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Abstract—In this paper, we propose a linear complexity en-
coding method for arbitrary LDPC codes. We start from a simple
graph-based encoding method “label-and-decide.” We prove that
the “label-and-decide” method is applicable to Tanner graphs with
a hierarchical structure—pseudo-trees—and that the resulting
encoding complexity is linear with the code block length. Next,
we define a second type of Tanner graphs—the encoding stopping
set. The encoding stopping set is encoded in linear complexity by
a revised label-and-decide algorithm—the “label-decide-recom-
pute.” Finally, we prove that any Tanner graph can be partitioned
into encoding stopping sets and pseudo-trees. By encoding each
encoding stopping set or pseudo-tree sequentially, we develop
a linear complexity encoding method for general low-density
parity-check (LDPC) codes where the encoding complexity is
proved to be less than � �� � ��� � ��, where � is the number of
independent rows in the parity-check matrix and �� represents the
mean row weight of the parity-check matrix.

Index Terms—Encoding stopping set, low-density parity-check
(LDPC) codes, linear complexity encoding, pseudo-tree, Tanner
graphs.

I. INTRODUCTION

L OW-density parity check (LDPC) codes [1] are excel-
lent error correcting codes with performance close to the

Shannon capacity [2]. The key weakness of LDPC codes is their
apparently high encoding complexity. The conventional way to
encode LDPC codes is to multiply the data words by the code
generator matrix , i.e., the codewords are . Though
the parity-check matrix for LDPC codes is sparse, the asso-
ciated generator matrix is not. The encoding complexity of
LDPC codes is where is the block length of the LDPC
code. For moderate-to-high code block length , this quadratic
behavior is very significant and it severely affects the applica-
tion of LDPC codes. For example, LDPC codes have advantages
over turbo codes [3] in almost every aspect except that LDPC
codes have encoding complexity, while turbo codes have

encoding complexity. It is highly desirable to reduce the
encoding complexity of LDPC codes.

Several authors have addressed the issue of speeding en-
coding of LDPC codes and, generally speaking, they follow
three different paths. The first path designs efficient encoding
methods for particular types of LDPC codes. We list a few
typical representations. Reference [4] proposes a linear com-
plexity encoding method for cycle codes—LDPC codes with
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column weight . Reference [5] presents an efficient encoder
for quasi-cyclic LDPC codes. In [6], an efficient encoding
approach is proposed for Reed–Solomon-type array codes.
Reference [7] shows that there exists a linear time encoder for
turbo-structured LDPC codes. Reference [8] constructs LDPC
codes based on finite geometries and proves that this type of
structured LDPC codes can be encoded in linear time. In [9],
[11], two families of irregular LDPC codes with cyclic struc-
ture and low encoding complexity are designed. In addition, an
approximately lower triangular ensemble of LDPC codes [10]
was proposed to facilitate almost linear complexity encoding.
The above low-complexity encoders are only applicable to a
small subset of LDPC codes, and some of the LDPC codes
discussed above have performance loss when compared to
randomly constructed LDPC codes. The second path borrows
the decoder architecture and encodes LDPC codes iteratively
on their Tanner graphs [12], [13]. The iterative LDPC encoding
algorithm is easy to implement. However, there is no guarantee
that iterative encoding will successfully get the codeword. In
particular, the iterative encoding method will get trapped at
the stopping set. The third path utilizes the sparseness of the
parity-check matrix to design a low-complexity encoder. In
[14], the authors present an algorithm named “greedy search”
that reduces the coefficient of the quadratic term. This encoding
method is relatively efficient. Its computation complexity and
matrix storage need to be further reduced for most practical
applications.

In this paper, we develop an exact linear complexity encoding
method for arbitrary LDPC codes. We start from two particular
Tanner graph structures—“pseudo-tree” and “encoding stop-
ping set”—and prove that both the pseudo-tree and the encoding
stopping set LDPC codes can be encoded in linear time. Next,
we prove that any LDPC code with maximum column weight
three can be decomposed into pseudo-trees and encoding
stopping sets. Therefore, LDPC codes with maximum column
weight three can be encoded in linear time and the encoding
complexity is no more than where denotes
the number of independent rows of the parity-check matrix
and represents the average row weight. Finally, we extend
the complexity encoder to LDPC codes with arbitrary
row weight distributions and column weight distributions. For
arbitrary LDPC codes, we achieve encoding complexity,
not exceeding .

The remainder of the paper is organized as follows. In
Section II, we introduce relevant definitions and notation.
Section III proposes a simple encoding algorithm “label-and-de-
cide” that directly encodes an LDPC code on its Tanner graph.
Section IV presents a particular type of Tanner graph with
multiple layers—“pseudo-tree” and proves that any pseudo-tree
can be encoded successfully in linear time by the label-and-de-
cide algorithm. Section V studies the complement of the
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pseudo-tree—“encoding stopping set.” Section VI proves that
the encoding stopping set can also be encoded in linear time
by an encoding method named “label-decide-recompute.”
Section VII demonstrates that any LDPC code with column
weight at most three can be decomposed into pseudo-trees
and encoding stopping sets. By encoding each pseudo-tree or
encoding stopping set sequentially using the label-and-decide
or the label–decide–recompute algorithms, we achieve linear
complexity encoding for LDPC codes with maximum column
weight three. Finally, we extend in this section this linear
time encoding method to LDPC codes with arbitrary column
weight distributions and row weight distributions. Section VIII
concludes the paper.

II. NOTATION

LDPC codes. LDPC codes can be described by their parity-
check matrix or their associated Tanner graph [15]. In the Tanner
graph, each bit becomes a bit node and each parity-check con-
straint becomes a check node. If a bit is involved in a parity-
check constraint, there is an edge connecting the bit node and
the corresponding check node. The degree of a check node in
a Tanner graph is equivalent to the number of ’s in the corre-
sponding row of the parity-check matrix, or, in another words,
the row weight of the corresponding row. We will use the term
“degree of a check node” and “row weight” interchangeably
in this paper. Similarly, the degree of a bit node in a Tanner
graph is equivalent to the column weight of the corresponding
column of the parity-check matrix, and we will interchangeably
use the term “degree of a bit node” and “column weight” in this
paper. The LDPC codes discussed in this paper may be irregular,
i.e., different columns of the parity-check matrix have different
column weights and different rows of the parity-check matrix
have different row weights. The parity-check matrix of an LDPC
code may not be of full rank. If a row in the parity-check ma-
trix can be written as the binary sums of some other rows in the
parity-check matrix, this row is said to be dependent on the other
rows. Otherwise, it is an independent row.

Arithmetic over the binary field. We represent by “ ” the
summation over the binary field, i.e., an XOR operation. For ex-
ample, . Similarly, we have

. In addition, we have the following
in the binary field. Further, we use the symbol “ ” to repre-
sent the inverse of the value in the binary field. As an illustra-
tion, and .

Generalized parity-check equation. A conventional parity-
check equation is shown in (1). The right-hand side of the parity-
check equation is always .

(1)

In this paper, we define the generalized parity-check equation,
as shown in (2)

(2)

On the right-hand side of (2), is a constant that can be either
or .

Let be a standard parity-check equation. If the values
of some of the bits in the left-hand side of are already
known, then can be equivalently rewritten as a generalized
parity-check equation. For example, if the values of the bits

are known, we move these bits from the
left-hand side of (1) to its right-hand side and rewrite it as
follows:

(3)

Let be generalized parity-check equations, as
shown in (4)

...
...

...
...

(4)

We say are dependent on each other if the
corresponding homogeneous equations in (5) are dependent on
each other

...
...

...
...

(5)

From (4) and (5), we derive that

(6)

when the generalized parity-check equations
are dependent on each other.

Connected graph. A graph is connected if there exists a path
from any vertex to any other vertices in the graph. If a graph is
not connected, we call it a disjoint graph.

Relative complement of a subgraph in a Tanner graph
. Let be a Tanner graph and be a subgraph of , i.e.,

. We use the symbol to denote the subgraph that
contains the nodes and edges in , but not in . For example,
let be check nodes in a Tanner graph . The
subgraph represents the remaining graph
after deleting check nodes from . Assume

are subgraphs in a Tanner graph . The notation
represents the subgraph where nodes

and edges are in , but not in .

III. “LABEL-AND-DECIDE” ENCODING ALGORITHM

Initially, Tanner graphs [15] were developed to explain the
decoding process for LDPC codes; in fact, they can be used for
the encoding of LDPC codes as well [12]. To encode an LDPC
code using its Tanner graph, we identify information bits and
parity bits through a labeling process on the graph. After de-
termining the information bits and the parity bits, we start by
assigning numerical values to the bit nodes labeled as informa-
tion bits and then in a second step, calculate the missing values
of the parity bits sequentially. This encoding approach is named
label-and-decide. It is described in Algorithm 1.
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Algorithm 1 Label-and-decide algorithm

Preprocessing (carry out only once):
Label every bit node either as information bit or parity bit
on the Tanner graph.

Encoding:
;

Get the values of all the bits labeled as information bits;

while there are parity bits undetermined do
if there exists one undetermined parity bit that can be
uniquely computed from the values of the information
bits and the already determined parity bits then

Compute the value of .

else
, exit the while loop.

end if
end while
if then

Encoding is unsuccessful.

else
Output the encoded codeword.

end if

Example: Fig. 1 shows on the left an LDPC code whose
Tanner graph is a tree. Initially, all its bit nodes are unlabeled.
First, we randomly pick bit nodes and to be informa-
tion bits. According to the parity-check equation , the value
of bit depends on the values of the bits and such
that . Therefore, should be labeled as a
parity bit. Similarly, we label bits as information
bits and label bits as parity bits. We represent informa-
tion bits by solid circles and parity bits by empty circles. The
labeling result is shown on the right in Fig. 1.

By the above labeling process, we decide the systematic com-
ponent of the codeword
to be and the parity component
to be . The label-and-decide encoding on the
code in Fig. 1 then has the following steps:
Step 1. Get the values of the information bits

and from the encoder input.
Step 2. Compute the parity bit from the parity-check

equation .
Step 3. Compute the parity bit from the parity-check

equation : ; compute the
parity bit from the parity-check equation :

.
In fact, any tree code (whose Tanner graph is cycle-free) can

be encoded in linear complexity by the label-and-decide algo-
rithm. We will prove this fact in Corollary 2 in Section V. Fur-
ther, the label-and-decide algorithm can be used to encode a par-
ticular type of Tanner graphs with cycles, i.e., the pseudo-tree
we propose in the next section.

Fig. 1. Left: A Tanner graph. Right: Labeling bit nodes on the Tanner graph
shown on the left.

IV. PSEUDO-TREE

A pseudo-tree is a connected Tanner graph that satisfies the
following conditions (A1) through (A4).

(A1) It is composed of tiers where is a positive in-
teger. We number these tiers from to , starting
from the top. The th tier
contains only bit nodes, while the th tier

contains only check nodes.

(A2) Each bit node in the first tier has degree one and is con-
nected to one and only one check node in the second
tier.

(A3) For each check node in the th tier, where can
take any value from to , there is one and only one
bit node in the th tier (immediate upper tier)
that connects to , and there are no other bit nodes
in the upper tiers that connect to . We call the
parent of and the child of .

(A4) For each bit node in the th tier, where can
take any value from to , there is at most one check
node in the th tier (immediate lower tier) that
connects to , and there are no other check nodes in
the lower tiers that connect to .

For example, Fig. 2 shows a pseudo-tree with seven tiers. It
contains many cycles. Each check node in the pseudo-tree is
connected to a unique bit node in the immediate upper tier, while
each bit node in the pseudo-tree may connect to multiple
check nodes in the upper tiers.

An important characteristic of a pseudo-tree is that it can be
encoded in linear complexity by the label-and-decide algorithm.
This is proved in the following lemma.

Lemma 1: Any LDPC code whose Tanner graph is a pseudo-
tree is linear time encodable.

Proof: Let a pseudo-tree contain tiers, bit nodes,
and check nodes. Condition (A3) guarantees that each check
node is connected to one and only one parent bit node in the
immediate upper tier. Condition (A4) guarantees that different
check nodes are connected to different parent bit nodes. There-
fore, there are parent bit nodes for the check nodes. We label
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Fig. 2. A pseudo-tree.

these parent bit nodes as parity bits and the other bit
nodes as information bits.

The inputs of the encoder provide the values for all the in-
formation bits. The task of the encoder is to compute the values
for all the parity bits. Let be an arbitrary parity bit in the

th tier. By conditions (A3) and (A4), there is only one
check node in the lower tiers that connects to . The value
of is uniquely determined by the parity-check equation rep-
resented by . According to condition (A3), all the bit nodes
involved in except for are in tiers below the th tier.
Therefore, the value of depends only on the values of the bit
nodes below the th tier. For example, as shown in Fig. 2,
parity bit is the parent bit node of the check node . From
the parity-check equation , we see that the value of is com-
puted from the values of and , which are lo-
cated below . We compute the values of the parity bits tier by
tier, starting from the th tier (bottom tier) and then pro-
gressing upwards. Each time we compute the value of a parity
bit, we only need the values of those bits (both information bits
and parity bits) in lower tiers, which are already known. Hence,
this encoding process can proceed. The encoding process is re-
peated until the values of all the parity bits in the first tier are
known.

We evaluate the computation complexity of the above en-
coding process. Let , denote the number
of bits involved in the th parity-check equation. The th parity-
check equation determines the value of a parity bit with

XOR operations. So, XOR operations are required
to obtain all the parity bits. Let denote the
average number of bits in the parity-check equations, then the
encoding complexity is . For LDPC codes with
uniform row weight , the encoding complexity is

. The above analysis shows that the encoding process is ac-
complished in linear time. This completes the proof.

The linear-complexity encoding process described in the
proof of Lemma 1 is summarized in Algorithm 2.

Algorithm 2 Linear-complexity encoding algorithm for a
pseudo-tree with tiers.

Preprocessing:
Label the parent bit nodes in the pseudo-tree as parity bits
and the other bit nodes as information bits.
Encoding:
Get the values of all the information bits from the encoder
input.
for to STEP-1 do

Compute the values of all the parity bits in tier
based on the values of the bits below the th tier.

end for
Output the encoded codeword.

We look at an example. We encode the pseudo-tree in Fig. 2
as follows:
Step 1. Determine the values of all the information bits

and .
Step 2. Compute the parity bit from the parity-check

equation .
Step 3. Compute the parity bit from the parity-check

equation ; com-
pute the parity bit from the parity-check equation

.
Step 4. Compute the parity bits and in the

first tier by the parity-check equations
and respectively:

.
The above encoding process requires only 25 XOR operations.

V. ENCODING STOPPING SET

An encoding stopping set in a Tanner graph is a connected
subgraph such that:

(B1) If a check node is in an encoding stopping set, then
all the bit nodes involved in and the edges that are
incident on are also in the encoding stopping set.

(B2) Any bit node in an encoding stopping set is connected
to at least two check nodes in the encoding stopping
set.

(B3) All the check nodes contained in an encoding stopping
set are independent of each other, i.e., any parity-check
equation cannot be represented as the binary sums of
other parity-check equations.
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Fig. 3. A pseudo-encoding stopping set.

The number of check nodes in an encoding stopping set is called
its size. If a connected Tanner graph satisfies conditions (B1)
and (B2) but not condition (B3), we call this Tanner graph a
pseudo-encoding stopping set. For example, the Tanner graph
shown in Fig. 3 is not an encoding stopping set but a pseudo-en-
coding stopping set since it satisfies conditions (B1) and (B2)
but not condition (B3). The Tanner graph shown in Fig. 4 is an
encoding stopping set. Its size is . Every bit node in this en-
coding stopping set has degree greater than or equal to , and
every check node is independent of each other. Please note that
the “encoding stopping set” defined in this paper is different
from the “stopping set” defined in [16]. Stopping sets are used
for the finite-length analysis of LDPC codes on the binary era-
sure channel, while encoding stopping sets are used here to de-
velop efficient encoding methods for LDPC codes. From the
above definitions of pseudo-tree and encoding stopping set, we
have the following lemma.

Lemma 2: Any pseudo-tree or union of pseudo-trees does not
contain ecoding stopping sets.

Proof: See Appendix A.

We will show next that the label-and-decide algorithm cannot
successfully encode encoding stopping sets.

Theorem 1: An encoding stopping set cannot be encoded suc-
cessfully by the label-and-decide algorithm.

Proof: Let be an encoding stopping set and suppose
can be encoded successfully by the label-and-decide algo-

rithm. Let be the last parity bit being determined during the
encoding process. Since is an encoding stopping set, is
connected to at least two check nodes and by condition
(B2). Further, by condition (B3), all the check nodes in , in-
cluding and , are independent of each other. Hence, for
certain encoder inputs, and provide different values for
the parity bit . This contradicts the fact that every parity bit
can be uniquely determined successfully by the label-and-de-
cide algorithm. Hence, the label-and-decide algorithm cannot
encode an encoding stopping set. This completes the proof.

Conversely, if a Tanner graph does not contain any encoding
stopping set, there must exist a linear complexity encoder for
the corresponding code.

Theorem 2: If a Tanner graph does not contain any en-
coding stopping set, then it can be encoded in linear time by the
label-and-decide algorithm.

Proof: We first delete all redundant check nodes (i.e., de-
pendent on other check nodes) from the Tanner graph . Next,
we restrict our attention to the case that is a connected graph.
We will show that can be equivalently transformed into a
pseudo-tree if it is free of any encoding stopping set. Since
does not contain any encoding stopping set, itself is not an

Fig. 4. An encoding stopping set that contains a pseudo-tree shown in Fig. 2.

encoding stopping set. Hence, there exist some degree-one bit
nodes in . We generate a multilayer graph and place those
degree-one bit nodes in the first tier of . Next, the check nodes
that connect to the degree-one bit nodes in the first tier of are
placed in the second tier of . Notice that there exist at least one
bit node in such that connects to at most one check
node in . This statement is true. Otherwise, becomes
an encoding stopping set, which contradicts the fact that does
not contain any encoding stopping set. We pick all the bit nodes
in that connect to at most one check node in and place
them in the third tier of . Correspondingly, those check nodes
in that connect to the bit nodes in the third tier of are
placed in the fourth tier of . Each time we find bit nodes in

that connect to at most one check node in , we place
those bit nodes in a new tier of and place the check
nodes connecting to those bit nodes in the following new tier

of . We continue finding such bit nodes and increasing
tiers till all the nodes in are included in . Up to now, the
multilayer structure constructed so far satisfies the conditions
(A1), (A2), and (A4). Condition (A3) may fail to be satisfied.
For example, as shown on the top in Fig. 5, the check node
in tier 4 is connected to two bit nodes and in tier 3, which
contradicts condition (A3). To satisfy condition (A3), we fur-
ther adjust the positions of the bit nodes. If a check node in tier

is connected to bit nodes in the upper tiers of , we pick
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Fig. 5. Top: A multilayer structure but not a pseudo-tree. (Note that� has two
parents � and � and� has two parents � and � .) Bottom: The pseudo-tree
that evolves from the multilayer structure shown on the top.

one bit node in tier from these bit nodes and leave its
position unchanged. Next, we drag the other bit nodes
from their initial positions in tier to the th tier. To
illustrate, let us focus on Fig. 5 again. We drag the bit node
from tier 3 to tier 5 and drag the bit node from tier 1 to tier 3.
The newly formed graph is shown at the bottom in Fig. 5, which
follows condition (A3). By tuning the positions of the bit nodes
in this way, the resulting hierarchical graph satisfies conditions
(A1) to (A4). In this way, we transform into a pseudo-tree.
By Lemma 1, a pseudo-tree is linear time encodable. Therefore,
the encoding complexity of is where denotes the
number of independent check nodes contained in .

We now prove the case that is a disjoint graph. Let contain
connected subgraphs: . By the above analysis,

the complexity of encoding is , where
denotes the number of independent check nodes contained in

. Since , then the encoding complexity
of is where is
the number of independent check nodes in . This completes
the proof.

In the proof of Theorem 2, we detailed the process of trans-
forming a connected Tanner graph that is free of any encoding
stopping sets into a pseudo-tree. We further summarize the
above transformation process in Algorithm 3.

Algorithm 3 Transform a connected Tanner graph into a
pseudo-tree .

Remove all the redundant check nodes from the Tanner
graph .

.
if there exist degree-one bit nodes in then

Place all the degree-one bit nodes in the first tier of .
Place all the check nodes that connect to the degree-one
bit nodes in the second tier of .

else
.

end if
while and do

if there exist bit nodes in that connect to at most
one check node in then

Pick all the bit nodes in that connect to at most
one check node in and place them in a new tier

of .
Pick all those check nodes in that connect to the
bit nodes in the tier of and place them in a
new tier of .

else
.

end if
.

end while
if then

for to do
while a check node in tier is connected to

bit nodes in the upper tiers of do
Pick one bit node in tier from these bit
nodes and leave its position unchanged.
Drag the other bit nodes from their initial
positions in tier to the th tier, as
shown in Fig. 5.

end while
end for
Output the generated pseudo-tree derived from the
original Tanner graph .

else
The Tanner graph can NOT be transformed into a
pseudo-tree.

end if

From Theorem 2, we easily derive the following four
corollaries.
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Fig. 6. A parity-check matrix in upper triangular form.

Corollary 1: If a Tanner graph does not contain any encoding
stopping set, then it can be represented by a pseudo-tree or a
union of pseudo-trees.

Proof: The proof of Corollary 1 can be found in the proof
of Theorem 2.

Corollary 2: The label-and-decide algorithm can encode any
tree LDPC codes (whose Tanner graphs are cycle-free) with
linear complexity.

Proof: Let be the Tanner graph of a tree LDPC code
and be an arbitrary subgraph of . Since the Tanner graph

is a tree, its subgraph is either a tree or a union of trees.
Therefore, the graph contains at least one bit leaf node with
degree one. Since the graph contains a degree-one bit node,
cannot be an encoding stopping set. Since no subgraph of is
an encoding stopping set, by Theorem 2, the tree code can be
encoded in linear complexity by the label-and-decide algorithm.
This completes the proof.

Corollary 3: A regular LDPC code with column weight
(cycle code) can be encoded in linear complexity by the label-
and-decide algorithm.

Proof: We prove Corollary 3 by showing that a cycle code
does not contain any encoding stopping set. Assume the cycle
code contains an encoding stopping set . By the definition
of cycle code and condition (B2), all the bit nodes in have
uniform degree two. It follows that the binary sum of all the
parity-check equations in is a vector of ’s. Then, at least
one check node in is dependent on the other check nodes.
This contradicts condition (B3) that all the check nodes in an
encoding stopping set are independent of each other. Hence,
a cycle code does not contain any encoding stopping set. By
Theorem 2, a cycle code is linear time encodable by the label-
and-decide algorithm. This completes the proof.

An alternative proof can be found in [4].

Corollary 4: Let be the parity-check matrix of an LDPC
code. If can be transformed into an upper triangular matrix

by row and column permutations, then the LDPC code can
be encoded in linear time by the label-and-decide algorithm.

Proof: We label the rows of the upper triangular matrix
one by one as , from the bottom to the top,
as shown in Fig. 6. We notice that if , then there ex-
ists at least one bit that is involved in but not in . As-
sume the Tanner graph of the code contains an encoding stop-

ping set that contains check nodes . Let
. There exists at least one bit node in

that only connects to . This contradicts the fact that every
bit node in an encoding stopping set is connected to at least two
check nodes in the encoding stopping set. Hence, is not an
encoding stopping set. Since the Tanner graph of the LDPC code
does not contain any encoding stopping set, by Theorem 2 it is
linear time encodable. This completes the proof.

Theorems 1 and 2 show that encoding stopping sets prevent
the application of the label-and-decide algorithm. However, we
will show in the next section that encoding stopping sets can
also be encoded in linear complexity.

VI. LINEAR COMPLEXITY ENCODING APPROACH FOR

ENCODING STOPPING SETS

Let be an encoding stopping set. We say is a -fold-
constraint encoding stopping set if the following two conditions
hold.

(C1) There exist check nodes in such
that does not contain any en-
coding stopping set. We call the check nodes

key check nodes. We always specify the
key check nodes when defining a

-fold-constraint encoding stopping set.

(C2) For any check nodes in
contains an encoding stop-

ping set.

The notation denotes the remaining
graph after deleting check nodes from .
Fig. 4 shows a twofold-constraint encoding stopping set with
key check nodes and . After deleting the two key check
nodes and from this encoding stopping set, the Tanner
graph turns into a pseudo-tree, see Fig. 2. We will focus on one-
fold-constraint and twofold-constraint encoding stopping sets
in this paper, since we will show later that all types of LDPC
codes can be decomposed into onefold or twofold constraint
encoding stopping sets and pseudo-trees.

Let us first look at a twofold-constraint encoding stopping
set with two key check nodes and . The twofold-con-
straint encoding stopping set has size . By definition, the
subgraph does not contain any encoding stopping
set. Therefore, we can transform the subgraph
into a pseudo-tree by Algorithm 3 and then encode in
linear complexity. Based on the above analysis, we encode the
twofold-constraint encoding stopping set in three steps.

In the first step, we encode using the label-and-
decide algorithm according to Theorem 2. During encoding,

bit nodes are labeled as parity bits and the remaining
bit nodes are labeled as information bits. In the above encoding
process, if we change the value of an information bit and keep
the values of all the other information bits unchanged, some
parity bits will also change their values. We say
that the parity bits are affected by the bit .

In the second step, we verify the two key check nodes and
based on the bit values acquired in Step 1. For convenience,

we first define the value of a key check node as follows. Let a
key check node connect to bit nodes . The
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binary sum is defined to be the value of the
check node . If the parity-check equation associated with a
key check node is satisfied, then the value of the key check
node is . Otherwise, the value of the key check node
is . If the values of the two key check nodes and are
both , the encoding results acquired in Step 1 are reliable. If at
least one of the two key check nodes and has value ,
then the encoding results acquired in Step 1 need correction. To
correct the previously obtained encoding results, we notice that
the existence of the key check nodes and indicates that
two bits and that were previously labeled as information
bits are actually parity bits, and their values are determined by

and . We call the two bits and reevaluated bits.
The reevaluated bits and satisfy the following three

conditions.

(D1) If changes its value while and other informa-
tion bits keep their values unchanged, then the value
of the key check node must also be changed. We
say that is affected by . Although may not
directly connect to is affected by through
other check nodes and parity bits.

(D2) If changes its value while and other information
bits keep their values unchanged, then the value of the
key check node must also be changed. We say that

is affected by .

(D3) If and both change their values while the other
information bits keep their values unchanged, then the
value of at least one of the two key check nodes
and is changed.

Since , and the other check nodes in are independent
of each other, there must exist bit nodes and that satisfy
conditions (D1) to (D3). An algorithm for finding reevaluated
bits and from a twofold-constraint encoding stopping set
is presented in Appendix B. We also prove the validness of the
algorithm in Appendix B. Notice that the workload to find the
two reevaluated bits is a preprocessing step that is carried out
only once. Assume in Step 1 that and are randomly as-
signed initial values and , respectively. If the parity-check
equations and are both satisfied, the initial values
and are the correct values for and . If , or , or
both, are not satisfied, we need to recompute the values of
and from the values of the key check nodes and . Let

and where and are the
correct values of and , respectively, and let and be
the values of the key check nodes and , respectively. If

is affected by alone, is affected by both and ,
we derive the following equations:

(7)

If is affected by both and and is affected by
alone, we derive the following equations:

(8)

If is affected by alone and is affected by alone, we
have the following equations:

(9)

From (7)–(9), we can get the correct values of and . Notice
that, condition (D3) prevents the case that is affected by both

and and is also affected by both and .

Algorithm 4 Determine the parity bits in a twofold-constraint
encoding stopping set that are affected by the reevaluated
bits and . The two key check nodes of are and .

Use algorithm 3 to transform into a
pseudo-tree . Assume the reevaluated bit is in the

th tier of and the reevaluated bit is in the
th tier of .

for to STEP-1 do
for Each parity bit node in tier of do

if the child (a check node) of a parity bit node is
connected to and is also connected to an even
number (including ) of parity bits that are affected
by and are located below the th tier then

Label as a parity bit that is affected by .
else if the child of the parity bit node is not
connected to but is connected to an odd number
of parity bits that are affected by and are located
below the th tier then

Label as a parity bit that is affected by .
else

The parity bit is not affected by .
end if

end for
end for
for to STEP-1 do

for Each parity bit node in tier of do

if the child (a check node) of a parity bit node is
connected to and is also connected to an even
number (including ) of parity bits that are affected
by and are located below the th tier then

Label as a parity bit that is affected by .
els if the child of the parity bit node is not connected
to but is connected to an odd number of parity
bits that are affected by and are located below the

th tier then
Label as a parity bit that is affected by .

else
The parity bit is not affected by .

end if
end for

end for
Output the labels (whether a parity bit is affected by , by

, or by both, or by neither) of all the parity bits.

In the third step, we determine the parity bits
that are affected by the reevaluated bits and . We provide
Algorithm 4 to find those parity bits that are
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affected by the reevaluated bits and . The output of Al-
gorithm 4 may label a parity bit as being affected by alone,
by alone, by both and , or by neither nor . Next,
we recompute those parity bits that are affected
by and/or based on the correct values of and . This
encoding method is named label–decide–recompute and is de-
scribed in Algorithm 5.

Algorithm 5 Label-decide-recompute algorithm for a
twofold-constraint encoding stopping set with two key
check nodes and . contains check nodes.

Preprocessing (carry out only once):
Use Algorithm 11 to pick two information bits and
that satisfy conditions (D1) to (D3) as reevaluated bits.
Use Algorithm 4 to determine the parity bits

that are affected by and/or .
Encoding:
Fill the values of the information bits except for and ;
Assign and ;
Encode using Algorithm 2. Compute the
values of the parity bits;
Compute the values and of the key check nodes
and , respectively;
if AND/OR then

Recompute the values of and from and
by (7)–(9);
for to do

Recompute the value of the parity bit based on the
new values of and ;

end for
end if
Output the encoding result.

Next, we analyze the computation complexity of the
label–decide–recompute algorithm when encoding a
twofold-constraint encoding stopping set with size . Every
check node except for the two key check nodes and
are computed at most twice in the label–decide–recompute
encoding (label-and-decide step and recompute step) while
the values of the two key check nodes and need
to be computed only once. In addition, we may need one
extra XOR operation to compute the two reevaluated bits
and by (7)–(9). Hence, the encoding complexity of the
label–decide–recompute algorithm is less than or equal to

, where
, are the degrees of the check nodes other than

and are the degrees of the check nodes and
, respectively. The encoding complexity of the label–de-

cide–recompute algorithm can be further simplified to be less
than where is the number of check nodes in
the encoding stopping set and is the average number of bit
nodes involved in each check node in the encoding stopping set.
This shows that the label–decide–recompute algorithm encodes
any twofold-constraint encoding stopping set in linear time.
The preprocessing (determining reevaluated bits, and parity
bits affected by the reevaluated bits) is done offline and does
not count towards encoder complexity.

We look at an example. Fig. 4 shows a twofold-constraint en-
coding stopping set with key check nodes and . After
deleting the two key check nodes and becomes the
pseudo-tree shown in Fig. 2. Next, we determine the two reeval-
uated bits following Algorithm 11. We represent the two key
check nodes and as functions of the information bits as
follows:

(10)

(11)

From (10) and (11), we see that the value of the bit node
only affects key check node and the value of the bit node

only affects key check node . The two bit nodes and
satisfy conditions (D1) to (D3). Hence, we can choose the

two bits and as reevaluated bits (there exist other options
of the reevaluated bits).

After determining the reevaluated bits, we use Algorithm 4
to find the parity bits that are affected by the reevaluated bits

and . We start from tier 5, the parity bit is affected by
the reevaluated bit . In tier 3, the parity bit is also affected
by . However, since the parity bit has child and is
connected to both and the parity bit that is affected by

, the parity bit is not affected by . Similarly, in tier
1, we determine that the parity bits and are affected by

while the parity bits and are not affected by . In
the same way, we label the parity bits and as being
affected by the reevaluated bit while the parity bit is not
affected by . We notice that the parity bit is affected by
both and while the parity bit is affected by neither

nor .
After finishing the above preprocessing, we use the label–de-

cide–recompute algorithm to encode as follows.

Step 1. Assign and . Encode the pseudo-
tree part following the procedures in Section IV.

Step 2. Compute the values of the key check nodes and
, e.g., and

.

Step 3a. If and , stop encoding and output
the codeword .

Step 3b. If and or , recompute the values
of and as follows: and ,
where and are the values of the parity-check
equations and , respectively. Recompute the
parity bits and based on the
new values of and . Output the codeword

.

The label–decide–recompute algorithm can be further sim-
plified. We restudy the third step of the label–decide–recompute
method. Assume are the parity bits whose values
need to be updated. In order to get the new values of the parity
bits , we need to recompute those parity-check
equations that involve . In fact, instead of recom-
puting the parity-check equations involving parity bits

, we can directly flip the values of the parity bits
since in the binary field the value of a bit is either or .
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For example, if the correct value of the reevaluated bit is dif-
ferent from its originally assigned value , we simply flip the
values of those parity bits that are affected by . We name the
above encoding method label–decide–flip and describe it in Al-
gorithm 6. The encoding complexity of Algorithm 6 is at most

XOR operations plus two vector flipping operations.
We, again, look at an example. The twofold-constraint encoding
stopping set shown in Fig. 4 can be encoded by Algorithm 6 as
follows.

Algorithm 6 Label–decide–flip algorithm for a
twofold-constraint encoding stopping set with two key
check nodes and . contains check nodes.

Preprocessing (carry out only once):

Use Algorithm 11 to pick two information bits and
that satisfy conditions (D1) to (D3) as reevaluated bits.
Use Algorithm 4 to determine the parity bits

that are affected by alone and group

in a vector .
Use Algorithm 4 to determine the parity bits

that are affected by alone and group

in a vector .
Use Algorithm 4 to determine the parity bits

that are affected by both and and group

in a vector .
Encoding:

Fill the values of the information bits except for and ;
Assign and ;
Encode using Algorithm 2. Compute the
values of the parity bits;
Compute the values and of the parity-check
equations and , respectively;
if AND/OR then

Recompute the values of and from and
by (7)–(9);
if AND then

Flip the vectors and .
else if AND then

Flip the vectors and .
else if AND then

Flip the vectors and .
end if

end if
Output the encoding result.

Preprocessing: We choose the reevaluated bits to be and
. We also determine that the parity bits and are affected

by alone and the parity bits are affected by
alone. Further, we determine that the parity bit is affected by
both and .

Encoding:

Step 1. Assign and . Encode the pseudo-
tree part following the procedures in Section IV.

Step 2. Compute the values of the parity-check equations
and , e.g., and

.

Step 3a. If and , stop encoding and output
the codeword .

Step 3b. If and or , recompute the values
of and as the following: and

where and are the values of the
parity-check equations and , respectively.
If and , flip the values of the
vectors and to be and

, respectively. If and , flip
the values of the vectors and to be

and , respectively. If
and , flip the values of the vectors
and to be and

, respectively. Output the
codeword .

It is easy to revise Algorithm 5 and Algorithm 6 to encode
a onefold-constraint encoding stopping set. For example, Algo-
rithm 7 shows the label–decide–recompute algorithm for a one-
fold-constraint encoding stopping set. The encoding complexity
of Algorithm 7 is less than where is the number
of check nodes in the encoding stopping set and is the average
number of bit nodes involved in each check node in the encoding
stopping set.

Algorithm 7 Label-decide-recompute algorithm for a
onefold-constraint encoding stopping set with key check
node . contains check nodes.

Preprocessing (carry out only once):
Use Algorithm 11 to pick an information bit that affects
the key parity-check equation .
Use Algorithm 4 to determine the parity bits

that are affected by .
Encoding:

Fill the values of the information bits except for .
Assign .
Encode using Algorithm 2, compute the values of
the parity bits.
Verify the parity-check equation .
if the parity-check equation is not satisfied then

.
for to do

Recompute the value of the parity bit based on
the new value of ;

end for
end if
Output the encoding result.
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Fig. 7. Outsider nodes.

VII. LINEAR COMPLEXITY ENCODING FOR

GENERAL LDPC CODES

In this section, we propose a linear complexity encoding
method for general LDPC codes. We will show that any Tanner
graph can be decomposed into pseudo-trees and encoding
stopping sets that are onefold-constraint or twofold-constraint.
By encoding each pseudo-tree or encoding stopping set using
Algorithm 2 , Algorithm 5, or Algorithm 7, we achieve linear
time encoding for arbitrary LDPC codes.

To proceed, we provide the following definition. Given a
Tanner graph and its subgraph , we call the bit nodes in
but not in the outsider nodes of . For example, Fig. 7 shows
a Tanner graph and its subgraph . Since in Fig. 7 the two bit
nodes and are in but not in and are outsider
nodes of . The check node involves two outsider nodes of

, i.e., is connected to two outsider nodes. The check node
involves zero outsider nodes of .

We start from LDPC codes with maximum column weight
by proving the following lemma.

Lemma 3: Assume the maximum bit node degree of a Tanner
graph is three, then one of the following statements must be
true.
(E1) There are no pseudo-encoding stopping sets or en-

coding stopping sets in .

(E2) There exists a pseudo-encoding stopping set in .
All the bit nodes in the pseudo-encoding stopping set
have uniform degree .

(E3) There exists a onefold-constraint or a twofold-con-
straint encoding stopping set in . The key check
nodes for the encoding stopping set are specified.

Proof: We only need to prove either condition (E2), or con-
dition (E3), is true if contains a pseudo-encoding stopping set,
or an encoding stopping set, respectively. We prove this state-
ment by constructing a subgraph from the Tanner graph .
Initially is empty. We pick a check node from that in-
volves the smallest number of bit nodes. Next, we add and
all the bit nodes involved in to . We keep adding check
nodes and all their associated bit nodes to till contains a
pseudo-encoding stopping set or an encoding stopping set. Each
time we add a check node to , we always pick the check node
that involves the fewest outsider nodes of . If contains an
encoding stopping set, we also add all the check nodes in
that involves zero outsider nodes to . Next, we discuss two dif-
ferent cases.

contains an encoding stopping set. Assume contains
check nodes and the th added check node is the last check
node that introduces outsider nodes to . We will show that

. Assume adds outsider nodes
to . We will prove that the th added check node
connects to all the bit nodes . If does
not connect to all the bit nodes, then involves a smaller
number of outsider nodes than does and should be added ear-
lier than since we always pick the check node that involves
the smallest number of outsider nodes and add it first to . This
contradicts the fact that is added to after . Therefore,

should connect to all the bit nodes .
Similarly, connect to all the bit nodes

. Since any bit node can connect to at most three check
nodes, it follows that , which means at most two check
nodes are added to after . Further, we can prove that does
not contain any encoding stopping set before adding . The
corresponding proof is shown in Appendix C. Hence, the en-
coding stopping set in is either a onefold-constraint encoding
stopping set or a twofold-constraint encoding stopping set. The
last added check nodes are key check nodes
for the constructed onefold-constraint or twofold-constraint en-
coding stopping set. Condition (E3) is satisfied.

is a pseudo-encoding stopping set. It follows that the bi-
nary sum of all the check nodes in is zero. So, the degree of
every bit node in is an even number. Since the maximum bit
node degree is three, the degree of each bit node in is two.
Condition (E2) is satisfied.

This completes the proof.

We detail the method of determining a pseudo-encoding stop-
ping set or an encoding stopping set in Algorithm 8.

Algorithm 8 Find a pseudo-encoding stopping set
or an encoding stopping set (onefold-constraint or
twofold-constraint) from a Tanner graph with maximum bit
node degree .

.
.

.
while and do

Find a check node in that involves the smallest
number of outsider nodes of .
Add and all its associated outsider nodes to .
if does not introduce new bit nodes to then

.
while there exists a bit node of degree one in

Delete the degree-one bit node and the check
node connecting to from .

end while
if then

does not contain any pseudo encoding stopping
set or encoding stopping set.

else
.

end if
end if

.
end while
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if then
if all the bit nodes in are of degree then

The subgraph is a pseudo encoding stopping set.
else

The subgraph is an encoding stopping set.
end if
Output .

else
The Tanner graph does not contain pseudo-encoding
stopping sets or encoding stopping sets.

end if

Next, we present our main theorem.

Theorem 3: Let be the Tanner graph of an LDPC code.
If the maximum bit node degree of is three, then the LDPC
code can be encoded in linear time and the encoding complexity
is less than where is the number of indepen-
dent check nodes in and is the average number of bit nodes
involved in each check node.

Proof: If the Tanner graph does not contain any encoding
stopping set, then the corresponding LDPC code can be encoded
in linear time by Theorem 2. Therefore, we only need to prove
Theorem 3 for the case that contains encoding stopping sets.
Since the maximum bit node degree of is three, by Lemma 3
there exists a pseudo-encoding stopping set or an encoding stop-
ping set in . If is a pseudo-encoding stopping set, we
simply delete a redundant check node from and becomes
a pseudo-tree. If is an encoding stopping set, it is either a one-
fold-constraint or a twofold-constraint encoding stopping set by
Lemma 3.

Next, we look at the subgraph . We first transform the
parity-check equations in into generalized parity-check
equations by moving the bits contained in from the left-hand
side of the equation to the right-hand side of the equation. Let
a parity-check equation involves bit nodes
where the bits are also in , then the parity-check
equation can be rewritten as

(12)

In (12), the parameter becomes a constant after we encode
and get the values of all the bits in . Since the maximum bit
node degree of is less than or equal to three, we, again,
find a pseudo-encoding stopping set or an encoding stopping
set from . If is an encoding stopping set, is either
a onefold-constraint or a twofold-constraint encoding stopping
set by Lemma 3. If is a pseudo-encoding stopping set and we
assume contains the following generalized parity-check
equations:

...
...

...
...

(13)

we derive that

(14)

Hence, we can replace any generalized parity-check equation in
(13) by the new parity check (14). From the above analysis, we
can delete any check node from to make a pseudo-tree
if is a pseudo-encoding stopping set. To maintain the code
structure, we also generate a new check node that represents
the parity check (14). Since the parity check (14) only involves
bits in , we add the new check node to and regenerate
encoding stopping sets or pseudo-trees in the graph .

Generally, we can find a pseudo-encoding stopping set or an
encoding stopping set from the subgraph

. If is an encoding stopping set, is either a one-
fold-constraint or a twofold-constraint encoding stopping set by
Lemma 3. If is a pseudo-encoding stopping set, we operate
in three steps. In the first step, we sum up all the generalized
parity-check equations in to generate a new parity-check
equation . In the second step, we delete one check node from

to make a pseudo-tree. In the third step, we add the
new check node to and regenerate pseudo-tree or en-
coding stopping sets in . Notice that the new parity-check
equation in (14) does not incur extra cost to compute vari-
ables since these variables have already been
computed in those generalized parity-check equations in ,
as shown in (13). Practically, we can compute these variables

only once and store them. Later, we can apply the
stored values to both (14) and (13). Hence, the
new parity-check equation only needs additional XOR

operations to compute the summation of . Since
the cost of encoding the pseudo-tree is
where is the average degree of the remaining check
nodes in , the overall cost of encoding and the new
parity-check equation is .

By continuing to find pseudo-tree or encoding stopping sets
in this way, we reach the stage where
or does not contain pseudo-encoding
stopping sets or encoding stopping sets.

By the above analysis, we decompose the Tanner graph
into a sequence of subgraphs where

, is either a onefold-constraint encoding stopping set, a
twofold-constraint encoding stopping set, or a pseudo-tree. If

is a onefold-constraint or a twofold-constraint encoding stop-
ping set, the key check nodes for are specified by Lemma 3.
Therefore, we apply Algorithm 7 or Algorithm 5 to encode
and the resulting encoding complexity is less than
where denotes the number of independent check nodes in
and denotes the average number of bit nodes involved in each
check node in . If is a pseudo-tree, we apply Algorithm 1
to encode and the corresponding encoding complexity is less
than . The overall computation complexity of en-
coding is linear on the number of independent check nodes
in and is bounded by ,
where denotes the average number of bits involved in each in-
dependent check node of . This completes the proof.

We summarize the algorithm of decomposing a Tanner
graph with maximum bit node degree into pseudo-trees and
encoding stopping sets in Algorithm 9 and the algorithm to
encode such LDPC codes in Algorithm 10.
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Algorithm 9 Decompose a Tanner graph with maximum bit
node degree 3 into onefold-constraint encoding stopping sets,
twofold-constraint encoding stopping sets, and pseudo-trees.

Find a pseudo-encoding stopping set or an encoding
stopping set from using Algorithm 8.

.
if is a pseudo-encoding stopping set then

Delete a check node in . becomes a pseudo-tree.
end if

.
while there exists a pseudo-encoding stopping set or an
encoding stopping set in do

Find a pseudo-encoding stopping set or an encoding
stopping set from using Algorithm 8. Assume

contain check nodes .

if is a pseudo-encoding stopping set then
. becomes a pseudo-tree.

Generate a new check node .
Add to and regenerate pseudo-trees and
encoding stopping sets in .

end if
.

end while
.

Output a sequence of subgraphs where
, is either a pseudo-tree or an encoding stopping

set (onefold-constraint or twofold-constraint.)

Algorithm 10 Linear complexity encoding algorithm for
LDPC codes with maximum bit node degree

Preprocessing (carry out only once):
Apply Algorithm 9 to decompose the Tanner graph

of the code into subgraphs
where , is either a pseudo-tree
or a onefold-constraint encoding stopping set or a
twofold-constraint encoding stopping set with the key check
nodes being specified.
Encoding:

for to do
Compute the constants on the right-hand side of the
generalized parity-check equations of based on the
already known bit values of .
if is a pseudo-tree then

Encode using Algorithm 1.
else

if is a onefold-constraint encoding stopping set
then

Encode using Algorithm 7.
else

Encode using Algorithm 5.
end if

end if

end for
Output the encoded codeword.

Next, we extend the linear time encoding method described
in Theorem 3 to LDPC codes with arbitrary column weight and
row weight.

Theorem 4: Any LDPC code with arbitrary column weight
distribution and row weight distribution can be encoded in linear
time, and the corresponding encoding complexity is less than

where is the number of independent check
nodes in and is the average degree of check nodes.

Proof: We first show that an LDPC code with arbitrary
column weight distribution and row weight distribution can be
equivalently transformed into an LDPC code with maximum
column weight three. For example, Fig. 8 on the top shows a
bit node of degree . It can be split into two bit nodes and

of degree and an auxiliary check node , as shown on the
bottom in Fig. 8. The auxiliary check node is represented as

, which means is equivalent to . Originally, the bit
node connects to four check nodes , and . After
node splitting, connects to , and connects to .
Hence, the Tanner graph on the top in Fig. 8 is equivalent to the
Tanner graph on the bottom in Fig. 8. Similarly, a bit node of
degree can be split into three bit nodes and and two
auxiliary check nodes and , as shown in Fig. 9. Generally,
a bit node of degree can be equivalently transformed into
bit nodes of degree and auxiliary check nodes, as shown
in Fig. 10. Assume an LDPC code contains check nodes
and bit nodes. The check nodes have degrees

, respectively. The bit nodes have degrees
, respectively. Among the bit nodes in , there are bit

nodes whose degrees are greater than and their degrees are
. This LDPC code can be equivalently transformed

into another LDPC code with maximum column weight .
The new code has check nodes and

bit nodes. By Theorem 3, the LDPC code
can be encoded in linear time and the encoding complexity is

less than , where is the number of independent
check nodes in and is the average degree of independent
check nodes in . Since there are auxiliary check
nodes in that have degree , we derive that

(15)

Therefore, the overall computation cost of encoding is less
than . As the LDPC code is equivalent to
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Fig. 8. Transform a bit node of degree � into two bit nodes of degree � and an
auxiliary check node of degree �.

Fig. 9. Transform a bit node of degree � into three bit nodes of degree � and
two auxiliary check nodes of degree �.

Fig. 10. Transform a bit node of degree � into �� � bit nodes of degree � and
� � � auxiliary check nodes of degree �.

the LDPC code , the complexity of encoding is less than
. This completes the proof.

Let us look at an example. The parity-check matrix of a
LDPC code with column weight is shown in Fig. 11.

Assume the values of the 13 information bits are
and . We apply the proposed linear complexity

encoding method to encode this code.
Preprocessing. We construct an encoding stopping set from

the LDPC code shown in Fig. 11 using Algorithm 8. We start
from an empty graph and add check nodes and their associated
bit nodes to . Each time we add a check node, we always pick

the check node that involves the smallest number of outsider
nodes of . After adding seven check nodes, the resulting graph
is a pseudo-tree, as shown in Fig. 12. When nine check nodes
are considered, we get the twofold-constraint encoding stopping
set with key check nodes and shown in Fig. 13. The
bits are information
bits. The two bit nodes and are chosen to be reevaluated
bits by Algorithm 11.

After finding the encoding stopping set , the remaining
Tanner graph of the code can be constructed to be a twofold-con-
straint encoding stopping set with key check nodes and

, as shown in Fig. 14. Therefore, the LDPC code can be parti-
tioned into two encoding stopping sets and that are shown
in Fig. 14. The bits in the encoding stop-
ping set are information bits. The two bit nodes and
are chosen to be reevaluated bits of by Algorithm 11.

Encoding.
Encode :

Step 1. Fill the values of the information bits, i.e.,

. Assign and .
Step 2. Encode the pseudo-tree shown in Fig. 12. Compute

the parity bits as
follows:

Step 3. Compute the values of the key parity-check equa-
tions and .

, and
.

Step 4. Since and , the correct values of
the reevaluated bits and are
and .

Step 5. Recompute the parity bits and
based on the new values of and . We derive
that .

Encode :

Step 6. Fill the values of the information bits, i.e.,
. Assign and

.
Step 7. Compute the parity bits as follows:

Notice that the value of the parity bit is based
on the value of the bit in .

Step 8. Compute the values of the key parity-check equa-
tions and .

, and
.
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Fig. 11. The parity-check matrix of a ���� ��� LDPC code.

Fig. 12. A pseudo-tree built from the LDPC code described in Fig. 11.

Step 9. Since and , the correct values of
the reevaluated bits and are
and .

The encoded codeword is

VIII. CONCLUSION

This paper proposes a linear complexity encoding method for
general LDPC codes by analyzing and encoding their Tanner
graphs. We show that two particular types of Tanner graphs:
pseudo-trees and encoding stopping sets can be encoded in

Fig. 13. An encoding stopping set developed from the LDPC code described
in Fig. 11.

linear time. Then, we prove that any Tanner graph can be
decomposed into pseudo-trees and encoding stopping sets.
By encoding the pseudo-trees and encoding stopping sets in
a sequential order, we achieve linear complexity encoding for
arbitrary LDPC codes. The proposed method can be applied
to a wide range of codes; it is not limited to LDPC codes. It
is applicable to both regular LDPC codes and irregular LDPC
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Fig. 14. Two encoding stopping sets developed from the LDPC code described
in Fig. 11.

codes. In fact, the proposed linear time encoding method is
applicable to any type of block codes. It removes the problem
of high encoding complexity for all long block codes that
historically are commonly encoded by matrix multiplication.

APPENDIX A
PROOF OF LEMMA 2

We prove Lemma 2 by contradiction. Assume a pseudo-tree
contains an encoding stopping set . Let be an arbitrary

check node in the encoding stopping set and is located in
the th tier of . According to condition (B1), all the bit nodes
that connect to , which include the parent bit node of , are
also in the encoding stopping set . By condition (B2), there
exists another check node in that connects to the parent
bit node of . By condition (A4), the check node must be in
a tier above . By the above reasoning, we conclude that the
encoding stopping set must contain a check node above the

th tier if contains a check node in the th tier. By repeat-
edly using the above conclusion, we derive that the encoding
stopping set must contain a check node in tier 2. By con-
dition (B1), the parent bit node of , which is in the first tier of

, is also in the encoding stopping set . However, by condi-
tion (A2), the parent bit node of has degree one, which vio-
lates condition (B2) that every bit node in has degree greater
than or equal to two. Therefore, the assumption is wrong. Any
pseudo-tree cannot contain an encoding stopping set. Similarly,
we can prove that the union of pseudo-trees cannot contain any
encoding stopping set. This completes the proof.

APPENDIX B
FINDING REEVALUATED BITS AND IN A

TWOFOLD-CONSTRAINT ENCODING STOPPING SET

WITH KEY CHECK NODES AND

The details are described in Algorithm 11.

Algorithm 11 Finding reevaluated bits and in a
twofold-constraint encoding stopping set with key check nodes

and .

Transform the two key check equations and into
equivalent parity-check equations and that involve
only information bits. Assume involves information
bits and involves information bits

.
.

for to do
if is involved in but not in then

.
Choose the reevaluated bit to be . Exit
the for loop.

end if
end for
if then

Choose the reevaluated bit to be .
else

Choose the reevaluated bit to be .
for to do

if is involved in but not in then
Choose the reevaluated bit to be . exit
the for loop.

end if
end for

end if
Output the two chosen reevaluated bits and .

Next, we prove that Algorithm 11 can successfully find two
bits and that satisfy conditions (D1) to (D3).

Proof: We discuss two different cases.
Algorithm 11 chooses a bit that is involved in

but not in . Since the bit is directly involved in the
parity-check equations and is equivalent to , the
value change of alone will affect the value of . Hence,
condition (D1) is satisfied. Since Algorithm 11 also chooses
another bit that is directly involved in the parity-check
equation and is equivalent to , the value change of

alone will affect the value of . Hence, condition (D2) is
satisfied. Since the parity-check equation only involves the
bit but not the bit and is equivalent to , the value
changes of both and will change the value of . Hence,
condition (D3) is also satisfied.

Algorithm 11 chooses a bit that is involved in both
and . Since the bit is directly involved in the parity-check
equations and is equivalent to , the value change of

alone will affect the value of . Hence, condition (D1) is
satisfied. Since Algorithm 11 also chooses another bit that is
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directly involved in the parity-check equation but not in
and is equivalent to , the value change of alone will
affect the value of . Hence, condition (D2) is satisfied. Since
the parity-check equation only involves the bit but not
the bit and is equivalent to , the value changes of both

and will change the value of . Hence, condition (D3)
is also satisfied.

This completes the proof.

APPENDIX C
IN THE PROOF OF LEMMA 3, THE SUBGRAPH DOES NOT

CONTAIN ANY ENCODING STOPPING SET BEFORE ADDING A

CHECK NODE THAT INVOLVES ZERO OUTSIDER NODES

Proof: We prove this fact by contradiction. Assume the
subgraph contains an encoding stopping set before adding
a check node that involves zero outsider nodes. Let the encoding
stopping set contain check nodes
and the check node is being added to the subgraph later
than all the other check nodes in . From
the construction process of , all the bit nodes that are involved
in check nodes have already been in before
the check node is being added to . By definition, all the
bit nodes that are involved in check nodes
are not outsider nodes when is being added to . Further,

introduces at least one outsider node to . Therefore, the
outsider node is not connected to any of the check nodes in
the encoding stopping set except for . Since connects
to the check node and is in the encoding stopping set

is also in by condition (B1). However, is only
connected to the check node in , which violates condition
(B2) that every bit node in an encoding stopping set is connected
to at least two check nodes in the encoding stopping set. Hence,
the assumption is wrong. The subgraph does not contain any
encoding stopping set before adding a check node that involves
zero outsider nodes. This completes the proof.
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