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Abstract—Hyperspectral sensors collect hundreds of narrow
and contiguously spaced spectral bands of data. Such sensors
provide fully registered high resolution spatial and spectral images
that are invaluable in discriminating between man-made objects
and natural clutter backgrounds. The price paid for this high
resolution data is extremely large data sets, several hundred of
Mbytes for a single scene, that make storage and transmission
difficult, thus requiring fast onboard processing techniques to
reduce the data being transmitted. Attempts to apply traditional
maximum likelihood detection techniques for in-flight processing
of these massive amounts of hyperspectral data suffer from two
limitations: first, they neglect the spatial correlation of the clutter
by treating it as spatially white noise; second, their computational
cost renders them prohibitive without significant data reduction
like by grouping the spectral bands into clusters, with a conse-
quent loss of spectral resolution.

This paper presents a maximum likelihood detector that suc-
cessfully confronts both problems: rather than ignoring the spatial
and spectral correlations, our detector exploits them to its advan-
tage; and it is computationally expedient, its complexity increasing
only linearly with the number of spectral bands available. Our ap-
proach is based on a Gauss–Markov random field (GMRF) mod-
eling of the clutter, which has the advantage of providing a di-
rect parameterization of the inverse of the clutter covariance, the
quantity of interest in the test statistic. We discuss in detail two
alternative GMRF detectors: one based on a binary hypothesis ap-
proach, and the other on a ‘single’ hypothesis formulation. We an-
alyze extensively with real hyperspectral imagery data (HYDICE
and SEBASS) the performance of the detectors, comparing them
to a benchmark detector, the RX-algorithm. Our results show that
the GMRF ‘single’ hypothesis detector outperforms significantly
in computational cost the RX-algorithm, while delivering notice-
able detection performance improvement.

Index Terms—Gauss–Markov random field, hyperspectral
sensor imagery, maximum-likelihood detection, ‘single’ hypoth-
esis test.

I. INTRODUCTION

T HE use of hyperspectral sensor imagery (HSI) for auto-
matic target detection and recognition (ATD/R) is a rel-

atively new and exciting area of research. Hyperspectral sen-
sors are passive sensors that simultaneously record hundredsof
narrow bands from the electromagnetic spectrum, and group the
bands in what is called a hyperspectral data cube. Our focus is
on using hyperspectral sensor data for the detection of anoma-
lous man-made objects in natural clutter backgrounds. Hyper-
spectral sensor data shows great potential for use in automatic
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target detection and recognition because it provides both spatial
and spectral features about the targets and backgrounds in the
imagery. It has been shown that the spectral characteristics of
natural clutter differ in significant ways from the spectral char-
acteristics of man-made objects [1], thus, they can be a tremen-
dous aid in discriminating between the two classes.

Hyperspectral Imagery: Computational Challenges:Hy-
perspectral imagery collected by airborne sensors pose the chal-
lenge of efficiently1 processing the massive amount of data that
results from the combination of spatial and spectral informa-
tion acquired by the sensors. The hyperspectral data sets, with
hundreds of spectral bands collected in a few minutes, run in
the hundreds of megabytes, often in excess of gigabytes. Such
high data rates necessitate the implementation of onboard pro-
cessing, since they push the limits of today’s technology. Much
of the current research focuses on the development of compu-
tationally efficient detection algorithms that can be used to de-
termine regions of interest (ROIs) in the data. One idea for pro-
cessing HSI data is the “directed vision concept,” where HSI
data cues a high resolution electrooptical (EO) sensor, and high
spatial resolution single-band image chips of only the regions
of interest are transmitted to the ground, thus reducing the ini-
tially overwhelming amount of data collected by the hyperspec-
tral sensor. The single-band chips that are transmitted down to
ground stations can be evaluated further by an image analyst
(IA) for final classification of the detected objects. In this di-
rected vision processing scenario, there are two important re-
quirements with which any successful detection algorithm must
comply. First, the algorithm should be computationally efficient
in order to meet the real-time nature of the onboard processing
system. Second, the algorithm should perform effectively with
respect to the false alarm rate, so that the image analyst receiving
the detection cues is not inundated with false positive detections.

Anomaly Detection: The GMRF Approach:Ageneralcon-
sideration for any detector is the type ofa priori information that
is assumed about the targets and clutter. We can consider three
cases: known target model parameters (or statistics) and known
clutter statistics; known target model and unknown clutter statis-
tics;orbothunknowntargetmodelandunknownclutterstatistics.
The third set of assumptions is the most general, and is more real-
istic when performing onboard processing of real hyperspectral
data, since the impact of the atmosphere on spectral content, as
well as the variability of target signatures, makes it difficult toa
priori train on the data. In this paper, we present a newanomaly
detection algorithm for hyperspectral data, i.e., a detector that as-
sumes no prior knowledge about the target and the clutter statis-
tics. The detector models the clutter by a Gauss-Markov random

1In the paper, when we use the word efficient, we are referring to simplicity
in the computational complexity of the processing algorithms, not statistical
efficiency in the sense of the Cramér-Rao bound [2].

1057–7149/01$10.00 © 2001 IEEE



SCHWEIZER AND MOURA: EFFICIENT DETECTION IN HYPERSPECTRAL IMAGERY 585

field (GMRF), which presents several advantages. We often refer
to the detector as the GMRF algorithm. A GMRF is a spatially
andspectrallycoloredrandomfield,soaccountingforbothspatial
andspectralcorrelationof theclutter.Secondly,becauseGMRF’s
parameterize directly the inverse of the covariance matrix, the
GMRFalgorithmdoesnotnecessitate the inversionofa largedata
covariance matrix that hinders other maximum likelihood (ML)
detector approaches. This impacts the computational complexity
of the GMRF detector, which increases linearly with the number
of spectral bands. This efficiency permits using as many bands as
necessary when processing hyperspectral data; thus, the GMRF
detector has room to adapt to the increased capabilities of future
hyperspectral and ultraspectral sensors. This is a significant ad-
vantageoverothermaximumlikelihooddetectionalgorithmsthat
are computationally severely limited to a small number of bands.

Goals of the Work:Our goal is to design an adaptive
anomaly detection algorithm that is computationally efficient
andexhibitsa lowfalsealarmratewithhighdetectionprobability.
We develop two adaptive maximum likelihood GMRF anomaly
detection algorithms: a binary hypothesis detector and a ‘single’
hypothesis detector. These detectors adapt to the unknown
clutter statistics by using the approximate maximum likelihood
estimation technique, one of three studied in [3]. We show
that the GMRF adaptive ‘single’ hypothesis anomaly detector
outperforms the GMRF binary hypothesis detector and the
RX-algorithm [4]. The RX-algorithm is the benchmark anomaly
detection algorithm, originally developed for multispectral
imagery but that, at the time of this study, was considered a
prime candidate for local anomaly detection with hyperspectral
imagery. Our results illustrate that the GMRF ‘single’ hypothesis
anomalydetectorprovidesasignificantcomputationaladvantage
over the RX-algorithm, while achieving better detection perfor-
mance. These characteristics led this GMRF anomaly detector to
be chosen as one of the processing algorithm candidates for the
U.S. Defense Advanced Research Projects Agency’s (DARPA)
Adaptive Spectral Reconnaissance Program (ASRP).

Paper Survey:In the following sections, we provide an
overview of the available detection algorithms for hyperspectral
imagery and highlight the need for a new computationally effi-
cient algorithm geared toward true hyperspectral data. In Sec-
tion III we present, in detail, the new modeling framework for
hyperspectral clutter backgrounds, and, in Section IV, use the
model to develop both binary and ‘single’ hypothesis formula-
tions of the maximum likelihood detector. In Section V, using
real hyperspectral sensor imagery, HYDICE and SEBASS, we
show the significant computational advantage and the improved
detection performance provided by the GMRF detector algo-
rithm over the RX-algorithm. Finally, Section VI concludes the
paper.

II. L ITERATURE SURVEY

Due to the large amounts of data that are collected with hyper-
spectral sensors much of the prior work has focused strictly on
compression of the data sets for storage and transmission. More
recently, work has been published in the context of detection
and classification. Much of it has actually emphasized applying
algorithms intended for multispectral data to hyperspectral data

by reducing the number of spectral bands used for processing.
These algorithms fall into two basic categories: spectral-only,
and spatial-spectral algorithms. The spectral-only algorithms al-
most all rely on a known spectral signature for the target or tar-
gets of interest. Basically, they are classification rather than de-
tection algorithms. Algorithms that fall into this category are
the spectral matched filter [5], the spectral angle mapper [6],
and linear mixture models [7]–[9]. For a good overview of spec-
tral-only algorithms see [10]. The main limitation of these spec-
tral-only algorithms is that, in addition to ignoring the available
spatial information, they require a known target signature. Reli-
able target signatures are difficult to ascertain due to variations
in the target signature that result from atmospheric and illumi-
nation effects.

Principal component analysis (PCA), related to the
Karhunen-Loève or Hotelling transform, is most often used
prior to another detection or classification algorithm for
purposes of reducing the dimensionality of the hyperspectral
data sets, thus making the applied detection and classification
algorithms more efficient computationally. However, principal
component analysis is, itself, a computationally undesirable
task. In addition, the reduction of redundant information with
principal component analysis is based on reconstructing the
data using a subset of the principal components. Most often, the
components used for reconstruction are those associated with
the largest eigenvalues. Researchers have shown [5], however,
that components associated with lower order eigenvalues often
contain important features for target discrimination. Thus,
there is ambiguity as to what are the “appropriate” principal
components to use for data reduction.

We are interested inanomalydetection algorithms. By def-
inition, anomaly detection algorithms apply when there is no
known target spectral signature, [10]. Basically, in our problem,
we are simply attempting to locate anything that displays dif-
ferent spatial and/or spectral characteristics from its surround-
ings. This leaves us with the class of algorithms that use both
spatial and spectral features from the hyperspectral imagery. In
general, spatial-spectral algorithms can be further divided into
local anomaly and global anomaly detectors.

A. Local Anomaly Detectors

Local anomaly detectors process small windows of the HSI in
order to compare the spatial and spectral properties of the cen-
trally located pixels in the window (target region) with the prop-
erties of the perimeter pixels (clutter region). Those pixels that
are spatially–spectrally different from their surrounding back-
grounds are considered detections.

In [4], an algorithm, commonly referred to as the RX-algo-
rithm, is derived. This is the benchmark anomaly detection al-
gorithm for multispectral data, which, in contrast with HSI, is
characterized by less than 20 spectral bands. The RX-algorithm
is a maximum likelihood (ML) anomaly detection procedure
that simplifies the clutter to being spatially white. The RX-al-
gorithm uses a binary hypothesis approach to detection, and im-
plements a generalized likelihood ratio test (GLRT).2 Evalua-

2A GLRT replaces unknown parameters in the likelihood ratio by their max-
imum likelihood estimates.
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tion of the ML-detection statistic requires full spectral sample
covariance matrices to be estimated and then inverted, or the
evaluation of their determinants. Extending application of the
RX-algorithm from multispectral to hyperspectral imagery suf-
fers from two major limitations. First, the clutter model imple-
mented in the RX-algorithm is restricted to being spatially un-
correlated, or spatially white. This model neglects the poten-
tially valuable spatial correlation information of the clutter. The
second limitation is its computational cost arising from the ex-
pensive inversion or determinant evaluation of the covariance
matrix of the HSI data under each of the hypotheses. Even under
the simplifying spatially white clutter assumption, the compu-
tational complexity of this detector increases as, where
is the number of spectral bands. For HSI, where the number
of spectral bands runs into the hundreds, the RX-algorithm
rapidly becomes unfeasible. However, due to the algorithm suc-
cess with multispectral data, it has been incorporated into the
DARPA ASR program (see end of Section I) as one of the base-
line processing algorithms. To run the RX-algorithm on the hy-
perspectral data collected by ASRP, either a subset of bands is
used, or the bands are aggregated.

In [11], an adaptive spatial/spectral detection method is pre-
sented in which it is originally assumed that the clutter is fully
spatially and spectrally correlated. However, in evaluating the
spatial-spectral covariance matrix the cross-covariance terms
are neglected in order to improve the computational cost of the
algorithm. By eliminating these cross-covariance terms, the cor-
relation between bands, i.e., the spectral correlation, is basically
ignored. Computationally, the algorithm in [11] suffers from the
same problem as the RX-algorithm when applied to hyperspec-
tral imagery: It requires taking the inverse of a spectral covari-
ance matrix that has dimensions equal to the number of spectral
bands used for processing.

B. Global Anomaly Detectors

In global anomaly detection, the image scene is first seg-
mented into its constituent classes, then detection is achieved
by determining the outliers of these classes. In general, the al-
gorithms vary in the method of segmentation, but tend to use
ML-detection once the classes are determined.

One approach to global anomaly detection, which has been
incorporated into the DARPA’s ASR program, is stochastic
expectation maximization (SEM) coupled with ML-detection
[12]. This algorithm uses the stochastic expectation max-
imization clustering algorithm, as presented in [13], as a
preprocessing stage to the detector. The number of classes is
assumed to be knowna priori. The clustering algorithm models
each class with an ensemble of Gaussian random variables,
using only spectral information. Basically, once the image has
been segmented, the RX-algorithm, discussed in Section II.A,
is used on each class to determine anomalous pixels. A similar
approach using -means clustering in conjunction with the
RX-algorithm is presented in [14]. Although the stochastic
expectation maximization and the-means algorithms both
provide performance improvements over direct application of
the RX-algorithm, they are not only challenged computation-
ally due to the need to invert a large data covariance matrix,

but they are limited by a need to know the number of classes
in the scene.

The majority of global anomaly detectors employ two-dimen-
sional (2-D) Markov random field (MRF) modeling in order to
incorporate spatial features into the segmentation process, since
MRFs have been proven to be quite powerful models in the
classification of 2-D images. For instance, the Bayesian clus-
tering algorithm presented in [14] uses causal MRF’s to incor-
porate contextual information, and is developed for the purpose
of subpixel anomaly detection. Contextual information refers to
a priori knowledge that adjacent pixels tend to belong to the
same class. Although it is a simple matter to compute the prob-
ability of each pixel with respect to its classification once the
model has been formed, formulation of the model requires that
the Hotelling Transform [15], [16] be applied to the data. For
hyperspectral data, evaluation of the Hotelling transform is in
itself significantly challenging computationally.

The algorithms described in this section represent the most
prominent methods for detection being applied to hyperspectral
imagery today. The algorithm that has received the most
attention in the hyperspectral detection community is the local
anomaly detection RX-algorithm, which, as mentioned before,
is the benchmark algorithm for multispectral data. As discussed
in Section II-B, several of the global detection algorithms have
incorporated the RX-algorithm for use after segmentation.
However, the RX-algorithm is limited by its assumption of
spatially uncorrelated clutter, and, like most of the algorithms
described above, it involves computationally demanding matrix
inversions (or determinant evaluations). Application of the
RX-algorithm to hyperspectral data can only be made possible
by preprocessing the data to reduce the number of spectral
bands.

There is a need for computationally efficient detectors for
hyperspectral sensors that can jointly process all the available
spectral bands, and that can exploit simultaneously the spatial
and spectral correlation properties of the clutter. Our GMRF ap-
proach to anomaly detection addresses both of these concerns.
We describe the GMRF detector in the remainder of the paper,
and we use the RX-algorithm as the baseline to which we con-
trast the GMRF algorithm.

III. GMRF CLUTTER MODEL

We capture the highly correlated spatial and spectral nature
of the background clutter in hyperspectral sensor imagery using
a noncausal, GMRF. GMRF models are desirable because they
possess two important properties that are intrinsic to most spa-
tial phenomenon: noncausality and Markovianity. Noncausality
refers to the notion that the field at any pixel is influenced by the
field in all directions around it; there is no preferred direction of
dependence. Markovianity is the statistical formalization of the
notion of locality, i.e., that the field at a pixel is regressed on
the values of the field at neighboring pixels. The GMRF model
that we implement extends these properties to a three-dimen-
sional (3-D) field that is appropriate for hyperspectral imagery.
As first suggested in [17], we assume that the Gaussian process
describing the dominant image background has a slowly varying
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Fig. 1. Sectioning of the hyperspectral image cube. Processing is done on
small homogeneous windows of data (left). The processing window is further
divided into a set of subcubes, called Markov windows. Within each Markov
window, a 3-D finite lattice field is defined (right).

covariance structure. Consequently, processing is done on sub-
blocks of data for which the clutter is assumed to be statisti-
cally homogeneous. In this section, we develop, in detail, the
3-D GMRF clutter model.

A. Notation

We fix notation. Considering the hyperspectral cube as a 3-D
finite lattice, the intensity at each pixel is referenced by the vari-
able and three subindices , and , which indicate the spatial
location and the particular spectral band in which the pixel lies,
see Fig. 1. Processing is done on small regions of the data set in
which the total number of rows, columns, and spectral bands are
represented by the variables , and , respectively. The spa-
tial dimensions, and , are chosen to validate the assumption
of homogeneous clutter. We divide the processing
window lattice into subcubes of size as shown
in Fig. 1. We refer to these subcubes as Markov windows. Typ-
ically, we use all the available spectral bands, . Pixels
within the same Markov window are assumed to have signifi-
cant spatial correlation with each other, while the spatial cor-
relation between pixels of one Markov window and pixels of
another Markov window is assumed to be negligible. This as-
sumption allows us to use the different Markov windows as in-
dependent realizations of the clutter field, which is important
to provide statistical significance when estimating the field pa-
rameters as we will discuss later in the paper. The pixels in a
Markov window are compiled in vector form by the vec operator
explained below. As a result, the processing window is divided
into a set of independent data vectors. These independent vec-
tors are distinguished by the superscriptwhere .

B. Kronecker Product

To handle the representation of the GMRF clutter model, we
use the matrix operator known as the Kronecker product [18].
The Kronecker product, which is useful in mapping low-order
matrices into high-order matrices, is mathematically defined as

. If is a size matrix and is a size
matrix, the resulting matrix is size . The Kro-

necker product provides a simple means of representing certain
large structured matrices. In addition, the Kronecker product

Fig. 2. Three-dimensional Markov random field. In a first order field, a pixel is
dependent on its six nearest neighbors: four spatial and two spectral neighbors.

possesses several properties which enable us to derive explicit
expressions for the eigenvalues, eigenvectors, and the determi-
nant of the inverse of the clutter covariance matrix. An extensive
list of these properties can be found in [18] and [15].

C. Vec Operator

The vec operator stacks the transposed rows of a matrix one
on top of the other to form one long vector [15]. This is the
lexicographic ordering of the pixels, or row major form. If the
matrix is , the vector resulting from the vec operation
will be of dimension .

D. Spatially–Spectrally Correlated Clutter

Within the Markov window
represents the 3-D finite lattice field

modeling the clutter described by an extension of the minimum
mean square error (MMSE) representation of Woods [19]

(1)

The parameters , and are the predictor coefficients for
the spatial and spectral dimensions, respectively, andis the
prediction error that has a particular correlation structure dis-
cussed below. We are assuming a first order 3-D Markov model
with zero Dirichlet boundary conditions. It is assumed, without
loss of generality, that the clutter is zero mean. In practice, the
spatially varying mean is locally estimated and then removed
from the data. In a first order 3-D Markov model, the inten-
sity of a pixel is described in terms of its six nearest neighbors:
four spatial and two spectral neighbors, see Fig. 2. Higher order
Markov models can be similarly defined. For the sake of sim-
plicity, we will restrict the discussion to first order fields.

We get a clutter vector, , by
stacking the vectors , each of size . The vec-
tors result from applying the vec operator to the
pixels in the Markov window for each of the consecutive
spectral bands. The clutter vector is of size .
This process is repeated for each Markov window within the
processing window leading to a set ofdata vectors. An error
vector, , is formed in the same manner by beginning with the
3-D lattice of prediction errors, .
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Incorporating the clutter vector notation into (1), the data can
be compactly represented by the matrix-vector equation

(2)

...
...

. . .
. . .

. . .
. . .

(3)

In Kronecker notation, . The matrices
, and are themselves structured and defined as

The symbols , and are identity matrices, while
, and are Toeplitz matrices which have zeros

everywhere except for the first upper and lower diagonals which
are composed of all 1’s. The subscript denotes the size of the
matrices.

The matrix , referred to as the potential matrix, is sparse
block tridiagonal, and contains the relevant information re-
garding the GMRF structure [20]. The subcomponents of the
potential matrix also display a highly sparse structure. The
blocks and are block tridiagonal and block diagonal,
respectively. The subcomponents , and are either
tridiagonal or diagonal.

It is shown in [19], [20] that the set of error vectors, ,
are samples from a zero-mean Gaussian colored noise process
that has covariance . A main advantage of Gauss
and Markov models is their parameterization of the inverse
clutter covariance matrix, . Starting from (2), [21], the
inverse clutter covariance matrix is simply a scaled version of
the potential matrix, . In Kronecker notation,
the inverse covariance matrix is expressed as

(4)

As an example, we present the inverse clutter covariance ma-
trix using . The , and components
of are

(5)

and the overall inverse covariance matrix is

(6)

is a highly structured sparse matrix that is completely de-
fined by the four scalar parameters, , and . When
using real data, these four parameters are to be estimated from
the data. Although we address the issue of parameter estimation
in another paper [3], we briefly present the results of that work
in the next section.

E. Approximate Maximum-Likelihood Estimates

In [3] we develop several parameter estimators for 3-D
GMRFs: maximum likelihood (ML), least squares (LS), and
approximate maximum likelihood (AML). The results in [3]
suggest that the AML technique is a good cost/performance
compromise, and we adopt it for our GMRF fully adaptive
anomaly detector. In this paper, we refer the reader to [3],
simply present the AML estimates and use them in our GMRF
detector. The Markov parameter AML estimates, assuming
spatially–spectrally correlated clutter, are shown in (7)–(9) at
the bottom of the page where the quantities , and ,
called the one-step-ahead correlations, are

(10)

(11)

(7)

(8)

(9)
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(12)

and , and is a
small number (for example, ) included to ensure that the
parameter estimates are within the parameter space.

It can be shown that the estimate of the scaling parameter,,
is a linear combination of the estimates , and

(13)

(14)

The quantity is the power of the field.

IV. DETECTORSTRUCTURE

We present two approaches to detection: the binary hy-
pothesis technique using a deterministic target model, and
the ‘single’ hypothesis method using an implied GMRF
target model. In both cases, the direct parameterization of
the inverse clutter covariance matrix that is provided by our
3-D GMRF modeling framework [see (4)] reduces the final
detection statistic to an evaluation of scalar quantities; no
matrix inversion is required. The computational advantages of
the ‘single’ hypothesis test, as well as its ability to model the
target stochastically, make it a promising alternative.

We discuss the general setup of the detection problem in Sec-
tion IV.A, assuming that the parameters defining the GMRF
model have been estimated using the AML method summa-
rized in Section III-E. In Section IV-B, the binary hypothesis
approach is derived, and the deterministic model that is associ-
ated with the targets is presented. In Section IV-C, we present
the ‘single’ hypothesis paradigm. For both detection methods,
we incorporate the GMRF modeling framework and present the
resulting simplifications.

A. Problem Formulation

Regardless of which detection approach is used, we first sepa-
rate the processing window into two regions: a perimeterclutter
region and an interiorunknownregion of dimension ,
as is done in [22] (see Fig. 3). Since we realistically assume that
the first and second order statistics of the clutter data are un-
known, this sectioning of the processing window is necessary
for estimating all the parameters that will completely define the
clutter statistics.

Each of the regions shown in Fig. 3 is further divided into in-
dependent Markov windows as discussed in Section III-A (see
Fig. 1). By applying the vec operator to each of the Markov win-
dows, in each region, we obtain two sets of independent vectors,
referred to as theclutter andobservationvectors. Theclutter
vectors, , where , are from

Fig. 3. Sectioning of the processing window for parameter estimation. The
window is divided into 2 regions: Aclutter region and anunknownregion of
sizeN � N .

the clutter region, and theobservationvectors, ,
where , are those vectors from theunknown
region. Recall, the dimension of the processing window is ,
and the dimension of the Markov windows are . Al-
though we only need to estimate four scalar parameters, the use
of all the Markov windows is necessary since our assumption
about homogeneous clutter is, in general, not valid. By aver-
aging the statistics over the entire processing window, false de-
tections due to nonhomogeneous clutter are reduced. An entire
processing window of data produces the detection statistic for
one pixel; the center pixel of the window. An output statistic for
every pixel in the image is obtained by moving the processing
window throughout the image. Using this window formulation,
we assume that, when a target is centrally located in the pro-
cessing window, the detection statistic will be maximized.

The Markov parameters for the clutter background are esti-
mated using thecluttervectors . The GMRF model assumes
that the clutter is zero mean, thus, prior to estimating the Markov
parameters, the mean of the clutter vectors is removed

(15)

B. Binary Hypothesis Testing

In the binary hypothesis testing paradigm, the detection
problem is formulated as a decision at each pixel as to whether
only clutter is present or clutter plus target. Formally, the binary
hypothesis testing problem is described by

(16)

The ’s are the independent observation vectors from the
unknownregion of the processing window, the ’s are the
observation vectors with the clutter mean removed,is the
clutter, a zero-mean GMRF process defined by the second
order statistics derived in Section III-D, and the variable
represents the target spatial-spectral signature associated with
the observation.

1) Target Signature:We use a deterministic, additive, model
for the target spatial-spectral signature, similar to the one used
in the RX-algorithm [4], [23]. In this model, the target signal is
represented by the matrix , where the vector, of
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Fig. 4. Gaussian 2-D target spatial pattern.

dimension , contains the additive spectral signature due
to the target in each of the spectral bands, and
where is an matrix indicating the target spatial pat-
tern within a Markov window. The matrices are subsets of a
larger matrix, , that contains the spatial pattern de-
scribing the entire target. The matrices are formed by sub-
dividing the full target spatial pattern into blocks of the same
dimension as the Markov window subdivisions made in theun-
knownregion of the processing window (see Figs. 1 and 4). The
interpretation of the model is that, for any pixel location,
in which target energy is present, the overall energy contribu-
tion to each spectral band, due to the target, is proportional to
the value of the target spectral signature in band . The
amount by which the spectral signature is weighted depends on
the spatial location [24].

The general target spatial pattern is assumed to be known,
and, in practice, is often taken to be a 2-D Gaussian, as shown
in Fig. 4 [22]. Patterns, such as the 2-D Gaussian, that do not
rely on detailed shape or orientation information, only require
a priori knowledge of the approximate size of the targets of in-
terest. The value at each location in the pattern matrix indicates
the proportion of the energy reflected, or emitted, at that loca-
tion due to the target. The remainder of the energy recorded for
that location is due to the reflection or emission properties of the
clutter. A value of 1 indicates that the pixel location is purely
target, while a value of 0.5 indicates that half the recorded en-
ergy is due to the target, and half is due to clutter.

Although we assume that the target spatial pattern is known
a priori, the target spectral signature is assumed to be unknown,
and must be estimated using data from theunknownregion of
the processing window. For computational simplicity, we use
a LS approach to estimating the spectral signature,, see [25].
The LS estimates of the elements of the spectral signature
are defined by

(17)

where . Equation (17) is a weighted average of
the pixels in theobservationwindow: those pixels for which the
target is a stronger reflector, i.e., for which the target pattern
values are closer to 1, are weighted more heavily than those
pixels for which the target is a weak reflector.

The target spatial-spectral signature,is a vector of dimen-
sion . It is obtained by applying the vec operator
to the matrix as shown in (18) at the bottom of the page.

2) Generalized Likelihood Ratio Test:We use the GLRT to
decide between hypotheses and at each pixel. Letting
be a vector of the unknown Markov parameters, the procedure
is to estimate assuming is true, then estimate assuming

is true, and use these estimates in a likelihood ratio test as if
they were correct [2]. Mathematically, the GLRT is

(19)

where
joint probability density function
(pdf) of the set of observation vec-
tors;

, observation vectors with the Markov
parameters estimated assuming hy-
pothesis is true;
nonnegative threshold that, ide-
ally, is determined using the
Neyman–Pearson Criterion [2].

The probability density functions for a set of independent
observation vectors factor as

where is defined by (4), and is defined by (16).
The general detector structure, after parameter estimation, re-

duces to

(20)

(18)
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where is the determinant of the inverse covariance ma-

trix evaluated with the estimates of the potentials under hypoth-
esis . The ratio of determinants is straightforward to calculate
since the GMRF model provides us with a direct parameteriza-
tion of the inverse covariance matrix from which explicit ex-
pressions for the eigenvalues can be derived. The eigenvalues
of the inverse covariance matrix are obtained from the

eigenvalues of the potential matrix since , and are a

function of the estimates of the Markov parameters (see [3]).
For a first-order spatially–spectrally correlated GMRF, the

eigenvalues of are shown in (21) at the bottom of the page
where , and . The quan-

tities , and are the estimates of the first-order
GMRF parameters assuming hypothesisis true. Substituting
the product of the eigenvalues for the determinant terms in (20),
and taking the logarithm, the GLRT detector, in its final form, is

(22)

As an alternative to the deterministic target model presented
in this section, we consider using a stochastic target model due
to the variation in target signature that results from atmospheric
and illumination effects. This presents difficulties with the bi-
nary hypothesis problem. In particular, if we use a 3-D non-
causal GMRF to model the target, in addition to the clutter,
and assume that the GMRF parameters defining the target are
different from those that describe the clutter, it eliminates the
main advantage of the model: its ability to simply, and directly,
parameterize the inverse clutter covariance matrix. Basically,
the Markovianity of the data is lost since

. So, to develop an anomaly detector that can ef-
ficiently handle both the clutter and target being modeled by
GMRF’s, we look to an alternative detection approach: ‘single’
hypothesis testing.

C. ‘Single’ Hypothesis Testing

A ‘single’ hypothesis test, as described by Fukunaga in [26],
is useful for situations in which one class is well-defined and
the others are not. Although various types of natural clutter are
present in the imagery, we work with the underlying assumption
that within the processing block, see Fig. 1, there is only
one type of clutter present, i.e., the clutter is locally homoge-
neous. Section III-D presented a 3-D noncausal GMRF model

for this local clutter background that is adapted to fit the data
through estimation of the Markov parameters.

The ‘single’ hypothesis test statistic measures the distance be-
tween the data vectors in thetargetwindow and theclutter, to
decide if the target vectors belong to the clutter Gaussian distri-
bution. The data vectors are the target vectors derived from
the centralunknownregion discussed in Section IV-A. Now,
in addition to the clutter, the target is also modeled as a 3-D-
GMRF, albeit with different Markov parameters. The clutter
model is fit according to the approximate maximum-likelihood
estimates given in Section III-E, and detailed in [3]. Mathemat-
ically, the distance measure for the set ofindependent target
vectors is

(23)

where and are the the mean and inverse covariance
matrix estimates for the clutter, and

is the sample covariance of the data vectors in the target region,
assuming they have the mean of the clutter. The distance defined
by (23) reveals two computational advantages of the ‘single’
hypothesis test over the binary hypothesis method. First, the
‘single’ hypothesis paradigm avoids the estimation and removal
of the target spectral signature, . Second, the computation of
the determinant of is not required.

Substituting the spatially–spectrally correlated Kronecker pa-

rameterization from (4) for into (23), and letting
, the statistical distance between the observation vec-

tors and the clutter vectors becomes

(24)

where
;
;
;

;
are used to represent the four Kronecker terms in the parame-

terization of [see (4)].

(21)
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By simplifying terms, (24) can be written as

(25)

where and are the estimates of the Markov pa-
rameters using the data in theclutter region, and the quantities

, and are the one-step-ahead correlations and the
autocorrelation for the data in the unknown region. These quan-
tities are computed as in (10)–(12) and (14), respectively, with
the field replaced by that is the clutter-mean-removed
intensity of a pixel in theunknownregion at spatial location ,
spectral band , and within the th Markov window.

V. PERFORMANCERESULTS

We study the GMRF anomaly detection algorithm in terms
of computational and detection performance. For this evalua-
tion, we compare the GMRF ‘Single’ Hypothesis (GMRF-SH)
and Binary Hypothesis (GMRF-BH) algorithms to the RX-al-
gorithm developed by Reed and Yu [4].

A. Computational Performance

A goal in developing an anomaly detector for hyperspectral
imagery is to have a computationally efficient algorithm, pos-
sibly running in real-time, as the sensor is being flown over the
area of interest. Computational considerations are, thus, of the
upmost importance.

To evaluate the computational effectiveness of the algorithms,
we derive from the C-code implementation of each algorithm,
an expression relating the number of floating point operations
(FLOPS) required to compute the detection statistic for one
pixel in the image set to the number of spectral bands,, used
for processing. This number of FLOPS is also dependent on
the sizes of the processing,target, and Markov windows that
are represented by , and , respectively. We obtain
(26)–(28) shown at the bottom of the page. Thetargetwindow
is the same as theunknownwindow illustrated in Fig. 3.

The number of FLOPS as a function of the number of spectral
bands used for processing is shown in Fig. 5(a). We show the
results for two different window combinations:

and . These rep-
resent the smallest and largest window combinations that are
appropriate for detecting the targets of interest in 1 m spatial
resolution data. To more easily see where the cross-over points
between the algorithms are, we include in Fig. 5(b) a zoomed
in portion of the left bottom part of the plot that appears in
Fig. 5(a). Most noticeably, the GMRF algorithms have the ad-
vantage that the total number of FLOPS increases linearly with
the number of spectral bands . This contrasts with the
dependence of the RX-algorithm. The three algorithms show a
similar dependence with the window sizes.

Fig. 5(b) shows that the GMRF-SH algorithm is always com-
putationally superior to the GMRF-BH algorithm and computa-
tionally more efficient than the benchmark RX-algorithm when
using more than approximately 15 spectral bands of data. Under
15 bands, the GMRF-SH algorithm is more computationally in-
tense than RX due to the overhead involved in estimating the
Markov parameters. However, the GMRF algorithms can po-
tentially perform even better, computationally, than indicated by
Fig. 5(b) because their C-code implementations have not been
fully optimized. The code for the RX-algorithm, on the other
hand, is a mature implementation that is distributed for use in
industry.

Another means of reducing the computational load of the
GMRF algorithms is by using a subset of the data within the
processing window for parameter estimation. The justification
for this approach is in the fact that there are only three scalar pa-
rameters that need to be estimated from the data. Future research
efforts will focus on determining a minimal subset of data that
can be used for estimation without degrading detection perfor-
mance.

B. Detection Performance

We have shown that the application of a 3-D GMRF clutter
model to hyperspectral imagery produces a significant computa-
tional improvement over the RX-algorithm. We now verify that
this computational gain is coupled with an increase in detection
performance. In this section, we present detection performance
comparisons between the GMRF algorithms and the RX-algo-
rithm using receiver operating characteristic (ROC) curves. The

(26)

(27)

(28)
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Fig. 5. (a) Computational comparison: GMRF versus RX for two window combinations. GMRF algorithms depend linearly onN rather thanN . The GMRF-SH
algorithm has a computational advantage over the GMRF-BH algorithm. (b) Magnified view of the left-bottom region of the plot in (a).

receiver operating characteristic curves plot the detection prob-
ability versus the false alarm rate per km. This conforms with
standard practice in these applications.

We carried out experiments on several different hyperspectral
data sets from both the hyperspectral digital imagery collection
experiment (HYDICE) [27] sensor and the spatially enhanced
broadband array spectrograph system (SEBASS) [28] sensor.
The data have a spatial resolution of approximately 1 meter.
Due to space limitations, we show the results for a subset of
the data processed. We refer to four data sets: DsetA, DsetB,
DsetD, and DsetE. In some cases, the data sets were broken
down into specific portions of the electromagnetic spectrum
such as the visible-to-near infrared (VNIR) and the short-wave
infrared (SWIR). The HYDICE sensor records 210 spectral
bands in the VNIR and SWIR, and the SEBASS sensor records
256 bands in the mid-wave and long-wave infrared. For more
information on hyperspectral imagery see [29]. DsetA and
DsetB are HYDICE data sets, while DsetD and DsetE are
SEBASS data sets. In all our examples, we have aggregated the
total number of bands in order to be able to use the RX-algo-
rithm for comparison purposes. This of course means that our
comparison results do not show the full performance potential
of the GMRF algorithm. It will be important to investigate the
impact of the total number of bands used for processing on the
detection performance of the RX and GMRF algorithms. We
intend to pursue this in future work.

We first compare the performance results of the binary
hypothesis and ‘single’ hypothesis formulations of the GMRF
detector. Fig. 6 shows the receiver operating characteristic
curves for the two algorithms on four different data sets. In
each case, the GMRF-SH algorithm significantly outperforms
the GMRF-BH algorithm. The number of targets in these data
sets varies between five and 20, and the number of spectral
bands used for processing varies between 19 and 30. Since the
GMRF-SH algorithm has also been shown to be computation-
ally superior to the GMRF-BH algorithm, we conclude that

the ‘single’ hypothesis formulation, which uses a stochastic
target model, is the better detector choice for our GMRF fully
adaptive anomaly detector on data of approximately 1 m spatial
resolution.

We now compare the performance of the GMRF-SH detector
to that of the RX-algorithm. Fig. 7 shows the receiver operating
characteristic curves for these detectors. The results illustrate
that the GMRF-SH algorithm provides, at a minimum, a slight
performance gain over the benchmark RX-algorithm. More
importantly, coupled with this improvement in performance
is a reduced processing time, even for as few as 19 spectral
bands. Table I shows the average processing times for the
RX and GMRF algorithms for various numbers of spectral
bands on the different data sets. The times shown in the table
are for C-Code running on a 250 MHz UltaSparc server. All
times would be significantly reduced by implementing on
parallel processors, since the GMRF algorithms, as well as the
RX-algorithm, process on a small window of the data that is
moved, pixel-by-pixel, throughout the image. The processing
within each window is completely independent and could be
implemented using separate processors.

Although the RX-algorithm processes slightly faster when
using ten spectral bands, the processing times for all data sets
with over 19 spectral bands are far superior for the GMRF algo-
rithm. When using 105 bands, the GMRF algorithm takes less
than one tenth the amount of time to process as the RX-algo-
rithm. When using hyperspectral imagery, it is most likely that
the number of bands being used for processing will be more
than the 15 bands required to make the GMRF algorithm com-
putationally less expensive than the benchmark algorithm. Com-
bining this significant computational gain with the improved
detection performance, clearly makes the GMRF-SH algorithm
the better overall performer in these cases. To generalize these
results, it will be important to test the GMRF-SH algorithm on
a larger sampling of hyperspectral imagery, as it becomes avail-
able to the research community.
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Fig. 6. Detection performance: GMRF-SH (solid) versus GMRF-BH (dotted). (a) DsetA:SWIR, 22 spectral bands; (b) DsetB, 30 spectral bands; (c) DsetD4, 19
spectral bands; and (d) DsetE, 31 spectral bands.

C. Effect of Window Size on Performance

We now investigate the impact of the size of the processing
window on the performance of the GMRF and RX algorithms.
The size of the processing window is controlled by two factors:
statistically reliable parameter estimation, and the assumption of
homogeneous background clutter. There is a tradeoff between
these two factors since reliable parameter estimation requires
larger window sizes, while a homogeneous clutter assumption
dictates smaller window sizes. Larger window sizes increase the
likelihood of there being different types of clutter in the window,
as well as the likelihood of there being a target in the perimeter
region of the processing window; in either case, there is a sig-
nificant impact on the computed clutter statistics.

The GMRF algorithm has an advantage over RX. For a first-
order GMRF, there are only four parameters to estimate rather
than the elements of the unstructured covariance
matrix that must be estimated by the RX-algorithm. The small

number of parameters in the GMRF model requires less data
for accurate and reliable estimation, thus allowing smaller pro-
cessing window sizes. The smaller window sizes also help in
validating the assumption of homogeneous clutter, which leads
to improvements in detection performance.

Fig. 8 shows the receiver operating characteristic curves
for the RX and GMRF-SH algorithms on DsetA:SWIR and
DsetA:VNIR for various processing window sizes. For the
SWIR hyperspectral images the target and Markov windows
remain fixed at and , respectively, while the size of
the processing window is switched from to ,
and, finally, to . With the VNIR image, we usetarget
and Markov windows both of dimension , and vary the
processing window from to , and, finally, to

. For the SWIR data, the performance for the RX-algo-
rithm remains relatively constant as the processing window
size is decreased. Basically, gains in performance due to a more
homogeneous window of data are eliminated by performance
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Fig. 7. Detection performance: GMRF-SH (solid) versus RX (dotted). (a) DsetA, 41 spectral bands; (b) DsetB, 30 spectral bands; (c) DsetD3, 19 spectral bands;
and (d) DsetE, 41 spectral bands.

TABLE I
ALGORITHM PROCESSINGTIME COMPARISONBETWEENGMRF AND RX

degradations resulting from insufficient amount of data in
the processing window for reliable parameter estimation.
The performance of the GMRF algorithm, on the other hand,
improves with decreasing window size, because there is not
the degradation associated with unreliable parameter estimates.
Similar results are seen with the VNIR data. In this case, the
performance of the RX-algorithm steadily degrades as the size
of the processing window is made smaller. The performance of

the GMRF algorithm improves when moving from a 21 point
to a 15 point processing window, and begins to degrade with a
nine-point window, but not to the degree that the RX-algorithm
does. These preliminary results support the idea that the GMRF
algorithm performs better on smaller processing window sizes
than the RX-algorithm. Using smaller processing windows
reduces the overall computation time of the algorithm.

VI. SUMMARY

In this paper we presented two 3-D noncausal GMRF anomaly
detectors for natural clutter backgrounds in hyperspectral im-
agery. The GMRF model focuses on capturing the high levels of
spatial and spectral correlation that exist in the data.

We showed that GMRF modeling provides several major con-
tributions to the challenging problem of detection in hyperspec-
tral imagery. First, and most importantly, the model leads to a
direct parameterization of the inverse of the clutter covariance
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Fig. 8. Detection performance for decreasing processing window size on (a) GMRF-SH algorithm on DsetA:SWIR (top left); (b) RX-algorithm on DsetA:SWIR
(top right); (c) GMRF-SH algorithm on DsetA:VNIR (bottom left); and (d) RX-algorithm on DsetA:VNIR (bottom right).

matrix. This parameterization avoids the expensive matrix in-
versions or determinant computations that challenge many other
available detection routines. In addition, the parameterization
of the inverse clutter covariance matrix is completely character-
ized by only four parameters, , and, , which makes
it possible to use small sized processing and target windows,
while still obtaining reliable parameter estimates. Finally, un-
like the spatially white assumption of the benchmark multispec-
tral RX-algorithm, the GMRF clutter model accurately assumes
that the clutter is both spatially and spectrally correlated: an as-
sumption that we predict will become increasingly significant
with better spatial resolution data.

We formulated the ML-detector using the GMRF clutter
model in conjunction with both binary (GMRF-BH) and
‘single’ (GMRF-SH) hypothesis testing paradigms. The
GMRF-BH models the target as deterministic, while the
GMRF-SH describes it through a stochastic model. Our
performance results show that the GMRF-SH provides better
detection and computational performance than both the binary

hypothesis GMRF detector and the benchmark RX-algorithm.
The computational cost of the GMRF-SH algorithm increases
linearly with the number of spectral bands, while the RX-al-
gorithm grows with the third power of the number of spectral
bands. This leads to a smaller number of FLOPS for our
GMRF-SH algorithm when using more than approximately 15
bands for processing.

Finally, we analyzed the effect of the processing window size
on the overall performance of the RX and GMRF detectors.
The results indicate that the GMRF detector performs well with
smaller window sizes, in contrast with the RX-algorithm, which
leads to further reductions in the overall processing time for the
GMRF algorithm.
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