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Ambiguity in Radar and Sonar
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Abstract—We introduce a new ambiguity function for general
parameter estimation problems in curved exponential families.
We focus the presentation on passive and active radar and sonar
location mechanisms. The new definition is based on the Kullback
directed divergence and reflects intrinsic properties of the model.
It is independent of any specific algorithms used in the processing
of the signals. For the active single target problem, we show
that our definition is equivalent to Woodward’s radar narrow-
band ambiguity function. However, the new ambiguity is much
broader, handling radar/sonar problems when there are unknown
parameters (e.g., unknown power level in active systems), when
the signals are random (e.g., passive systems), when the signals
are wideband, or when there are model mismatches. We illustrate
the new ambiguity in localization problems in multipath channels.

Index Terms—Ambiguity function, exponential family, Kull-
back divergence, radar, Sanof, sonar, Woodward.

I. INTRODUCTION

I N PARAMETER estimation, it is important to determine
how the observed behavior is sensitive to the parameters

of the system under study. Ifsmall parameter changes affect
significantlythe behavior of the system, then we can determine
accurately the actual values of the parameters from measure-
ments of the system behavior. On the contrary, if the system
behavior isinsensitiveto large variations of the parameters,
then we cannot expect to be able to estimate accurately the
parameters. These are structural issues, independent of specific
algorithms. They address the fundamental question of what
can and cannot be done.

In principle, such basic issues are resolved by computing
the conditional probability density (pdf) of the estimates of the
parameters given the parameters actual values. If this function
is multimodal, with several important peaks, then the argument
values corresponding to any of these peaks correspond to
highly probable estimates. In other words, and regardless of the
processing algorithm used, we cannot expect to determine from
the data the true values of the parameters. This pdf is usually
expressed in terms of iterated integrals of densities that depend
on specific values that are hypothesized for the parameters.
Lacking closed-form expressions, this pdf is computed through
expensive numerical procedures, which limits its usefulness as
a means of gaining insight into the system’s design procedure.
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Rather than computing this pdf, it is common to resort to
bounds on the mean square parameter error, e.g., Cramér–Rao
bounds (CRB’s) or, as an alternative, to a sensitivity index
like the ambiguity function. These tools complement each
other. CRB’s are usually optimistic, being local bounds, while
the ambiguity function is used to assess the global resolution
and large error properties. The ambiguity function establishes
global conditions under which the local bounds are accurate
predictions of the expected error performance and identifies the
regions of the parameter space where large errors may occur.

Ambiguity functions were first introduced by Woodward
[13] in active radar. Woodward’s definition requires a deter-
ministic context with complete specification of the transmitted
signal, assumes known all intervening parameters (e.g., signal
power), and applies to the narrowband problem. Extensions
to stochastic narrowband signals (fading channel) exist; see
[12]. For example, [8] uses these extensions to study the
performance of passive narrowband systems in localization of
moving targets. Other extensions include [11].

The available definitions of ambiguity function are re-
strictive. They require complete knowledge of the statistical
characterization of the signal by the receiving mechanism, or
they assume additional constraints that may not be verified in
practice. They do not apply when the signals are wideband,
stochastic with unknown signal specifications, or to multipath
problems where the received power depends on the parameters
being estimated.

The paper introduces a new definition of ambiguity function;
see also [9]. The definition is based on a geometric inter-
pretation of maximum likelihood (ML) parameter estimation
with exponential families and on concepts of information
theory. Our definition applies to wideband signals, stochastic
processes, and multipath problems. It has been used in [10] to
determine the test points in the computation of the Barankin
bounds in DOA estimation problems. When applied to the
classical context, it recovers Woodward’s definition. In this
sense, we consider ours to be an extension of the classical
narrowband ambiguity function.

We focus the paper on radar/sonar localization. This should
not distract the reader from the much broader applicability of
our definition of ambiguity to general problems of parameter
estimation in curved exponential families.

The paper consists of the following. In Section II, we for-
mulate the problem and introduce notation. A number of facts
from statistical theory that relate ML in exponential families
to the Kullback divergence are reviewed in the Appendix.
In Section III, we present our definition of ambiguity in
the general context of estimation of parameters embedded in
waveforms. We consider three cases where there are
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1) no unwanted parameters, as in active systems;
2) unknown unwanted parameters like in passive systems;
3) model mismatches.

In Section IV, we recover Woodward’s definition as a special
case of our new ambiguity function. When there is uncertainty
about the signal parameters, our ambiguity function differs
from Woodward’s definition. We consider also the effect
of wrong modeling assumptions (modeling mismatches). We
illustrate the applicability of our new definition by applying it
to source localization. Section V concludes the paper.

II. PROBLEM FORMULATION: MODEL

We introduce our concept of ambiguity in the context of
localization systems. The transmitted signaltravels through
a channel with transfer function and is corrupted by an
additive noise . More formally, the observations are modeled
by

(1)

For example, in a multipath channel,
, where and are the attenuations and

delays. Our setup is the following.

• Observation interval : The observation interval is dis-
crete. This is not a fundamental limitation; it simplifies
the presentation, avoiding unnecessary technicalities.

• Observed signal : is a -dimensional vector, the
outputs of an array of omnidirectional sensors. We
denote by the set of available
observations.

• Source signal : is either a deterministic signal
of known structure (active radar or sonar) or a sample
function of a random process (passive context). In either
case, the source signal is parametrized by. This vector
may include the power level, the bandwidth, or even sig-
nal samples. Some of these parameters may be unknown.
When multiple sources are being located,is a vector
of dimension .

• Channel operator : represents the action of the
channel, e.g., multipath or the effects of boundaries, or
also the action of the receiving array, e.g., its spatial
diversity. These combined actions depend on the vector
of location parameters. This vector parametrizes the
operator . For the multisource problem of sources
detected by sensors, is a matrix operator.

• Noise : is the observation noise. It includes
interferences, other directional point or distributed noise
sources, modeling errors not accounted for, and other
background disturbances. Here, we treat interferences
and directional sources as signals and reduce to
background Gaussian white noise.

A. Estimation Problem

The goal is to estimate from the observations the
vector of location parameters. When is unknown, these
parameters are termed nuisance parameters. It is well known
that ML estimation of also requires the ML estimation of.

The vector of unknown parameters is in general represented
by . When the source parametersare not known,

. If is known, . The dimension of
is represented by . The parameter takes values in the
parameter space , where . The location parameter
vector takes values in and the vector of source parameters

takes values in such that .
The estimation problem is completely defined by the family

of pdf’s1

where is the pdf of the observed data2 indexed by the
vector . For the sake of illustration, we can take to be
a multivariate Gaussian, where the mean and/or the covariance
are parametric functions of . We also refer to as the
probabilistic model, the model manifold, or the probabilistic
manifold.

The family summarizes both the structural and the
statistical prior knowledge because that is all that is needed
to derive the optimal ML estimator of the unknown parameter

. The geometry associated with this parametric family
of densities determines the fundamental ambiguity structure
of the estimation procedure and is basic to our definition of
ambiguity. We overview briefly our approach.

The family is embedded in a more general family. For
example, when is the multivariate Gaussian with moments
parametrized by , is the family of multivariate
Gaussian densities of the same order. We restrictto be an
exponential family; see the Appendix. The family , as a
subset of , is a curved exponential family. This setup allows
for the use of well-known statistical tools for studying its
geometric properties; see the Appendix.

When , two submanifolds of the model
manifold are relevant in our study.

and

(2)

The first submanifold corresponds to the pdf’s whereis
fixed. It describes data from sources at a particular location
. The second submanifold has fixed. It is the family

of densities that describes data from sources with a fixed
parameter . It parametrizes the model by the source location
parameters . For example, with active location systems,
the source signal is usually taken to be completely known so
that is fixed and known. is the relevant probabilistic
manifold that describes the observed data. Whenis not
known, as, for example, when fading is present or in passive
problems, . This family is clearly larger than
any of its components . Geometrically, uncertainty in the
source signal results in an increased dimensionality of the
probabilistic model.

1The application�: A ! G� satisfies regularity and invertibility con-
ditions such that� constitutes a global coordinate system for the manifold
G�.

2Often, we will drop the explicit dependence onT , i.e., we will refer to
p(rT j�) simply asp(rj�).
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III. A MBIGUITY

In the Appendix, which should be read now, we introduce
a number of facts from statistical geometry that relate ML
in exponential families to the Kullback directed divergence.
In this section, we use Facts 5 and 6 in the Appendix,
together with a limiting argument, to present our definition
of ambiguity. We consider first the simple case of signals with
no unwanted parameters. Then, we study the general case of
signals dependent on unknown unwanted parameters. Finally,
we show how to modify the definition of ambiguity to address
the case when the receiver uses a wrong model, i.e., the values
used by the receiver for some parameters although thought to
be correct are actually in error (model mismatches).

A. Ambiguity: No Nuisance Parameters

We introduce ambiguity in the simplest context of active
systems with completely known signal. In this case, the only
unknowns are the location parameters The manifold
of interest is . Our definition of
ambiguity depends solely on the geometric properties of the
model manifold and provides an index on the ability to
discriminate between different values ofin the model .

In assessing the difficulty of estimating the actual value
of an unknown parameter, we can interpret the estimation
problem as the binary decision test

versus

i.e., as the problem of distinguishing between the two points
and in the family . From the discussion

in the Appendix (Fact 5), we know that the functional that
we should use to compare different points of the model is the
directed divergence.

Denote by the observed sample. Let it correspond to
the occurrence of , i.e., the actual value of the desired
parameter is . We make the ideal sampling assumption given
by (39) in the Appendix that perfectly determines .
This assumption is essentially an asymptotic type hypothesis,
implying that our ambiguity function captures the large sample
size limit of the problem.

With this assumption, the first term on the right-hand side
of (41) following Fact 6 in the Appendix is zero, and the
log-likelihood ratio for deciding between and is

is shorthand for the directed divergence
between the pdf’s and .

Based on the above considerations, we propose the follow-
ing definition of ambiguity.

Definition 1—Ambiguity:Consider the problem of estima-
tion of the parameter from observations described by the
model . We defineambiguityin the estimation of , condi-
tioned on the occurrence of , by

(3)

where is an upper bound of

(4)

The ambiguity function is equal to its maximal
value of one at the true parameter value. It takes values
close to one at the points that are “difficult to distinguish” from

. The upper bound corresponds
to the distribution in the parametric class furthest from the
nominal true distribution. From the point of view of the
user, summarizes the impact of the geometry of
the statistical model on the ability to differentiate between
different parameter values.

Our ambiguity function provides, as discussed before, a
prediction, for large sample sizes, of the normalized shape
of the score function in parameter estimation problems. We
can also relate it to the probability of error in the binary
test introduced above versus . We use
Sanov’s theorem and Stein’s lemma, [2], [3], [7] applied to
optimal Neyman–Pearson decision tests. Letand be the
probabilities of false alarm and missed detection for sample
size

Pr Pr

Fix , . Then, by Stein’s lemma,3 [2], [7]

i.e., the rate of false alarms (errors in estimation of) tends
to zero exponentially fast, with exponent . The
larger is, the smaller the amount of data required
to achieve the same level of false alarms.

Remark: For Definition 1 to be well defined, we need to
guarantee that is neither zero nor . We discuss these
two points separately.

1) It may happen that . Since the directed
divergence is zero only if the two distributions being
compared are equal [see (32)], we may conclude that
except over sets of measure zero

i.e., all different points of the parameter spacedefine
the same measure in the observation space. This means
that the family of distributions is a manifold of dimen-
sion 0 or, in more intuitive terms, that the model is not
sensitive to parameter variations. In this case, we define

meaning that the model is not informative with respect
to the parameter. When this happens, we conclude that
the parameter is not observable from the data.

2) We state conditions for .
A necessary condition is clearly to require the absolute

continuity of the members of the family of distributions,
i.e., that whenever either or is zero, the
other is also zero. This is however not sufficient, i.e.,

3According to [7], Chernoff (1956) derived this lemma and related results.
Chernoff attributes the results to unpublished work of Stein.
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the absolute continuity assumption does not guarantee
the finiteness of the Kullback divergence.

From the definition of Kullback divergence [see (31)
in the Appendix] and for members in the curved expo-
nential family [see (37)], we get

E

E (5)

(6)

where E is referred to as theexpec-
tation parameter [4]. We obtain (5) by simply using the
definition of curved exponential families [see (37)] and
noting that the term is canceled in the Kullback
divergence.

Since the Kullback divergence is nonnegative, it is
finite and upperbounded if

(7)

where is positive. A set of sufficient conditions for
(7) to hold is

and

(8)

Condition (8) rules out pathological cases such as sin-
gularity of covariance matrices. In general, under rea-
sonable assumptions, e.g., compactness of the parameter
space , these conditions are satisfied. We hypothesize
these conditions in the sequel.

We make two additional comments:

1) In contrast with the classical ambiguity function of
Woodward [13], is not a symmetric function of
its arguments. The symmetry of the classical ambiguity
is a consequence of the particular geometry of the model
for which it was developed. Symmetry, however, is not
a natural requirement for an ambiguity function since in
a binary test, the probability of error depends generally
on which hypothesis is true.

2) The definition depends, somewhat arbitrarily, on the
upper bound . This was introduced to enforce
a positive normalized measure of ambiguity in between
zero and one, which is a natural requirement. The bound
should be calculated as tight as possible so that the
ambiguity values span the entire range from 0 to 1. If a
loose bound is used, this range is squeezed.

B. Ambiguity: Unwanted Parameters

We consider here the practically interesting situation where,
besides the parametersof interest, the data is dependent on
a distinct set of nuisance parameters, which are unknown
to the receiver. This occurs, for example, in passive location
problems, where describes the target location and the
source signal.

Again, consider the problem of deciding between two
distinct values and to which subfamilies

and in
correspond

versus

Consider that the observed sample corresponds to
, i.e., that the actual true value of the desired parameter

is , and the value of the nuisance parameter is. Under
ideal sampling, i.e., when the true pdf is
identified from the data, the generalized likelihood ratio for
deciding between and is

where is shorthand for , and we have
defined as the minimum value of the Kullback
divergence

(9)

where is the value of to which the element of
closest to corresponds

Based on the above considerations, we propose the follow-
ing definition of ambiguity.

Definition 2—Ambiguity:Consider the problem of estima-
tion of the parameter from observations described by the
model , where is an unknown nonrandom vector of
parameters. We defineambiguity in the estimation of con-
ditioned on the occurrence of , by

(10)

where is an upper bound of [defined
by (9)]

(11)

Comments similar to the ones following Definition 1 apply
here regarding the upper bound.

When comparing the global performance of different models
of the same physical problem, for instance, when studying
the effect of lack of knowledge about source parameters, it is
desirable that be defined in a way that allows comparison
of the ambiguity values. Since

we use the upper bound for the case of knownas an upper
bound for ; then

implying that ambiguity always increases when some param-
eters are not known precisely.

Definition 2 is conditioned on the true parameter values:
both the wanted parameter and the nuisance parameter
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. It would be desirable that a global measure of ambiguity
depends only on the two values and . Mathematically, this
corresponds to applying an operator to the conditioned
ambiguity defined by (10)

Obvious candidates for the operator are the mean value,
the maximum, or the minimum taken over all possible values
of . We will see, for a specific problem, the consequences of
using one of these alternative operators. We think, however,
that it is preferable to keep the conditioned ambiguity given in
Definition 2. This definition gives insight into the geometry of
the location problem and clarifies the impact of both the source
signal and of the medium characteristics on the resolution of
the localization mechanism.

Our definition captures the impact of uncertainty on the
observability of the wanted parameter. This is the key dif-
ference between passive and active systems and one of the
fundamental reasons why the same tools cannot be used
to study both. A problem with a nice ambiguity structure
when each is considered individually can be unobservable
(extreme case of ambiguity) when the complete manifold
is considered. It suffices that for , . Our
tool allows the study of all intermediate situations.

C. Ambiguity: Modeling Inaccuracies

The ambiguity function defined previously can be extended
to handle the impact of wrong modeling assumptions. We
continue the presentation in the framework of location systems,
assuming observations generally described by (1), and, for
simplicity, we consider that there are no unknown signal
parameters . We now make explicit the dependence of the
observation operator on both physical medium parameters
and on the source position vector. Rewrite the observation
equation as

(12)

The vector denotes parameters related to the propagation
channel that may include sound speed profile, water column
depth, or boundaries reflectivity. In practice, these parameters
are only approximately known. The uncertainty regarding the
propagation channel characteristicswill in general result
in a degradation of the system performance in the form of
nonnegligible biases. We address now the issue of how the
ambiguity function we have introduced can be extended to
predict this form of performance degradation.

Denote by the true value of the propagation parameters.
At the receiver, a wrong value is used to model the
observed data. We are not concerned with the receiver using
inaccurate estimates ofbut with the receiver’s willful use of
wrong parameter values. Our goal is to study the impact of
this mismatch on the ability of correctly predicting the source
location .

We introduce additional notation. We consider only the
simpler case of active location systems. The discussion is
generalized with no great additional effort to passive systems.
Let be the probabilistic manifold that describes the received

data for the true value of the physical parametersand
the probabilistic model used at the receiver. Denote members
of by , . Under the ideal sampling assumption
(see D3 of the Appendix), is perfectly identified [see (39)],
and Fact 6 states that the generalized log-likelihood ratio for
deciding between source locations and is

This expression is illustrative of the performance degrada-
tion due to model mismatches. The first term is a constant
bias accounting for the distance between the densities corre-
sponding to the true value in the correct and incorrect model. It
may happen that the maximum of the likelihood ratio does not
occur, even under ideal sampling, at the true source location,
indicating the presence of a nonzero estimation bias, since the
likelihood estimator searches for the valuethat yields the
maximum value of .

The definition of ambiguity is modified according to the
following.

Definition 3—Ambiguity: Model Mismatch:Consider the
parameter estimation problem described by the curved
exponential family using the probabilistic model at
the receiver. We defineambiguity in the estimation of, given
that is the true value of the parameter, as

(13)

where is an upper bound on the Kullback directed
divergence between and any member of

IV. THE CLASSICAL AMBIGUITY

FUNCTION: GENERALIZATIONS

In this section, we recover the classical definition of ambi-
guity when Definition 2 is applied to the particular observation
model of Woodward. We show also that introduction of uncer-
tainty in this model leads to different measures of ambiguity.

A. Woodward’s RADAR Ambiguity Function

Consider the problem of simultaneous estimation of delay
and Doppler shift in a narrowband signal ofknowncomplex
envelope, transmitted through a Rayleigh channel. Letdenote
the vector of wanted parameters, i.e., the delayand the
Doppler shift . In complex notation, the observation is an

-dimensional complex Gaussian vector

(14)

where we assumed that the observation noise is white and the
power parameters and are known. The -dimensional
vector is the complex envelope of the received waveform
known at the receiver .

This is the model underlying the classical definition of
ambiguity. To completely fall under the framework of the
classical definition, we need to make an additional assumption,
namely, that the received signal energy does not depend on
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the particular value of the parameter being estimated, i.e.,
, where is a positive constant.

Woodward introduced his ambiguity function for the prob-
lem formulated above. Our proposed definition of ambiguity
is Definition 1.

The Kullback-directed divergence between two -
dimensional normal densities with zero mean and covariance
matrices and is (see [7] or the Appendix)

tr (15)

Using elementary facts from linear algebra

SNR

SNR

In these equations, denotes the identity matrix of order ,
and SNR is the received signal-to-noise ratio. Using (15)

SNR
SNR

(16)

Since the second term is always positive, we can compute the
upper bound

SNR
SNR

From this and (3), we get the following fact.
Fact 1: Consider the problem of estimation offrom ob-

servations following model (14), whereand the application
are known. Then, Definition 1 coincides with the classical

ambiguity function

(17)

Equation (17), which we refer to as Woodward’s ambigu-
ity function, is sometimes called the ambiguity surface, the
ambiguity function being then reserved to the inner product

.
If the set of signal envelopes is designed

such that

(18)

then ambiguity is maximally stretched between 0 and 1.
Otherwise, its range is limited to a smaller interval , with

.

B. Uncertainty in Signal Parameters

As stressed before, the model that leads to Woodward’s clas-
sical definition of ambiguity admits no uncertainty regarding
the signal parameters, namely, the Rayleigh coefficientand,
for each , the vector .

To see that even for this simple model, dropping any of
these assumptions changes the ambiguity structure, we study
now the effects of i) the unknown received signal power and
ii) the unknown shape of the signal correlation, i.e., unknown

Fig. 1. Acoustic source localization in a bounded channel.

. In either case, associated with each value of, we now
have a manifold of dimension greater than 0.

1) Unknown Received Signal Power:Consider first that
is not knownand that we drop the assumption of constant
power. This corresponds to unknown emitted signal power or
to propagation in multipath channels, where the power of the
received signal depends on the specific source location that
dictates the pattern of energy recombination of the individual
paths.

Denote the covariance matrix of the observed field by .
The directed divergence between and any member
of is

tr

(19)

Minimization over leads to

and the divergence between and is

SNR

SNR

SNR
(20)

SNR (21)

For each value of , from Schwartz’s inequality, it follows
that the argument of the logarithm in the previous expression
is never larger than one. Thus

SNR

Using Schwartz’s inequality, again

SNR

Using this bound and (20) in (10) of Definition 2, we obtain
the following fact.
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(a) (b)

Fig. 2. Ambiguity surface for (a) single direct ray and (b) direct and surface reflected rays.

Fact 2: Consider the problem of estimation of from
observations following model (14), where is a known
application and an unknown nonrandom parameter. Then,
the ambiguity function conditioned on the true power level

, which is denoted by , is related to the ambiguity
function for known , in the following way.

SNR
SNR

SNR
(22)

The argument of is smaller than 1; therefore, is
always larger than , showing that ambiguity increases
relative to the classical situation of Section IV-A.

Since is a monotonic function of , its
maxima in the parameter space occur in the same points
as the maxima of the classical ambiguity function, which are
dictated by the local maxima of the angle .
However, the relative heights of the maxima are not the same,
as we can see from the previous equation.

While Woodward’s ambiguity is independent of the signal-
to-noise ratio, this is no longer true in the present situation. In
fact, although for very high signal-to-noise ratios the influence
of the second term in (22) is negligible, so that (17) and (22)
predict essentially the same behavior, in the low signal-to-
noise ratio limit, the second term of (22) prevents ambiguity
from being zero, even when . We get a lower
bound on ambiguity. From (22)

SNR

SNR (23)

Using the inequality in this equation yields

SNR (24)

We illustrate this discussion with an example where the
classical ambiguity is not applicable, and we instead use our
definition. We study the localization of a narrowband Gaussian
acoustic source (100 Hz) in a shallow water channel of 200
m depth. The boundaries are perfectly flat; see Fig. 1. The

medium is homogeneous, with a constant sound speed velocity
of 1500 m/s. The receiving array is vertical, with ten sensors,
located at the center of the water column. The acoustic source
is located at an horizontal distance of 1600 m of the array,
which is also equidistant from surface and bottom. The SNR
is 0 dB.

We consider two distinct reflection behaviors of the bound-
aries: i) when both boundaries are perfectly absorbing and
only the direct path reaches the receiver and ii) when there is
a nonzero reflection at the surface, and thus, two distinct rays
arrive at each sensor. The 3-D plots, as well as the contour
plots (lines on – plane) of the resulting ambiguity surfaces
are shown in Fig. 2(a) and (b), respectively.

Both figures clearly exhibit a threshold due to the low SNR,
as predicted by (24). The shapes of the ambiguity surfaces in
Fig. 2(a) and (b) are distinctly different. The main lobe of the
ambiguity in Fig. 2(b) is sharper than the shallower main lobe
of Fig. 2(a). This is due to the focusing effect provided by the
reflected ray. Its presence leads to an ambiguity [see Fig. 2(b)]
with a marked lobe structure with an almost periodic nature,
resulting from the variation of the differential delay between
the two paths. The absence of this ray leads to an almost
perfectly radial ambiguity structure; see Fig. 2(a).

This example illustrates the role that the ambiguity function
as introduced here plays as a diagnostic tool in analyzing the
degree of global observability of the estimation problem.

2) Unknown Signal Shape:A more radical change is ob-
tained when, instead of a perfectly known application
C , as in the previous section, we know only that ,
where is a known proper -dimensional subspace ofC .
This is the relevant model for location of multiple perfectly
correlated narrowband sources or, in a multipath channel,
when only the spatial structure of the observations is modeled,
i.e., only the intersensor delays, or directions of arrival, for the
plane wave approximation are taken into account, any temporal
structure being ignored.

Assume that the signal component of the observations is
known to belong to Sp , i.e., to the linear
span of the vectors , such that the covariance matrix
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of the observations can be written as

(25)

where C is an unknown vector, and is the
matrix that collects the basis vectors . Using, in (19),
the expression for the covariance matrix yields

(26)

The vector that minimizes this expression satisfies

where denotes the orthogonal projection operator onto
. Define

(27)

Then, the minimum of (26) is

Since , we can set

Analogous to the previous subsection, define the SNR as

SNR

Then, the ambiguity function for the present scenario can be
put into the form

SNR

SNR

SNR
Denote the first term in the previous expression by

(28)

We can now state the following fact.
Fact 3: Consider the problem of estimation offrom zero

mean Gaussian observations with covariance matrix given by
(25), where is a known matrix, and is an unknown
vector. Then, the ambiguity function conditioned on the true
value is

SNR

SNR

SNR
(29)

where is defined in (28).
Comparing expressions (29) and (22), we conclude that

the role of the classical ambiguity function in (22) is here
played by , which is determined by the norm of the
projection of onto .

Fig. 3. Ambiguity surface for spatial model.

While in Section IV-B1 ( unknown) the location of the
peaks of the ambiguity function was independent of the
unwanted parameter (see the discussion following Fact 2) now,
this is not so. Different directions of the complex vector
result in different shapes of the conditional ambiguity function.
Comparing with the expression obtained for unknown[see
(22)], we see that uncertainty in the direction of results
in an increased ambiguity. Even for large SNR’s, when the
second term in (29) becomes negligible, the value of the
ambiguity is larger in the present framework since

Fig. 3 illustrates the ambiguity surface for the same acoustic
source localization problem, but when only a spatial model
is considered, i.e., when the differential delay between the
direct and the reflected rays is ignored. The ambiguity function
is now flat around the source position (position ,

). Comparing Fig. 3 with the ambiguity structure in
Fig. 2(b) of the complete model, we see that the deep valleys
in Fig. 2(b) are now absent, causing the widening of the lobe
structure. The ambiguity surface in Fig. 3 is much smoother,
with fewer secondary lobes. The sharper main lobe in Fig. 2(b)
leads to better local performance (marked peaks), as CRB
studies show [9], but may be prone to ambiguity problems as-
sociated with the presence of important secondary lobes of the
likelihood function. Another interesting comparison between
Figs. 2(b) and 3 is the improved range observability provided
by accounting in the model for multipath. This is illustrated by
the fact that beyond a certain value of the horizontal distance,
the surface in Fig. 3 exhibits a flat structure. This predicts
the well-known problems associated with range estimation of
distant sources. The detailed analysis of the shape of the two
surfaces is closely linked to the features of the underwater
acoustic channel and will be pursued elsewhere.

C. Upper and Lower Ambiguity Bounds

We consider now (28) as a function of the true source signal
parameter vector and verify that in this case, we are able
to find upper and lower bounds to the surface
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Assume, for simplicity, that so that we are dealing
with the usual Euclidean metric. The material presented below
holds in the general case, with a convenient reinterpretation of
the inner products.

Let and denote an orthonormal basis for
and , respectively, and define the matrix

of generic element

Let denote the vector of coordinates of
in the basis

Then, an equivalent expression for the ambiguity is

The function is a quadratic form in the Hermitean
matrix . As is well known, the largest and
smallest eigenvalues determine upper and lower bounds on
the value of a quadratic form.

Let be a matrix, and denote by and
the largest and smallest eigenvalues of, respectively. Then,

Since the eigenvalues of are the squares of the singular
values of the matrix and recognizing the singular values of
the matrix as the cosines of the principal angles between
the subspaces and [6], we can state the following
fact.

Fact 4: The ambiguity (28) verifies

(30)

where and are the largest and smallest principal
angles between the subspaces betweenand .

An alternative lower bound can be found, noting that

where is the largest principal angle between and
. We note that is the gap

metric between the two subspaces [5].
If and have an intersection of dimension greater

than or equal to 1, then . In this way, the
upper bound in (30) indicates the structural ambiguities of the
problem, i.e., that there may be pairs of for which there
are such that .

V. CONCLUSIONS

We present a novel definition for the ambiguity function
that generalizes the classical definition of ambiguity function
introduced by Woodward. Woodward’s definition considers
narrowband, completely known deterministic signals. Ours is
valid under much broader conditions that include wideband
signals, stochastic signals, signals with unknown (nuisance)
parameters in their specification, or problems where the model
is incorrectly specified. Our definition of ambiguity is based

on the Kullback directed divergence between two probability
densities used to describe the observed data and follows
from a geometric interpretation of ML estimation. By using
Sanov’s theorem and Stein’s lemma, [2], [3], [7], we relate
our ambiguity function to the probability of certain types of
error in decision problems.

We consider three definitions of ambiguity. The first def-
inition is a direct generalization of the classical ambiguity
function of Woodward. We make no specific assumptions
regarding the structure of the observed data beyond com-
plete knowledge of its statistical description. This definition
shows that in a wider context, the angular interpretation
of Woodward’s ambiguity generalizes to direct divergence.
Our definition reveals interesting features of the ambiguity
function, for example, in general, it is not symmetric and
depends on the noise characteristics, in particular, the signal-
to-noise ratio. The second definition allows for the presence
of nuisance parameters like for example unknown power level
or when the parameters of interest only restrict the signals
to a particular finite-dimensional linear space. In the latter
case, we show that the principal angles between subspaces
determine upper and lower bounds on the ambiguity function.
The third definition of ambiguity addresses the problems where
there are mismatches between the assumed model parameters
and the actual values these parameters take in the real world.
This is particularly important in applications like matched field
processing, where detailed physical models are coupled with
the signal processing algorithms. Our definition provides a tool
to identify systematic biases induced by the mismatches in the
estimation of the desired parameters.

The paper illustrates our definitions in the context of source
localization in a multipath environment. We compare the
ambiguity surfaces associated with distinct channel models:
single direct path, direct and surface reflected path, and an
incomplete model that ignores the temporal structure provided
by the incoming rays. This study shows that modeling the
temporal structure can be a determining factor to resolve
ambiguity in source localization.

APPENDIX

A. Geometric Interpretation of ML

We recall in this Appendix concepts and results from infor-
mation theory and ML estimation. We omit proofs referring
the reader to the relevant bibliography.

B. Kullback Directed Divergence

The Kullback directed divergence (KDD) [7] is a measure
of similarity between probability densities and bears a funda-
mental relationship to ML theory; see [1]. The KDD is defined
by

E (31)

where E is expectation with respect to the pdf. The
KDD does not satisfy all the properties of a distance. As seen
from its definition (31), the KDD is not symmetric and does
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not satisfy the triangular inequality. However, it can be shown
that [7]

and (32)

where the second equality holds except, possibly, on sets of
measure zero.

C. Kullback Directed Divergence of a pdf to a Submanifold

Let be a submanifold of densities. We introduce the KDD
of the pdf to the submanifold

(33)

As an illustration, we consider the KDD between two mul-
tivariate Gauss pdf’s and parametrized by parameters
and . If the pdf’s have the same covarianceand different
means and , the KDD is given by the square of the
Mahalanobis distance

(34)

If the multivariate Gauss pdf’s and have the same mean
and distinct covariance matrices and , the KDD is

tr (35)

As a short-hand notation, when the pdf’s are parametrized by
and as in (34) and (35), we will often write

for the KDD.

D. Exponential Family

In many parameter estimation applications, the pdf’s of
interest are a subfamily of the family of exponential densities.
The family of exponential densitiesis well known to statisti-
cians. Exponential densities enjoy a number of properties that
make them attractive when dealing with inference procedures;
see [1]. The exponential family is a parametric family of
densities of the form

(36)

where the parameter vectoris called thenatural parameter of
the family, and are known functions, is
the normalizing constant, and is a suitably defined inner
product. This family of densities includes several distributions
such as the Gauss, gamma, binomial, Wishart, and Poisson.
However, from a practical viewpoint, of these distributions,
the one with most practical significance as a noise model is
the Gauss multivariate distribution so that when we refer to
the exponential family, we can in fact think of the Gauss pdf.

We illustrate this definition for multivariate Gauss probabil-
ity density functions (pdf) with mean and covariance

. If the covariance is known, the mean is the natural
parameter of the exponential family .

The quantities defining the family are

The inner product in the definition of the exponential distri-
bution is the usual inner product.

If the mean is known and the covarianceunknown, the
inverse is the natural parameter of the family

, where is the cone of symmetric positive
definite matrices. With the following identifications, is an
exponential family.

The inner product is defined in the cone of positive definite
matrices as tr .

1) Curved Exponential Family:In many applications, the
natural parameter of the exponential family is itself param-
etrized by a vector of parameters. In parameter estimation
problems, these may represent the unknown quantities in the
model. We indicate this dependence of the natural parameter
on the vector of parameters by writing .

The subfamily of exponential pdf’s that results by
parametrizing the natural parameter by is called the
curved exponential family . In other words, is a curved
exponential family if its members are written as

(37)

where is the space of the parameter. We denote by
the image of under the mapping

and similarly for .
2) Exponential Data pdf : In the geometric interpre-

tation of parameter estimation and detection, we associate
with each observation the exponential datapdf

. We show how to construct this exponential density from
. To compute the (unstructured) maximum-likelihood (ML)

estimate of the natural parameter, evaluate the gradient
of the log of with respect to , i.e., the score function

and equate to zero

(38)

The exponential datapdf is now defined as the
pdf corresponding to , i.e., .
With Gaussian densities, it is easy to show that is just
the Gaussian density with mean and covariance equal to the
sample mean and sample covariance matrix.
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3) Ideal Sampling Assumption:Our definition of ambiguity
in Section IV makes the following assumption. We work with
the curved exponential family of pdf’s parametrized by

. Let the observation be . With these observations, we
associate two pdf’s. The first is the exponential data pdf
determined from the observed data, as indicated above.
The second is the true pdf , where is the
true value of the parameter that gives rise to the observation

. The ideal sampling assumptionstates that perfectly
determines the true pdf , i.e., that

(39)

This is an asymptotic type assumption since, as it is well
known, the ML estimate is consistent, i.e., it converges in
the large sample size limit with probability one to the true
value of the estimate.

E. Geometric Interpretation of ML Estimation and Detection

In parameter estimation problems, the family of pdf’s of
interest is the curved exponential family ; see Fig. 4. Let
the observed data be . It determines the exponential data
pdf as given above. This pdf is a point in the larger
set of exponential family of pdf’s of which is a subset.
The following fact establishes the role played by the Kullback
directed divergence in ML estimation. Optimal ML estimators

are obtained by finding the element that is
closer to in the sense of a conveniently defined distance.

Fact 5 [4]: Let be an exponential family of probability
density functions and a vector of parameters. Let , which
is the probabilistic model that describes the observed data, be
a curved exponential family in . Then, the ML estimate of

is the point such that

where is the Kullback-directed divergence between
densities and . Further, the pdf is a member of the
exponential family of which is a subset and is uniquely
determined from the data . It follows from this fact that the
geometry of as a subset of is the factor that determines
the global performance of the estimation process. Two distinct
values of are ambiguous, or easily mistaken one with the
other, if the distance between them is small. This is the key
idea underlying our definition of ambiguity.

Fig. 4 illustrates the relationships between i) the unstruc-
tured ML-estimate in the natural parameter space and
the exponential data pdf in the probabilistic model
and between ii) the structured ML estimate of the natural
parameter and the minimizing density for Fact
5 .

Fact 5 provides us with a simple geometric picture of
ML on which we will base our definition of ambiguity
function. We quote a second important fact that establishes the
relationship between binary decision and Kullback divergence.
We considercompositedecision problems, where to each
hypothesis corresponds a set of possible density functions.
The simpler case is when we have a parametric description
of each of these sets, but we do not know the values of

Fig. 4. ML estimation.

these parameters, which are called nuisance parameters. For
simplicity, consider the binary composite hypotheses problem.
Denote the two hypotheses by and , and let and
be the families of densities corresponding to each hypothesis.
The test decides which of the hypotheses (or ) is true
in the absence of knowledge of what values the unwanted,
unknown parameters take.

Fact 6 [7]: The generalized log-likelihood ratio for decid-
ing between ( ) and ( ) is

(40)

where is the exponential density determined from the
data (see D2 in this Appendix).

This fact asserts that the generalized likelihood ratio be-
tween two alternative hypotheses corresponds to comparing
(in the sense of the Kullback directed divergence) the densities
that under each hypothesis best explain the observed data.

For simple decision binary tests and are singletons
with pdf’s and , respectively. In this case, the log-
likelihood ratio is simply

(41)
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