM has a 4.7-dB gain over the con-
ventional method.

Transmit Array Gain by the TR Mirror: Using the analysis
shown above, we can characterize the transmit array gain [34],
[35] induced by the TRM. We show that a TRM of -antennas
yields a transmit array gain greater than the normal array gain

(78)

(79)
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of . Again, we use the channel model given
in (72). We consider the ideal scenario where the noise is white
spatially across the array and has a flat power spectrum. Under
these conditions, (47) is the output SNR for the TRCMF. We
compare the output SNR of the TRCMF, in (47), for
the channel (72) when , with the output SNR, ,
given by (61) of [2], for the channel when

. Hence, we define

(81)

Assuming that , we rewrite (81) as

(82)

Similar to the analysis in (79), we obtain

4.7 dB (83)

where we assume that and are independent fading
Rayleigh channel coefficients. We conclude that, under rich
scattering Rayleigh channel models, a 2-antenna TRM results
in a transmit array gain greater than the nominal array gain
of 2 (or 3 dB). The explanation is intuitive: TRM adaptively
matches to the target channel response, optimally exploiting
the multipath diversity and the spatial diversity. The multipath
diversity is caused by the rich multipath scattering that induces
a channel response that is frequency dependent; the spatial
diversity arises due to the large element spacing, resulting in
independent channel responses for each antenna of the TRM
array.

B. Asymptotic SNR Gain of TR-GLRT

In physical TR, the signal received at the antennas of array
after the initial transmission from the antennas at array is

corrupted by additive noise. When this signal is time reversed
and retransmitted, a fraction of the transmission power is wasted
on the noise component. In this section, we quantify the per-
formance gain of TR over the conventional detection when the
additive noise is taken into account. For simplicity, we assume
that the target frequency response is known. We emphasize that,
in the following analysis, the detection problems under study
are slightly different from (40) and (42) since now the target re-
sponse is assumed to be known in both cases. Thus, the
results we derive correspond to an asymptotic performance gain
of TR detection over conventional detection (in the limiting case
of high SNR or many samples so that the channel response be-
comes asymptotically known).

Given (13) and (4), the optimal detector is the likelihood ratio
of the joint pdf of ,

(84)

The is the conditional probability density
function for given under .

Similarly, the optimal conventional detector assuming
, known is the likelihood ratio of the joint pdf of the

measurement pair . It leads to

(85)

The test statistic of the detector given in (85)
is equivalent to CDCMF when the target channel is known, i.e.,

. Next, define the performance
comparison between and
as the difference of the likelihood ratios defined in (84) and (85),
respectively. In (84) and (85), the second term is common, and
so this term does not affect the performance comparison be-
tween (84) and (85). Therefore, it suffices to examine the re-
maining terms. These terms are complex Gaussian distributed
with a nonzero mean, i.e., the first term in (84) and the first term
in (85) are distributed as and ,
respectively, at frequency , where the means are given as
follows:

for (84) (86)

for (85) (87)

Thus, for a given , the performance comparison leads to

(88)

(89)
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We define the average SNR gain of as the
ratio of the expectation of these two quantities. Using (35), we
obtain

(90)

where the quantities inside of are

(91)

(92)

To evaluate , we calculate the statistics of the
random variables and . First, we show that

(93)

Let denote the th entry of the vector .
We have

(94)

We obtain [33]

(95)

where the random variables . Note that
is complex normal; we obtain

(96)

where denotes the noncentral -distribution with two
degrees of freedom and noncentrality parameter . The two
degrees of freedom arise from the real and imaginary parts of

. Therefore, given (91), (94) is the sum of independent
noncentral -random variables with 2 degrees of freedom.
From [33], the mean of a noncentral -distributed random
variable is the sum of the degrees of freedom and the noncentral
parameter. Hence,

(97)

Written in a compact form, (97) becomes (93). Next, we obtain
the distribution of . Let

(98)

be the th entry of in (92). Using the properties
of noncentral chi-square distributions for complex numbers, we
obtain

(99)

It is straightforward to obtain

(100)

(101)

Hence, we obtain the mean of as follows:

(102)

which yields the approximation in terms of the moments [36]

(103)

To obtain a closed-form expression for , we ap-
proximate . The approxi-
mation is reasonable when the correlation coefficient [37] of the
random variables and is small, since

(104)

where and are the square roots of the second order
central moments of and , respectively. A small

means a good approximation. The bottom panel of Fig. 1
shows the value of versus SNR and by simulation, which
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confirms that the approximation is valid. Next, plugging (103)
and (93) into (90) yields

(105)

We comment on this expression of the gain as
follows.

1) If the time reversed signal is noise free, i.e., in ,
this gain reduces to the maximal SNR gain (71) (see also
[2] for the maximal SNR gain with a single antenna pair).

2) When snapshots of are used for
averaging to reduce the noise variance in the time-reversed
signal, this gain takes the form of (105) except that is
replaced by .

3) In our development, we assume that is known. Thus,
this gain represents the asymptotic theoretical performance
gain of the TR GLRT (TR-GLRT) over the conventional
GLRT detector, i.e., when the unknown is estimated
using an asymptotic large number of measurements.

VII. EXPERIMENTS AND PERFORMANCE RESULTS

In this section, we illustrate the performance of the detectors
presented before with experimental data measured in a labora-
tory environment.

A. Experimental Setup

The detection experiment geometry is shown in Fig. 2. We
illuminate the scattering medium with a broadband pulse of 2
GHz, with center frequency at 5 GHz. This signal is gener-
ated by an Agilent 89610A vector signal analyzer. We capture
and record the in-phase (I channel) and quadrature (Q channel)
streams of the impulse response. The transmitter and receiver
antennas are two horn antennas, both operating in the band 4
to 6 GHz. This 2-GHz band is divided evenly into
bins. The two antenna arrays and are synthesized by sliding
each horn antenna in their own slider or , and stopping at
one of ten predetermined locations separated by 10.16 cm. The
two sliders are aligned, with their two closest end points sepa-
rated by 48.26 cm. These ten locations in each slider lead to 100
possible transmit–receive pairs. Various combinations of these
pairs produce arrays with different aperture sizes and number
of antennas. To indicate which antenna locations are used in
a given array, we number each location explicitly and refer to
them within brackets. For example, the notation
specifies that array is defined by the horn antenna in slider
at positions 1, 3, and 6 (see the top panel of Fig. 2). The radi-
ated signal is reflected by a number of scatterers placed in front
of an absorber wall. A mix of dielectric pipes and copper rods
creates the scattering environment. The target, surrounded by
scatterers, is a single copper pipe with 1.5 cm in diameter and
2.5 m in length. The scatterers are dielectric pipes with 3 cm
in diameter and 2.5 m in length. Besides the dielectric pipes,
we add a few copper pipes as scattering objects. Two dielec-
tric pipes are wrapped with aluminum foils to increase the re-
flectivity. All the pipes stand vertically. We measure the cylin-
drical wave propagating between the antennas and the scattering

Fig. 2. Top panel: detection experiment geometry. The numbers indicate scat-
terers positions; the diamond indicates target location; stars indicate antenna
positions. Bottom panel: photo of the laboratory. Dielectric rods are the scat-
terers; copper pipes are the targets. Two horn antennas, one transmits and one
receives, synthesize two linear arrays, A and B, by moving along two position
sliders.

objects. During the measuring process, the two horn antennas
point to the target area with size 1.2 m 1.2 m and centered at

2.3 m 0.65 m .
To generate receiver operating characteristic (ROC) curves,

we add artificial (numerically generated) noise to the real data
measurements at different SNR levels. To be consistent with the
commonly used definition of SNR in the radar literature (e.g.,
[38] and [39]), this paper defines the SNR as follows:

(106)

This definition (106) is a scaled version of the SNR given in our
previous paper in [2].

We take ; ; and synthesize 5000 Monte
Carlo runs to generate the ROC curves. In the ROC plots, the
solid lines labeled with “ana” plot the analytical performance
predicted by the study in Section IV, while the markers plot the
performance obtained by averaging the Monte Carlo runs. The
ROC plots can be extended straightforward to false alarm rates,
for example, or smaller.
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Fig. 3. SNR gain plot with 30 scatterers. Top panel: TRCMF, CDCMF
and TR-GLRT(asym) versus SNR. The maximal SNR gain is 7.0 dB for
TRCMF compared with CDCMF. The TR-GLRT(asym) has about a 3-dB
gain over CDCMF. � � ����. Bottom panel: Asymptotic SNR gain of
TR-GLRT(asym) versus CDCMF.

B. TR Detection Performance

Fig. 3 depicts the ROC curves for the TRCMF, CDCMF,
and detectors, where the
detector is the TR-GLRT given in (41), except that the target
channel is assumed known, i.e., estimated with an asymptoti-
cally large data set so that the estimated error is zero. The ar-
rays are and , i.e., have a single antenna
and three antennas, respectively. There are 30 scatterers. The
top panel in Fig. 3 shows that the theoretical performance (solid
lines) match well the Monte Carlo trial results (markers) for both
the TRCMF and CDCMF detectors. The maximal SNR gain of
the TRCMF detector over the CDCMF detector in the study of
Fig. 3 is 7.0 dB. The panel also displays the per-
formance for two plots of the detector, when

and snapshots are available to reduce the
noise component by averaging before TR and retransmission.
The bottom panel of Fig. 3 shows the asymptotic SNR gain

Fig. 4. Comparison of the ROCs for the TR-GLRT and the CD-GLRT detec-
tors. The array configurations are � � ��� and � � ��� �� ��. Number of snap-
shots� � �. � � ����. Top panel: 30 scatterers, SNR gain at � � ��	 is
1.8 dB. Bottom panel: 1 scatterer, SNR gain at� � ��	 is 0.8 dB. Richer scat-
tering yields a larger SNR gain. Compared with Fig. 3, the TR gain is reduced.

(105) of the detector over the CDCMF de-
tector. The predicted (solid lines) matches well with
the simulation results (markers). For example, with ,
we calculate, using the ROC curves in the top panel, a 1.5-dB
gain of the detector over the CDCMF de-
tector at 7 dB. The predicted SNR gain is
read, from the bottom panel in Fig. 3, to be 1.7 dB at the same
SNR level. When we use snapshots, the asymptotic
SNR gain is improved significantly. In this case, the variance of
the noise in the clutter response channel estimate is reduced by
a factor of 20, i.e., 3 dB. As observed from the bottom
panel, the asymptotic SNR gain is now 4.5 dB, a 2.8-dB im-
provement over the case. This indicates that the noise
component in the time-reversed signal has a significant impact
on the detection performance: a rich scattering but quiet envi-
ronment is preferred for TR.

Fig. 4 displays the ROC curves for the TR-GLRT and the
CD-GLRT detectors using snapshots, when the target
is surrounded by 30 scatterers (top panel) and a single scatterer
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Fig. 5. Comparison of the ROCs for the TR-GLRT and the CD-GLRT detec-
tors. The array configurations are � � ��� ��� � � ��� �� ��. Number of snap-
shots � � �. Top panel: 30 scatterers, SNR gain at � � 	�
 is 0.7 dB.
Bottom panel: 1 scatterer, SNR gain at � � 	�
 is 0.2 dB. Richer scattering
yields a larger SNR gain.

(bottom panel). The top panel shows that the TR-GLRT detector
has a gain of 1.6 dB over the CD-GLRT detector. This gain is
reduced to 0.5 dB in the much less rich scattering environment
of the bottom panel. The results also confirm that the analytical
asymptotic expression is a good predictor of the
actual SNR gain of the TR-GLRT detector over the CD-GLRT
detector.

Fig. 5 considers a more general case, when an additional an-
tenna is added. Now, the array has two antennas ,
where antenna 5 is about 40 cm away from antenna 1. The array

has the same three antennas as in the previous
two studies. The number of scatterers is 30 on the top panel and
1 on the bottom panel. Note that, to compare with the scenario
with a single transmit antenna shown in Fig. 4, we normalize
the SNR in Fig. 5 relative to the SNR in Fig. 4. Adding an ad-
ditional antenna results in about a 3.2-dB increase in received
signal power (channel gain.) The ROC curves in Fig. 5 indicate
that the TR-GLRT detector gain over the CD-GLRT is reduced

from 1.6 dB in Fig. 4 to 0.7 dB in Fig. 5 (top panels) and from
0.5 to 0.2 dB (bottom panels). This shows that the spatial diver-
sity afforded by the larger array in this study, when compared
to the case studied in Fig. 4, reduces the impact of the TR gain.

C. TR for Synthetic Aperture Radar Imaging

SARs provide a crucial technology for target detection and
localization [40]–[42]. However, conventional SAR systems
are not designed for imaging targets in a rich scattering envi-
ronment. In this section, we examine the performance of TR
when used in conjunction with SAR imaging when the target is
concealed in clutter. We proposed TR SAR (TR-SAR) in [43]
and [44]. To simplify the analysis, we interpret SAR imaging
as beamforming, i.e., the conventional SAR data-collection and
image formation process is a simple beamformer with sidelobe
control [45], [46]. To demonstrate the advantage of TR-SAR over
conventional SAR, we consider a simplified imaging scenario
with the following assumptions: 1) The clutter is static and can be
subtracted out to obtain the difference signals (i.e., conventional
change detection). 2) We adopt a bi-static configuration (see,
e.g., [47] and [48] for discussion of bi-static SAR) shown in Fig. 2
where array B has antennas and array A has one antenna.
In other words, the single antenna in array A remains fixed,
while the antenna in array B moves to ten different positions to
synthesize array B. 3) The channel response is decomposed as

(107)

where is the time delay of the direct path from the transmitter
to the target, and to the receiver; the relative multipath channel
is

(108)

where the multipath term is

(109)

Symbols denote the amplitude and differential delay
of the th multipath; denotes the target radar cross section
(RCS). 4) For conventional SAR, we assume that the probe
signal (the equivalent time-domain signal is a sinc
function and can be obtained by the inverse Fourier transform).
For TR, we use the probe signal

(110)

where the normalization factor

(111)

Hence, the received SAR data (for conventional change de-
tection) can be written as

(112)

where is the th antenna, is
the additive noise. To form an SAR image, we first stack

as a vector

(113)

The weighting coefficients for each pixel in the image
are given by (for example, a windowed fast
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Fourier transform, or FFT [46]) and written as a vector
. We should note that the weighting coef-

ficients are two-dimensional in fast-time frequency (or
range) domain and slow-time frequency (or Doppler) domain.
Here we use a linear processing for SAR image reconstruction
and detection, which is an approximation of the wavefront
reconstruction method discussed in many SAR literature (e.g.,
[40]). Hence, the target radar cross section can be obtained by

(114)

(115)

In (115), the first term is the target phase history data; the
second is induced by multipath that produces ghost images
[43], [44]; the last term is the additive noise. We should note
that in the second term of (115), the quantity is a com-
plex number that creates a phase shift in addition to the target
signature phase . It is this phase shift that induces the
ghost images in conventional SAR processing. Time reversal
removes the phase shift and produces a focused target image.

Using TR, the received SAR data is

(116)

The vectorized SAR data and the target RCS are

(117)

and

(118)

In (118), the first term is the focused target phase history data
and the second term is the additive noise. We should note that
the quantity in the first term of (118) is a real number
that does not induce phase disturbances on the target signature
phase . This is different from the first term in (114)
where is a complex number due to the superposition
of the multipath and the direct path. Compared with (115), the
ghost images are removed in (118). As a result, the TR SAR

Fig. 6. TR detection versus conventional detection in SAR. � � ����. The
imaging geometry is shown in Fig. 2. The antenna collects SAR data at ten
positions.

images produce a clear map of the target with improved reso-
lution and detectability. We now compare the performance of
TR-SAR with conventional SAR for detection. The imaging
geometry is shown in Fig. 2. The experimental setup is de-
scribed in Section VII-A. In Fig. 6, we compare the receiver op-
erating characteristics based on (115) and (118). We choose the
weighting coefficients , i.e., the beamformer
matches with the target response. We define the target-to-multi-
path-plus-noise ratio (TMNR) as

(119)

Fig. 6 shows that TR-SAR has 2 dB gain over CD-SAR for
the scattering environment in Fig. 2. This is significant in
applications.

VIII. CONCLUSION

This paper derives the TR generalized likelihood ratio de-
tector using antenna arrays. It studies analytically the perfor-
mance of the TR detector and provides experimental validation
with electromagnetic data. We showed that TR is an adaptive
waveform transmission strategy. To analyze the impact of the
noise contained in the time-reversed signal, we derived closed
form expressions for the asymptotic SNR gain of the TR de-
tector over the conventional detector, in the asymptotic limit of
large data sets, when the number of snapshots available to esti-
mate the target channel response goes to infinity.

In our analysis, we assume that the clutter response can be
estimated and subtracted from the measurement. Under this
assumption, the performance of TR is determined by noise and
the target channel response. In a rich scattering environment,
the target channel response shows a widely fluctuating fre-
quency spectrum. This contrasts with the direct line-of-sight
environment where the point target has a flat frequency spec-
trum. TR transmission allocates transmission power in the
frequency range where the target response is strong, which
improves the transmission efficiency.
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The TR SNR gain varies depending on the array configuration.
To characterize the TR gain over the conventional method, we
show that, for a multipath rich Rayleigh channel model and using
one transmit antenna and two receiving antennas, the TR detector
has a 4.7-dB gain over the conventional detector. Under ideal
conditions, a two-antenna TR mirror array attains transmit array
gain of 4.7 dB, greater than the nominal array gain of 3 dB. This
gain results from the multipath diversity due to rich multipath
scattering and the spatial diversity due to the multielement array
with independent channel coefficients. For a multistatic config-
uration with antennas in the transmit array and antennas
in the receive array , we recommend to use an configu-
ration to implement TR. We show, by analysis and experiments,
that the TRM yields significant detection gain over conventional
detection. A more comprehensive study of the impact of the array
configuration on TR detection, including the array aperture and
the array interelement spacing will be reported in a future paper.

APPENDIX I
DERIVATION OF TR-GLRT DETECTOR

We use (18) as the th test data snapshot. Under the alter-
native hypothesis for detection problem (40), this snapshot is
given by

(120)

Let denote the covariance matrix of
, i.e.,

(121)

Using the matrix inversion lemma, and the block matrix inver-
sion lemma, [30], we obtain that

(122)

Applying the identity for determinants of block matrices

(123)

to (121) yields

(124)

The pdfs and conditioned on the power nor-
malization factors under hypotheses and , respec-
tively, are given by (125)–(128), shown at the bottom of the
page. Adopting the GLR principle by taking the logarithm of the

(125)

(126)

(127)

(128)
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ratio of the two pdfs (127) and (128) evaluated at the maximum-
likelihood estimate of yields the following test statistic:

(129)

where

(130)

(131)

(132)

Next, we derive the maximum likelihood estimate of
under that appears in (129). We neglect the depen-

dency of on the target channel response and so is
only an approximation to the true ML estimate. The validity of
such an assumption is shown in Appendix III. Taking the partial
derivative of with respect to , and ignoring
the constant terms, yields

(133)

(134)

Utilizing the rule of treating complex variable and its conju-
gate as two distinct quantities, [49], i.e.,

(135)

we obtain the following expression that involves taking the
derivative of a trace with respect to complex numbers

(136)

Equating to zero yields the Lyapunov Sylvester matrix equation
[50]

(137)

Using Kronecker products and the vec operator, we get as
follows:

(138)

(139)

which leads to

(140)

The ML estimate can be obtained by un-doing the
vectorization of given in (140). However, caution
should be taken when completing this ML estimate from (140)
since it is often slow and ill-conditioned. Other standard solu-
tion methods for (137) are the Bartels–Stewart method, [51],
and the Hessenberg–Schur method [52]. Finally, we obtain the
channel estimate

(141)

APPENDIX II
DERIVATION OF THE CD-GLRT DETECTOR

Under the alternative hypothesis for the detection problem
(42), the th test data is given by (26)

(142)
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The pdfs and , under hypotheses and ,
respectively, are given by

(143)

(144)

(145)

Adopting the GLR principle yields the following test statistic:

(146)

where the matrix is defined in (131) and

(147)

(148)

Next, we derive the maximum-likelihood estimate of
under . Taking the partial derivative of

with respect to , and ignoring the constant terms, yields

(149)

(150)

Equating to zero yields the Lyapunov Sylvester matrix equation
[50]

(151)

A straightforward numerical approach to the above equation
forms the single vector equation using Kronecker products as
follows:

(152)

(153)

which leads to

(154)

The maximum-likelihood estimate of for the CD-GLRT
can be obtained by un-doing the vectorization operator in (154),
see similar comments below (140).

APPENDIX III
ENERGY NORMALIZATION SCALAR IS

APPROXIMATELY DETERMINISTIC

The scalar in (17) is a random variable because of its de-
pendence on the noise contained in the time-reversed signal. In
the development of the TR-GLRT statistic, we assume that
is a deterministic value. We show here that this is a reasonable
assumption. The second order moment of is

(155)
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Applying (103)–(155) yields

(156)

Assuming that , and , we obtain

(157)

From the definition of SNR (106), at high SNR, , the
variance of is . At low SNR, we use the fol-
lowing approximation. Notice that is the inverse of the gen-
eralized Rayleigh variate. Since the th moment of a generalized
Rayleigh variate with degrees of freedom and noncentrality
parameter is [53]

(158)

where is an hypergeometric function. As an approxima-
tion when , and choosing , we have the approxi-
mate first order moment [53] . In our case,

(159)

(160)

which yields

(161)

(162)

Applying the approximation , for , we have

(163)

Thus, by , and using (157)
and (163), we conclude that at low SNR. Our
analysis shows that at high SNR or low SNR, the variance of

is small. In Section VII, we see that the receiver operating
characteristic (ROC) curves lie in a relatively low SNR range,
in which case can be safely considered to be deterministic.
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