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ABSTRACT
This paper proposed the M-ary hypothesis testing algorithm
for classifying radar backscatter signals from hidden targets in
a rich scattering environment using time reversal. The target
recognition algorithm is to be designed to distinguish mea-
surements of the radar backscatter from an unknown object
as belonging to one of a set ofM classes.
The proposed time reversal target classifier is, in essence,

a correlator that calculates the cross-correlation of the normal-
ized target signature waveforms with a data dependent quan-
tity obtained from measurements. The algorithm requires a
priori empirical statistical knowledge of the scattering chan-
nel, which is dependent of configurations of the scatterers
in the environment. By incorporating time reversal, the pro-
posed algorithm provides a significant performance improve-
ment compared with the conventional method. Proof of con-
cept is provided using electromagnetic data collected in a lab-
oratory environment.
Index Terms— Time Reversal, Target Classification, M-

ary Hypothesis Testing, Regularization

1. INTRODUCTION AND MOTIVATION

One of the primary functions of modern radar systems is tar-
get classification. Based on the received backscattered energy,
the radar system determines which of M pre-specified body
shape or size is most consistent with the scattered field data.
In this sense, target classification may be viewed as a crude
form of inverse scattering.
The target recognition algorithm is to be designed to dis-

tinguish measurements of the radar backscatter from an un-
known object as belonging to one of a set ofM classes, each
corresponding to a particular target with a distinct radar sig-
nature waveform. The conventional target classification sce-
nario assumes that there exists a direct path between the tar-
get and the radar receiver. The line of sight condition enables
matched filtering processing in that the received signal is a
(complex) scaled version of the target signature. However,
the line of sight assumption may not be valid in many practi-
cal scenarios.
In a rich scattering environment, the electromagnetic scat-

tering mechanism is very complex due to the dispersive nature
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of the extended targets as well as the surrounding medium.
From an engineering science point of view, the backscattered
signal, excluding the incident wave, can be characterized as
the product of the target signature and the channel transfer
function in frequency domain. The coupling of target re-
sponse and the dispersive rich scattering environment makes
it a challenging problem for target classification. Further-
more, when the target is hidden by an object that blocks the di-
rect illumination from the radar transmitter, the radar receiver
must rely on returned energies due to secondary reflections
from the surrounding scatterers.
Time reversal is a technique that utilizes the rich scatter-

ing to enhance target detectability and resolution [1, 2]. In
general, the returned backscatter signals from the hidden tar-
gets are relatively weak. Time reversal in a rich scattering
environment is expected to adapt the transmission waveform
to the target response and to enhance the target signal returns.
In this paper, we propose an M-ary hypothesis testing al-

gorithm for discriminating between a finite number of targets
by appropriately processing the backscattered waveforms in
a rich scattering environment using time reversal. In this pa-
per, we assume that each target is characterized by a signature
waveform with a distinct resonance frequency. In the theory
of scattering [3], the resonance frequency refers to the illumi-
nation region where the wavelength of the incident field is of
the same order of the size of the target. Illuminating targets
in the resonance region is generally considered most effica-
cious for target shape and size classification[4]. Such studies
are of theoretical and practical importance, particularly for
wideband systems where the response of the extended targets
shows frequency dependency [5].
Target recognition utilizing time reversal provides signifi-

cant performance advantage relative to conventional matched
filter processing. Time reversal shows advantages because it
(1) shortens the scattering Green function; and (2) enhances
the target scattered field by resonance region matched illumi-
nation. We demonstrate our algorithm using electromagnetic
data collected in a laboratory environment.

2. PROBLEM FORMULATION

2.1. Data Model

We examine the target recognition problem when the target
function exhibits a radar frequency dependent behavior. There
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are well established reasons for this phenomenon, for exam-
ple, multipath effects and resonance in cavities. We start
with the data model in the frequency domain. Suppose that
we haveM targets with distinct signature f1(ω), · · · , fm(ω).
The target radar signature fm(ω) represents a frequency-
dependent reflectivity for the m-th target which, in general,
is a complex function. Each signature fm(ω) contains a phase
function and a magnitude function. Using a discrete frequency
representation, we have a collection of discrete frequency sam-
ples of the signature fm(ω0), · · · , fm(ωQ−1) over a frequency
range ω0, · · · , ωQ−1 with the frequency spacing of Δω =
ωQ−1−ω0

Q−1 . We further define Em = 1
Q

∑Q−1
q=0 |fm(ωq)|2 as

the total energy of the m-th radar target in the observing fre-
quency range. We also introduce

fm(ωq) =
1√
Em

fm(ωq) (1)

which we henceforth refer to as the normalized m-th radar
target signature, where 1

Q

∑Q−1
q=0 |fm(ωq)|2 = 1.

Let S(ωq) be a wideband probing signal at angular fre-
quency ωq . Let Gc+t(ωq) and Gc(ωq) denote the Green’s
function of the channel when both target and clutter are present,
and the Green’s function of the channel when only clutter are
present, respectively, we then define

G(ωq) = Gc+t(ωq) − Gc(ωq),∀q (2)

as the Green’s function due to the presence of the target. The
l-th returned data snapshot due to the existence of the m-th
target has the following frequency response

Yl(ωq) = S(ωq)fm(ωq)G(ωq) + Vl(ωq). (3)

In the above model, G(ωq) is the Green’s function of the
medium at ωq . Vl(ωq) is the additive complex Gaussian noise.
It is assumed that Vl(ωq) is independent of S(ωq), fm(ωq)
and G(ωq). Time reversal, or phase conjugation in frequency
domain, shortens the multipath channel. The received time-
reversed signal is given by

Xl(ωq) = klY
∗
l (ωq)fm(ωq)G(ωq) + Wl(ωq) (4)

= klS
∗(ωq)|fm(ωq)|2|G(ωq)|2 +

klfm(ωq)G(ωq)V ∗
l (ωq) + Wl(ωq), (5)

where kl is the energy normalization factor

kl =

√
Es

Eyl

=

√√√√ ∑Q−1
q=0 |S(ωq)|2∑Q−1
q=0 |Yl(ωq)|2

. (6)

The average transmission energy is Es = 1
Q

∑Q−1
q=0 |S(ωq)|2.

We re-write Eqn. (3), (5) in a matrix-vector form as fol-

lows:

yl = [Yl(ω0), · · · , Yl(ωQ−1)]T (7)
xl = [Xl(ω0), · · · , Xl(ωQ−1)]T (8)
g = [G(ω0), · · · , G(ωQ−1)]T (9)

Σl,m = [klY
∗
l (ω0)fm(ω0), · · · ,

klY
∗
l (ωQ−1)fm(ωQ−1)]T (10)

wl = [Wl(ω0), · · · ,Wl(ωQ−1)]T (11)
vl = [Vl(ω0), · · · , Vl(ωQ−1)]T (12)

Γm = [S(ω0)fm(ω0), · · · ,

S(ωQ−1)fm(ωQ−1)]T , (13)

where wl and vl are additive complex Gaussian noise vector
with statistics

wl ∼ CN (0, σ2
wIQ) (14)

vl ∼ CN (0, σ2
vIQ). (15)

In this work, we assume that the noise variance for vl andwl

for l = 1, · · · , L are the same, i.e., σ2
v = σ2

w = σ2.

2.2. M -ary Hypothesis Testing

Next, we organize the measurement pair (y∗
l ,xl) into a data

vector as follows:

zl =
[

y∗
l

xl

]
=

[
Γ∗

mg∗ + v∗
l

Σl,mg + wl

]
, l = 1, · · · , L. (16)

Let z be the collection of L data snapshots

z = [zT
1 , · · · , zT

L]T . (17)

The target detection and classification algorithm is based on
a sequence of hypothesis tests in which each hypothesis cor-
responds to a particular radar target signature. We seek a de-
cision rule φ(z) that takes on values in the set {1, 2, · · · ,M}
where φ(z) = m corresponds to selection of hypothesis Hm.
For the purpose of simplicity, we further assume that the oc-
currence ofm-th target is equally likely.
For the case where g is known, such a decision rule is

φ(z) = m whenever the likelihood of them-th target exceeds
the likelihood for any other hypothesis: [6]

φ(z) = m, whenever pm(z) > max
n�=m

pn(z) (18)

where pm(·) is the probability density function if the m-th
target exists.
In this work, g is unknown. Thus a generalized hypothesis

test is employed and g needs to be estimated from the mea-
surements. Furthermore, a careful inspection of (3) and (5)
reveals that the target signature waveform fm(ωq) to be clas-
sified and the unknown channel Green’s function G(ωq) are
coupled, which appears in the form of a product fm(ωq)G(ωq).
Some constraints on g are necessary to distinguish fm(ωq)
from the unknownG(ωq). To this end, we make the following
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modifications on the data model. First, similar to the normal-
ized target signature waveform given in (1), we may define
the following quantities:

gm = [Gm(ω0), · · · , Gm(ωQ−1)]T , (19)

Gm(ωq) =
√

EmG(ωq), m = 1, · · · ,M. (20)

Thus, without changing the function values, (3) and (5) can
be re-written in the following format for l = 1, · · · , L:

Yl(ωq) = S(ωq)fm(ωq)G(ωq) + Vl(ωq), (21)
Xl(ωq) = klS

∗(ωq)|fm(ωq)|2|G(ωq)|2 + (22)
klfm(ωq)G(ωq)V ∗

l (ωq) + Wl(ωq).

Thus, we will estimate gm, m = 1, · · · ,M rather than g di-
rectly. Second, a regularization term on gm will be intro-
duced. One method for recovering gm from z is to define
ĝm

ĝm = [Ĝm(ω0), · · · , Ĝm(ωQ−1)]T , (23)

the estimate of the Green’s function vector, as the solution to
the nonlinear least squares problem

ĝm = arg min
1
L

L∑
l=1

‖zl − zt
l(gm)‖2

Ω−1
l

+ α2
m‖g‖2

Φ−1 (24)

where ‖x‖2
A = xHAx. The block diagonal matrix Ωl as a

function of gm, is generally a matrix whose entries reflect the
noise levels present in the measurements, zl,

Ωl = diag[Ωl(0), · · · ,Ωl(Q − 1)] (25)

where

Ωl(q) =[
σ2 klf

∗
m(ωq)G

∗
(ωq)σ2

klG(ωq)fm(ωq)σ2 k2
l |G(ωq)|2|fm(ωq)|2σ2 + σ2

]
(26)

The vector zt
l as a function of gm, is defined as follows:

zt
l =

[
[zt

l(0)]T , · · · , [zt
l(Q − 1)]T

]T
, (27)

where

zt
l(q) =

[
S∗(ωq)f

∗
m(ωq)G

∗
(ωq)

kl|fm(ωq)|2|G(ωq)|2S∗(ωq)

]
. (28)

TheQ×Q positive definite matrixΦ is employed to regular-
ize the problem, where

Φ = diag[φ2
0, · · · , φ2

Q−1]. (29)

The scalar α2
m is defined by

α2
m =

Em

σ2
(30)

as the m-th target signature power to noise ratio. In fact, we
can re-write the second term of (24) as follows:

α2
m‖g‖2

Φ−1 =
Q−1∑
q=0

|Gm(ωq)|2
φ2

qσ
2

= ‖gm‖2
(σ2Φ)−1 . (31)

We note that the nonlinear least squares formulation ad-
mits an interpretation in the context of optimal statistical es-
timation. Eqn. (24), with the exception of the scalar α2

m, is
equivalent to the maximum a posteriori (MAP) estimate of g
given zl assuming that

zl ∼ CN (zt
l ,Ωl), (32)

g ∼ CN (0,Φ), Φ = diag[φ2
0, · · · , φ2

Q−1]. (33)

In our case, αm in (24) is introduced as a weighting factor
to modify the MAP estimate according to the target signature
power relative to the noise power. Note that the performance
of the classifier is affected by the choice of the regularization
term Φ. The statistical knowledge of the scattering environ-
ment is essential to classify the radar targets. In a dense and
rich scattering environment without direct line of sight, the
empirical distribution of the target channel response resem-
bles, for example, complex Gaussian [2]. Here we assume
that the empirical distribution of the scattering environment
can be estimated.
Let pm(z|g) be the probability density function of them-

th target conditioned on g and kl, l = 1, · · · , L as follows:

pm(z|g) =
L∏

l=1

1
π|Ωl| exp

{−(zl − zt
l)

HΩ−1
l (zl − zt

l)
}

=
L∏

l=1

Q−1∏
q=0

1
πσ4

exp
{
− 1

σ2
(|Yl(ωq)|2k2

l ×

|fm(ωq)|2 + |S(ωq)|2|fm(ωq)|2)|Gm(ωq)|2

+
2
σ4

R{[klX
∗
l (ωq)Y ∗

l (ωq)fm(ωq)σ2

+σ2Y ∗
l (ωq)fm(ωq)S(ωq)]Gm(ωq)}

− 1
σ4

(|Xl(ωq)|2σ2 + |Yl(ωq)|2σ2
)}

. (34)

Taking the logarithmic of (34), discarding the constant terms,
and multiplying − 1

L yields − 1
L lnpm(z|g) Hence, the opti-

mization problem (24) is equivalent to seeking the minimum
of the sum of − 1

L lnpm(z|g) and (31). A common practice
of calculating the maximum a posteriori estimate of Gm(ωq)
is by taking the first derivative of the sum of − 1

L lnpm(z|g)
and (31). This leads to the following equivalent optimization
problem of (24):

ĝm = arg min
m

{
− 1

L
lnpm(z|g) + ‖gm‖2

(σ2Φ)−1

}
.(35)

Notice that for complex number x, ∂
∂x∗ |x|2 = x [7]. We

then calculate the maximum a posteriori estimate of Gm(ωq)
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by taking the first derivative of (35) with respect to [Gm(ωq)]∗.
We obtain the following estimate:

Ĝm(ωq) =

f
∗
m(ωq) 1

L

∑L
l=1 [Yl(ωq)S∗(ωq) + klYl(ωq)Xl(ωq)]

|fm(ωq)|2 1
L

∑L
l=1

[
|S(ωq)|2 + |Yl(ωq)|2 k2

l

]
+ 1

φ2
q

. (36)

Hence, the generalized M -ary hypothesis is employed in
which gj is replaced by the maximum a posteriori-type esti-
mate ĝj for j = 1, · · · ,M in (36) and (23) as follows:

Hm : φ(z) = m with

m = arg min
j=1,··· ,M

1
L

L∑
l=1

‖zl − zt
l(ĝj)‖2

Ω−1
l (�gj)

. (37)

The decision rule (37) to classifym-th target can be simplified
as φ(z) = m when

max
j=1,··· ,M

Q−1∑
q=0

|f j(ωq)|2
∣∣∣∣∣ 1
L

L∑
l=1

(klX
∗
l (ωq)Y ∗

l (ωq)

+Y ∗
l (ωq)S(ωq))|2 ×

|f j(ωq)|2 1
L

∑L
l=1

(
|Yl(ωq)|2 k2

l + |S(ωq)|2
)

+ 2
φ2

q∣∣∣|f j(ωq)|2 1
L

∑L
l=1

[
|S(ωq)|2 + |Yl(ωq)|2 k2

l

]
+ 1

φ2
q

∣∣∣2(38)
To gain insight of the above decision rule, we let

aj = [Aj(ω0), · · · , Aj(ωQ−1)]T (39)
Aj(ωq) = |f j(ωq)|2 (40)

be the collection of magnitude squared j-th normalized dis-
crete target signature waveform and let

B̂j,m(q) =

∣∣∣∣∣ 1
L

L∑
l=1

(klX
∗
l (ωq)Y ∗

l (ωq) + Y ∗
l (ωq)S(ωq))

∣∣∣∣∣
2

|f j(ωq)|2 1
L

∑L
l=1

(
|Yl(ωq)|2 k2

l + |S(ωq)|2
)

+ 2
φ2

q(
|f j(ωq)|2 1

L

∑L
l=1

(
|S(ωq)|2 + |Yl(ωq)|2 k2

l

)
+ 1

φ2
q

)2 (41)

b̂j,m = [B̂j,m(ω0), · · · , B̂j,m(ωQ−1)]T (42)

be the estimate of the m-th target signature waveform given
the knowledge of the j-th target signature. We can rewrite
(37), (38) as follows

φ(z) = m when m = arg max
j=1,··· ,M

〈aj , b̂j,m〉. (43)

The decision rule (43) indicates that the classifier is, in essence,
a correlator between the magnitude-squared of j-th normal-
ized target signature waveform f j(ωq) and the estimate of
the m-th target signature waveform given the knowledge of
the j-th target signature.

In summary, the design of the classifier consists of three
steps: (1). compute the maximum a posteriori (MAP) esti-
mate of Gj(ωq); (2). insert the obtained estimate into the de-
cision rule (43); (3). declare the existence of the m-th target
if its decision value is the maximum among j ∈ [1, · · · ,M ]
decision values given by (43).

2.3. Matched Filter Classifier (MF)

We consider a direct correlation classifier where the target sig-
nature waveform frequency response vector correlates with
the measured backscatters. It is assumed that the propaga-
tion delay τ due to the target is an unknown parameter and
is to be estimated. The estimation is carried out by search-
ing over a range τ ∈ [0, 2π

Δf ], where Δf = fQ−1−f0
Q−1 . Let

y = [yT
1 , · · · ,yL′ ]T be the collection of data vectors. Thus

we obtain the following correlation classifier: φ(y) = m for

max
j=1,··· ,M

max
τ

R

(
1√

σ2Efj

Q−1∑
q=0

[S(ωq)fj(ωq)e−jωqτ ]∗

L
′∑

l′=1

Yl′ (ωq)

⎞⎠ , (44)

where L
′

= 2L, R(·) is the real part of complex numbers.
Efj = 1

Q

∑Q−1
q=0 |S(ωq)fj(ωq)|2. We notice that (44) imple-

ments a matched filer.

3. ELECTROMAGNETIC EXPERIMENTS

3.1. Frequency dependent target design

We design frequency dependent targets using aluminum foam
slices. Each aluminum foam slice is considered as a dipole
antenna with resonance frequency fR = c

2l , where l = λ
2

is the length of the foam slice. A careful choice of the alu-
minum slice length ensures that each target has a distinct res-
onance frequency. A total of 25 aluminum foam slices are
glued vertically on a foam board and placed on a 25.5 cm by
25.5 cm grid. Each grid has the size of 5.1 cm by 5.1 cm.
Thus, each foam board is considered as a frequency depen-
dent target. The upper figure in Fig. 1 shows the measured
(smoothed) target signature waveforms.

3.2. Electromagnetic measurement

The measurement are performed in 4 − 6 GHz frequency do-
main in a controlled laboratory environment. Two horn an-
tennas, one transmits and one receives, are connected to an
Agilent vector network analyzer (VNA). A total of 201 fre-
quency points are recorded. The probing signal, denoted by
S(ωq), has 2GHz bandwidth with center frequency of 5GHz.
When measuring the backscatter returns, each target is

covered completely by a white board without a clear line of
sight in the view of transmitter and receiver antennas. PVC
pipes are placed behind the targets to create a rich scattering
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Fig. 1. Upper figure: target signature waveform; Lower fig-
ure: picture of the experimental setup.

environment. Thus we can only rely on the backscatters re-
flected off the surrounding scatterers to detect the target. We
first measure the frequency response with the target and the
board. Then we place scatterers around the target. The differ-
ence of the consecutive measurements is fm(ωq)G(ωq). The
computer generated artificial noise is inserted into the mea-
surement.

4. PERFORMANCE RESULTS

Fig. 2 shows the correct classification probability for target
D and target G. The two targets appear to have different peak
resonance frequencies and total energy. For target D, the peak
frequency is at 4.8 GHz; for target G, the peak frequency is
at 5.5 GHz. The time reversal classifier shows better perfor-
mance than the matched filter classifier.

5. CONCLUSION AND FUTUREWORK

We proposed the M-ary hypothesis testing using time rever-
sal for classifying hidden targets immersed in a rich scattering
environment. The designed classifier is affected by a regular-
ization term which depends on the empirical distribution of
the Green’s function. In this paper, we assume a Gaussian
distribution of the rich scattering channel. Future work is to
investigate other statistical modeling of the scattering Green’s
function and its impact on hidden target classification.
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Fig. 2. Probability of correct classification curve for the time
reversal (TR) classifier and the matched filter (MF) classifier.
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