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Ambiguity in Radar and Sonar

M. Jaao D. RendasMember, IEEE and Joé M. F. Moura,Fellow, IEEE

Abstract—We introduce a new ambiguity function for general Rather than computing this pdf, it is common to resort to
parameter estimation problems in curved exponential families. pounds on the mean square parameter error, e.g.,&@+&RA0
We focus the presentation on passive and active radar and sonar bounds (CRB’s) or, as an alternative, to a sensitivity index

location mechanisms. The new definition is based on the Kullback like th biquity f . h | | h
directed divergence and reflects intrinsic properties of the model. k& the ambiguity function. These tools complement eac

It is independent of any specific algorithms used in the processing Other. CRB’s are usually optimistic, being local bounds, while

of the signals. For the active single target problem, we show the ambiguity function is used to assess the global resolution
Lh:‘r: dogkg,eg”?{t'of“ n'zt%‘:lju"lf'f’(‘)'e'g g)r Vt\llqoeoi‘gari; é%datr “,Z“:T?Wéh and large error properties. The ambiguity function establishes

iguity function. However, W iguity is mu . ;

broader, handling radar/sonar problems when there are unknown globgl _Condltlons under which the local bounds a_lre apf:urate
parameters (e.g., unknown power level in active systems), when prepllcnons of the expected error performance and identifies the
the signals are random (e.g., passive systems), when the signalgegions of the parameter space where large errors may occur.
are wideband, or when there are model mismatches. We illustrate  Ambiguity functions were first introduced by Woodward

the new ambiguity in localization problems in multipath channels. [13] in active radar. Woodward’s definition requires a deter-

Index Terms—Ambiguity function, exponential family, Kull-  ministic context with complete specification of the transmitted
back divergence, radar, Sanof, sonar, Woodward. signal, assumes known all intervening parameters (e.g., signal
power), and applies to the narrowband problem. Extensions
I. INTRODUCTION to stochastic narrowband signals (fading channel) exist; see

[12]. For example, [8] uses these extensions to study the

r’:‘ PAtIEAMETER gstt)lrr;]atu_)n, .'t IS mg_ortatnt :ﬁ determmf&erformance of passive narrowband systems in localization of
ow the observed behavior 1S sensitive 1o the parame %ving targets. Other extensions include [11].

O.f th_g system under §tudy. fimall parameter changes affeqt The available definitions of ambiguity function are re-
significantlythe behavior of the system, then we can determn&

rictive. They require complete knowledge of the statistical
accurately the actual values of the parameters from measure: o ) e .
characterization of the signal by the receiving mechanism, or

ments of the system behavior. On the contrary, if the syste[ ey assume additional constraints that may not be verified in

behavior isinsensitiveto large variations of the parameters, . . .
. ractice. They do not apply when the signals are wideband,
then we cannot expect to be able to estimate accurately the o : e .
S Qchasnc with unknown signal specifications, or to multipath

parameters. These are structural issues, independent of speci I%Iems where the received power depends on the parameters
algorithms. They address the fundamental question of Wrga{ P P P

can and cannot be done. e1i_nhg estimgtetd.d definiti f ambiquity function-
In principle, such basic issues are resolved by computin% elpap(;r mTrr? udcef_s anew eb|n| |c(;no ambigurty function;
the conditional probability density (pdf) of the estimates of thet€ a1so [9]. The definition is based on a geometric inter-

parameters given the parameters actual values. If this functf&rﬁtat'on of maximum likelihood (ML) parameter estimation

is multimodal, with several important peaks, then the argume\ﬂ'tth exponential families and on concepts of information

values corresponding to any of these peaks Correspondtqsory' Our definition applies to wideband signals, st(?chastic
highly probable estimates. In other words, and regardless of f{@C€sses, and multipath problems. It has been used in [10] to
processing algorithm used, we cannot expect to determine frdff€rmine the test points in the computation of the Barankin
the data the true values of the parameters. This pdf is usudlifMnds in DOA estimation problems. When applied to the
expressed in terms of iterated integrals of densities that dep&psical context, it recovers Woodward's definition. In this
on specific values that are hypothesized for the parametei€NSe, we consider ours to be an extension of the classical
Lacking closed-form expressions, this pdf is computed throu§g"rowband ambiguity function. o _
expensive numerical procedures, which limits its usefulness ad/Ve focus the paper on radar/sonar localization. This should

a means of gaining insight into the system’s design proceduf®t distract the reader from the much broader applicability of
our definition of ambiguity to general problems of parameter
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1) no unwanted parameters, as in active systems; The vector of unknown parameters is in general represented
2) unknown unwanted parameters like in passive systenis; «. When the source parameteysare not knowna? =
3) model mismatches. 6T ~4T]. If ~ is known, « = 6. The dimension ofa

In Section 1V, we recover Woodward’s definition as a specié represented by, The parametewr takes values in the
case of our new ambiguity function. When there is uncertainBarameter space!, where.A C R?. The location parameter
about the signal parameters, our ambiguity function diffepgctord takes values i® and the vector of source parameters
from Woodward’s definition. We consider also the effect takes values il such thatd = © x I.

of wrong modeling assumptions (modeling mismatches). WeThe estimation problem is completely defined by the family
illustrate the applicability of our new definition by applying itof pdf's®

to source localization. Section V concludes the paper.
Go = {p(rrla), o € A}
Il. PROBLEM FORMULATION: MODEL wherep(rz|a) is the pdf of the observed datmdexed by the
We introduce our concept of ambiguity in the context ofector«. For the sake of illustration, we can tak@ r|«) to be
localization systems. The transmitted sigifaravels through a multivariate Gaussian, where the mean and/or the covariance
a channel with transfer functiof? and is corrupted by an are parametric functions ok. We also refer toG, as the
additive noisew. More formally, the observations are modelegrobabilistic model, the model manifold, or the probabilistic
by manifold.
The family G, summarizes both the structural and the
r(t) = He[f(t: V] +w(t), teT. (1) statistical prior knowledge because that is all that is needed
: . to derive the optimal ML estimator of the unknown parameter
For example, in a multipath channefis[f(t: 7)] ~ . The geometry associated with this parametric fanglly
2 axf(t = ), whereay, and 7, are the attenuations andy¢ yeonities determines the fundamental ambiguity structure
delays. Our setup is the following. of the estimation procedure and is basic to our definition of
* Observation interval: The observation interval is dis- ambiguity. We overview briefly our approach.
crete. This is not a fundamental limitation; it simplifies The familyG,, is embedded in a more general famly For
the presentation, avoiding unnecessary technicalities. example, wherg, is the multivariate Gaussian with moments
* Observed signat: r(t) is a K-dimensional vector, the parametrized bya € A, G is the family of multivariate
outputs of an array of’ omnidirectional sensors. We Gaussian densities of the same order. We resgfitd be an
denote t_’W‘T = {r(t),t € T} the set of available gxponential family: see the Appendix. The family,, as a
observations. subset ofG, is a curved exponential family. This setup allows
* Source signaf:  f(t, ) is either a deterministic signal for the use of well-known statistical tools for studying its
of known structure (active radar or sonar) or a Sampb%ometric properties; see the Appendix.
function of a random process (passive context). In either\ynen o7 = [6T 7], two submanifolds of the model

case, the source signal is parametrizedybfThis vector manifold G, are relevant in our study.
may include the power level, the bandwidth, or even sig-

nal samples. Some of these parameters may be unknovgf/. ={p(rr|6, 7), v €T} and G, = {p(rr|0, 7), 6 € O}.
When S multiple sources are being locatefljs a vector @)
of dimensionsS.

* Channel operatot: H,[] represents the action of theqyq first submanifold;?

h | ltioath he off f boundari corresponds to the pdf's whefeis
channel, e.g., multipath or the effects of boundaries, ﬂﬁed. It describes data from sources at a particular location

a!so the action of th? recewing array, €.g., IS spatigl The second submanifold, has~ fixed. It is the family
dlver3|ty. These combined gctlons depend on _the VECI¥ densities that describes data from sources with a fixed
of location parameters. T.h's vector parametrizes theparametery. It parametrizes the model by the source location
operatorty[]. For the mult|§ource problem.cﬁ sources parameter® € ©. For example, with active location systems,
det_ected by sensors?—lg[-] 1S aK. xS mgtrlx operator. the source signal is usually taken to be completely known so

* Noise w: w(t) is the observation noise. It includesya¢ i fixed and knowng] is the relevant probabilistic
interferences, ther directional point or distributed NOISRanifold G, that describes the observed data. Wheis not
EzszerzhrT&O%?s“tE?b;?erz nlgfericc\?vlémt?garoirﬁt:rr:‘greor: own, as, for example, when fading is present or in passive

. , - W : o2
and directional sources as signals and reduge) to Cfrr?)blems,ga = User g%_ This fam!ly s clearly Igrger_ than
. : . y of its componentg,/. Geometrically, uncertainty in the
background Gaussian white noise. source signal results in an increased dimensionality of the
probabilistic model.
A. Estimation Problem

The goal is to estimate from the observations the 1The application®: A — G, satisfies regularity and invertibility con-

: : diti h thatb titut lobal dinat tem for th ifold
vector of location parameteis When~ is unknown, these g:?ns such that constilutes a global coordinate system for the manito
parameters are termed nuisance parameters. It is well knoWsyge, we wil drop the explicit dependence @ i.e., we will refer to

that ML estimation of also requires the ML estimation 6f  p(rr|a) simply asp(r|a).
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. AMBIGUITY where I,,(6y) is an upper bound of (6, : 6)

In the Appendix, which sh(_)ul_d be read now, we introduce I(6 : ) < L,(60), Vo e o. (4)
a number of facts from statistical geometry that relate ML
in exponential families to the Kullback directed divergence. The ambiguity function4(fy, ¢) is equal to its maximal
In this section, we use Facts 5 and 6 in the Appendixalue of one at the true parameter vaklie It takes values
together with a limiting argument, to present our definitionlose to one at the points that are “difficult to distinguish” from
of ambiguity. We consider first the simple case of signals with. The upper bound,;,(fy) = maxe (6, : 8) corresponds
no unwanted parameters. Then, we study the general cas¢oofhe distribution in the parametric class furthest from the
signals dependent on unknown unwanted parameters. Finatigminal true distribution. From the point of view of the
we show how to modify the definition of ambiguity to addressser, A(6y, §) summarizes the impact of the geometry of
the case when the receiver uses a wrong model, i.e., the valthes statistical model on the ability to differentiate between
used by the receiver for some parameters although thoughtlifferent parameter values.

be correct are actually in error (model mismatches). Our ambiguity function provides, as discussed before, a
prediction, for large sample sizes, of the normalized shape
A. Ambiguity: No Nuisance Parameters of the score function in parameter estimation problems. We

can also relate it to the probability of error in the binary

We mtrqduce ambiguity in the '5|mplest cpntext of activi est introduced aboveHO : ps, versusH1 : ps. We use
systems with completely known signal. In this case, the on anov’s theorem and Stein’s lemma, [2], [3], [7] applied to

unknowns are the location parameters= 4. The manifold optimal Neyman—Pearson decision tests. deand 3, be the

of interest isGo, = Gy = {p(rr|) : € O}. Our definition of - ijities of false alarm and missed detection for sample
ambiguity depends solely on the geometric properties of t Se

model manifoldGy and provides an index on the ability to
discriminate between different values ®in the modelG;. o, = Pr(H1|6)), Bn = Pr(HO0|6).
In assessing the difficulty of estimating the actual valye _

of an unknown parametet, we can interpret the estimationtX #» = 3, 0 < < 1. Then, by Stein’s lemma(2], [7]

problem as the binary decision test ) 1

nlgr;o . log o, = —I(pe, : Pe)

Ho:rr = poy =plrrfo) versus Hy:rr = ps = plrrlf) i.e., the rate of false alarms (errors in estimatiorfgf tends
to zero exponentially fast, with exponefifps, : ps). The

i.e., as the problem of distinguishing between the two poin@9er£(pe, : pe) is, the smaller the amount of data required
p(r7]0) and p(r7|6) in the family Go. From the discussion © achieve the same level of false alarms.

in the Appendix (Fact 5), we know that the functional that Remark: For Def|n!t|on .1 to be well defmed., we need to
we should use to compare different points of the model is t&l@rantee thak,,(6o) is neither zero noso. We discuss these
directed divergence. two points separately.

Denote by the observed sample. Let it correspond to 1) It may happen that'y,(6o) = 0. Since the directed

the occurrence ofl, i.e., the actual value of the desired divergence is zero only if the two distributions being
parameter ig,. We make the ideal sampling assumption given ~ compared are equal [see (32)], we may conclude that
by (39) in the Appendix thatZ. perfectly determinegy,. except over sets of measure zero

This assumption is essentially an asymptotic type hypothesis,
implying that our ambiguity function captures the large sample
size limit of the problem. i.e., all different points of the parameter spagalefine

With this assumption, the first term on the right-hand side  the same measure in the observation space. This means
of (41) following Fact 6 in the Appendix is zero, and the that the family of distributions is a manifold of dimen-
log-likelihood ratio for deciding betweefy, andé is sion 0 or, in more intuitive terms, that the model is not

sensitive to parameter variations. In this case, we define
A(90 : 9) = —1(90 : 9)

VO e O: Ay, 0) =1

Lu(60) =0 = V0 € O: p(rr|bo) = p(rr|f)

1(6y : 8) is shorthand for the directed divergenb@s, : ps)

between the pdfg,, and ps. meaning that the model is not informative with respect
Based on the above considerations, we propose the follow- to the parameter. When this happens, we conclude that

ing definition of ambiguity. the paramete# is not observable from the data.
Definition 1—Ambiguity:Consider the problem of estima- 2) We state conditions fofuy,(6) < co.

tion of the parameted from observations described by the A necessary condition is clearly to require the absolute

modelGy. We defineambiguityin the estimation of), condi- continuity of the members of the family of distributions,

tioned on the occurrence %, by l.e., that whenever e|th@(7’T|90) 0rp(7’T|9) IS Zero, the

other is also zero. This is however not sufficient, i.e.,

I(6y:6
M (3) 3 According to [7], Chernoff (1956) derived this lemma and related results.

A(bo, 6) 21—
Iub(eo) Chernoff attributes the results to unpublished work of Stein.
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the absolute continuity assumption does not guaranteeAgain, consider the problem of deciding between two

the finiteness of the Kullback divergence. distinct values @ and 65 to which subfamilies gz =
From the definition of Kullback divergence [see (31)p(rr|6, v), v € '} and & = {p(ry|fo, 7), ¥ €T} in Gy

in the Appendix] and for members in the curved expaorrespond

nential family [see (37)], we get
vl (37)] g Hy:p(rr) € gzo versus Hi :p(ry) € g:.

(%0 : 9) Consider that the observed sampfg corresponds tay, =

=Eeo{10g p(TTwO)} [fo0], i.e., that the actual true value of the desired parameter
p(rr|0) is 6y, and the value of the nuisance parametetygs Under

=E00{[a(90) —a(®] b(rr) = [c(b0) — c(g)]} (5) ideal sampling, i.e., when the true pgf = p(rr|6o, vo) is

T identified from the data, the generalized likelihood ratio for
=la(fo) — a(8)]” B(fo) — [c(bo) — c(0)] (6) deciding betweer, and ¢ is
where 3(6o) = Eq, {b(r7)} is referred to as thexpec- A(by : 0) = —pmelg I(po :p1) = —1(60 : 0)-,

tation parameter [4]. We obtain (5) by simply using the
definition of curved exponential families [see (37)] antvhere A(f : 6) is shorthand forA(Hy : H;), and we have
noting that the termi(ry) is canceled in the Kullback defined (6, : 6)., as the minimum value of the Kullback

divergence. divergence
Since the Kullback divergence is nonnegative, it is - A .
finite and upperbounded if V[ €G5:1(60:6)s = Ipo:plrrl8, 7(0)p ]} < I(po: f)

9)

T
_ - - 7
[a{fo) = alB))" f(60) = [elbo) = c(B)] <M (1) where¥(6),, is the value ofy to which the element of’
where M is positive. A set of sufficient conditions for closest topg corresponds
(7) to hold is N A ]
Y ()p, = arg min Ipo : p(rr|0, ¥
Vo€ O: |a(f)] < oo, |B(8)] < oo and |e()] < o. e
®) Based on the above considerations, we propose the follow-
ing definition of ambiguity.
Condition (8) rules out pathological cases such as sin-Definition 2—Ambiguity:Consider the problem of estima-
gularity of covariance matrices. In general, under re#on of the paramete from observations described by the
sonable assumptions, e.g., compactness of the paramgi@fel Go, where v is an unknown nonrandom vector of
space®, these conditions are satisfied. We hypothesif&rameters. We definambiguity in the estimation of con-
these conditions in the sequel. ditioned on the occurrence afo = (6o, v0), by

We make two additional comments: A [(6o : 6)
; ; P ; A(fg, )y =1 — =22 (10)
1) In contrast with the classical ambiguity function of i T (60)-,

Woodward [13],4(6g, #) is not a symmetric function of B R

its arguments. The symmetry of the classical ambiguityhere I,;,(6y)-, is an upper bound of (¢, : 6)., [defined
is a consequence of the particular geometry of the mod®l (9)]
for which it was developed. Symmetry, however, is not = ~
a natural requirement fgr an a)r/nbiguitill function since in VOO 1(Bo:0) < Lw(fo)y, (11)

a binary test, the probability of error depends generalyomments similar to the ones following Definition 1 apply
on which hypothesis is true. here regarding the upper bound.

2) The definition depends, somewhat arbitrarily, on the When comparing the global performance of different models
upper bound/,;,(fp). This was introduced to enforceof the same physical problem, for instance, when studying
a positive normalized measure of ambiguity in betweehe effect of lack of knowledge about source parameters, it is
zero and one, which is a natural requirement. The bouadsirable thaf,;, be defined in a way that allows comparison
should be calculated as tight as possible so that thethe ambiguity values. Since
ambiguity values span the entire range from O to 1. If a

loose bound is used, this range is squeezed. (80 : 0)y, < I[p(rrlbo, 0) : p(rr|6; Y0)]
we use the upper bound for the case of knowas an upper
B. Ambiguity: Unwanted Parameters bound for_f(. : )y then
We consider here the practically interesting situation where, Ao, ), > Al(6o, 70), (8, 70)]
? Yo = ’ ’ )

besides the parametefsof interest, the data is dependent on

a distinct set of nuisance parametesswhich are unknown implying that ambiguity always increases when some param-
to the receiver. This occurs, for example, in passive locati@ters are not known precisely.

problems, whered describes the target location andthe Definition 2 is conditioned on the true parameter values:
source signal. both the wanted parametéy, and the nuisance parameter
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7. It would be desirable that a global measure of ambiguityata for the true value of the physical parametgrsand G}
depends only on the two valués andf. Mathematically, this the probabilistic model used at the receiver. Denote members
corresponds to applying an operatdr, to the conditioned of G} by pj, ¢ = 0, 1. Under the ideal sampling assumption
ambiguity defined by (10) (see D3 of the AppendixpgO is perfectly identified [see (39)],
and Fact 6 states that the generalized log-likelihood ratio for
Alfo, 0) = A, [A(6o, )] deciding between source locatiofis and é is

Obvious candidates for the operatdr[-] are the mean value, (a0 o1y 70 L1

the maximum, or the minimum takeryrE ]over all possible values Abo, 0) = L(pay < po,) = 1(po, : pi)-

of v. We will see, for a specific problem, the consequences ofThis expression is illustrative of the performance degrada-

using one of these alternative operators. We think, howevéian due to model mismatches. The first term is a constant

that it is preferable to keep the conditioned ambiguity given ifias accounting for the distance between the densities corre-

Definition 2. This definition gives insight into the geometry o§ponding to the true value in the correct and incorrect model. It

the location problem and clarifies the impact of both the souragay happen that the maximum of the likelihood ratio does not

signal and of the medium characteristics on the resolution @écur, even under ideal sampling, at the true source location,

the localization mechanism. indicating the presence of a nonzero estimation bias, since the
Our definition captures the impact of uncertainty on thkkelihood estimator searches for the val@ehat yields the

observability of the wanted parameter. This is the key difnaximum value off (p°(r7|6o) : p*(rr|6)).

ference between passive and active systems and one of thEhe definition of ambiguity is modified according to the

fundamental reasons why the same tools cannot be usedbwing.

to study both. A problem with a nice ambiguity structure Definition 3—Ambiguity: Model MismatchConsider  the

when eacl”gf’/ is considered individually can be unobservablparameter estimation problem described by the curved

(extreme case of ambiguity) when the complete manifald exponential familyGy using the probabilistic modei} at

is considered. It suffices that férs 6o, G5 (] G% # 0. Our  the receiver. We definambiguity in the estimation df, given

tool allows the study of all intermediate situations. that 8y is the true value of the parameteas
L - - a . 1wy, i pp)
C. Ambiguity: Modeling Inaccuracies Ao, 6) =1 — I—(e) (13)
ub\Y0

The ambiguity function defined previously can be extended
to handle the impact of wrong modeling assumptions. Wehere I,,,(6y) is an upper bound on the Kullback directed
continue the presentation in the framework of location systemfivergence betweep; and any member of;
assuming observations generally described by (1), and, for

simplicity, we consider that there are no unknown signal I(Pgo :p5) < Luy(6o), 6 € ©.

parametersy. We now make explicit the dependence of the

observation operator on both physical medium parameters IV. THE CLASSICAL AMBIGUITY
and on the source position vectér Rewrite the observation FUNCTION: GENERALIZATIONS

equation as

In this section, we recover the classical definition of ambi-

r(t) = He,e[f(O] +w(t), teT. (12) guity when Definition 2 is applied to the particular observation

model of Woodward. We show also that introduction of uncer-

The vector¢ denotes parameters related to the propagatigainty in this model leads to different measures of ambiguity.
channel that may include sound speed profile, water column

depth, or boundaries reflectivity. In practice, these paramet@{swoodward’s RADAR Ambiguity Function

are only approximately known. The uncertainty regarding the . . L
propagation channel characteristi€¢swill in general result Consider the problem of simultaneous estimation of delay

in a degradation of the system performance in the form gpd Doppler shift in a narrowband signal kafiowncomplex

nonnegligible biases. We address now the issue of how %%velope,transmitted through a Rayleigh channelfldsnote

ambiguity function we have introduced can be extended s szcrtosrhi?tf W?:tggmp?;imnegte;;(’)r:'e{ﬁéhgbggzsi?gn tgean
predict this form of performance degradation. PP e P . '
é\f-d|men3|onal complex Gaussian vector

Denote by¢, the true value of the propagation parameters.
At the receiver, a wrong valug # & is u_sed to mod_el the _ p(r|8) ~ N0, v£(0) F(0)T + 521 (14)
observed data. We are not concerned with the receiver using
inaccurate estimates §fbut with the receiver’'s willful use of where we assumed that the observation noise is white and the
wrong parameter values. Our goal is to study the impact pbwer parameters and o2 are known. TheN-dimensional
this mismatch on the ability of correctly predicting the sourceector f(8) is the complex envelope of the received waveform
location 4. known at the receiveY 6 € O.

We introduce additional notation. We consider only the This is the model underlying the classical definition of
simpler case of active location systems. The discussionambiguity. To completely fall under the framework of the
generalized with no great additional effort to passive systentsassical definition, we need to make an additional assumption,
Let G9 be the probabilistic manifold that describes the receivetmely, that the received signal energy does not depend on
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the particular value of the parameter being estimated, i.e.,
Vo e 0, |f(8))?*= K, whereK is a positive constant. Y
Woodward introduced his ambiguity function for the prob-
lem formulated above. Our proposed definition of ambiguity surface
is Definition 1.
The Kullback-directed divergence between twd/-
dimensional normal densities with zero mean and covariance
matricesRRy, and Ry is (see [7] or the Appendix) X source antenng

I(6o: 0) = L[tr[R; ' Re,] — N — In |R; 'R, |].  (15)

200 m
(x,y)

. . bottom
Using elementary facts from linear algebra

1
Rit = 25 |1= g 100"

Fig. 1. Acoustic source localization in a bounded channel.

f(6). In either case, associated with each valué,ofve now

|Rg| = 0—2N<1 + K—Z) =o2Y(14+ SNR) have a manifold of dimension greater than 0.
4 1) Unknown Received Signal Powe€onsider first thaty
SNR 2 Y FO)I1 _ ﬁ is not knownand that we drop the assumption of constant
o2 o2 power. This corresponds to unknown emitted signal power or

In these equationd, denotes the identity matrix of ordgy, t0 Propagation in multipath channels, where the power of the

and SNR is the received signal-to-noise ratio. Using (15) received signal depends on the specific source location that
SNR dictates the pattern of energy recombination of the individual
1

)= §m[1 - %|170(9)Hf(90)|2 . (16) Ppaths.

Denote the covariance matrix of the observed fielddys,.
Since the second term is always positive, we can compute tHe€ directed divergence betwegfr|6o, 7o) and any member

1(90:9

o
upper bound of G is
SNR 1[p(r160, ~0) : p(rl8, 7)] = 3[Ry~ Rog, ]
Iub:K272/20'2(0'2+K’y):7, 2 0,y "/_1
o1 + SNR] — N —In|R7" Ry - I
From this and (3), we get the following fact. (19)

Fact 1: Consider the problem of estimation éffrom ob-

. . . 77 Minimization over~ leads to
servations following model (14), whergand the application

£(6) are known. Then, Definition 1 coincides with the classical S —_— |£()" £(60)[?
ambiguity function " 1 £(O)I[*
1 and the divergence betweelyr|6o, andg? is
Ao, 6) = 251 £(6)" £(60) . a7 9 #v|bo, 70) and G
Equation (17), which we refer to as Woodward’s ambigu- 1 |F(O)H £(80)|2
ity function, is sometimes called the ambiguity surface, the (6o :6),, = 3 SNRy |1 - @I
ambiguity function being then reserved to the inner product 0
F(6)" f(6o). D (o2
If the set of signal envelope§f(6), # € ©} is designed 1+ SNR, [£(6)" f(bo)l
such that o OPIEE |
1+ SNR,
Y6030 : f(f0)Lf(6) (18)
then ambiguity is maximally stretched between 0 and 1. SNRJ_’Von(%)H2 (21)
Otherwise, its range is limited to a smaller interfal1], with N o2 '
e > 0. For each value ofyy, from Schwartz’s inequality, it follows
that the argument of the logarithm in the previous expression
B. Uncertainty in Signal Parameters is never larger than one. Thus
As stressed before, the model that leads to Woodward's clas- 1 |F(O)HE £(6o)

sical definition of ambiguity admits no uncertainty regarding 160 : 0)+, < 5 SNRo |1 — oz |-
: . - 1F @I/ (Bo)l

the signal parameters, namely, the Rayleigh coefficieand, . ] ] i
for eachd, the vector f(6). Using Schwartz's inequality, again

To see that even for this simple model, dropping any of f(90 L 0),, < %SNR) A fu .
these assumptions changes the ambiguity structure, we study 0
now the effects of i) the unknown received signal power and Using this bound and (20) in (10) of Definition 2, we obtain
i) the unknown shape of the signal correlation, i.e., unknowthe following fact.



300 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 2, FEBRUARY 1998

R
l""n"o"o'-':'..'

""M,‘u,'o",'.'s

X
&

' “' "H'ﬂ';’l"/o‘on'n'
s
Tl
s
e

0©.0
Vi

200y, P

(@)

Fig. 2. Ambiguity surface for (a) single direct ray and (b) direct and surface reflected rays.

Fact 2: Consider the problem of estimation &f from medium is homogeneous, with a constant sound speed velocity
observations following model (14), wher&#) is a known of 1500 m/s. The receiving array is vertical, with ten sensors,
application andy an unknown nonrandom parameter. Thenpcated at the center of the water column. The acoustic source
the ambiguity function conditioned on the true power leve$ located at an horizontal distance of 1600 m of the array,
Yo, Which is denoted byd(6, 6).,, is related to the ambiguity which is also equidistant from surface and bottom. The SNR

function for known~y, .A(fy, 6) in the following way. is 0 dB.
1 1+SNRy A(fo, 6) We consider two distinct reflection behaviors of the bound-
A(bo, 8)y, = A(bo, 8) — SNR, In 1+ SNR, : aries: i) when both boundaries are perfectly absorbing and

(22) only the direct path reaches the receiver and ii) when there is
a nonzero reflection at the surface, and thus, two distinct rays

The argument olu is smaller than 1; therefored(6y, #), IS rrive at each sensor. The 3-D plots, as well as the contour

alwa_ys larger than4(_90, 9).' shc_)wing that ?mbigu“y increasesplots (lines onX-Y plane) of the resulting ambiguity surfaces
relative to the classical situation of Section IV-A.

. . . . . are shown in Fig. 2(a) and (b), respectively.
SlpceA(eo, )+ is @ monotonic funct.|on OfA (6, ), |t.s Both figures clearly exhibit a threshold due to the low SNR,
maxima in the parameter spaé€e occur in the same points

as the maxima of the classical ambiguity function, which a%s przedlctedd b{) (24).;‘h§ sf:ap;gfsf of the_l_?]mb'gwt% st;Jrfa;:eﬁ n
dictated by the local maxima of the ang|¢(8) f(6o)|*. 9. 2(a) and (b) are distinctly different. The main lobe of the

However, the relative heights of the maxima are not the sanf&nPiguity in Fig. 2(b) is sharper than the shallower main lobe
as we can see from the previous equation. of Fig. 2(a). This is due to the focusing effect provided by the

While Woodward’s ambiguity is independent of the signaf€flected ray. Its presence leads to an ambiguity [see Fig. 2(b)]
to-noise ratio, this is no longer true in the present situation. Yth @ marked lobe structure with an almost periodic nature,
fact, although for very high signal-to-noise ratios the influend@sulting from the variation of the differential delay between
of the second term in (22) is negligible, so that (17) and (2#)e two paths. The absence of this ray leads to an almost
predict essentially the same behavior, in the low signal-tperfectly radial ambiguity structure; see Fig. 2(a).
noise ratio limit, the second term of (22) prevents ambiguity This example illustrates the role that the ambiguity function
from being zero, even wherf(6)Lf(f). We get a lower as introduced here plays as a diagnostic tool in analyzing the
bound on ambiguity. From (22) degree of global observability of the estimation problem.

1 2) Unknown Signal ShapeA more radical change is ob-

A(bo, 0)5, = Albo, 0) — SNR, In[1 + SNRo.A(6o, )] tained when, instead of a perfectly known applicatfon® —

1 C", as in the previous section, we know only tifé8) € My,
SNRo In(1 + SNR). (23) whereM, is a known propeP;-dimensional subspace 6f" .

This is the relevant model for location of multiple perfectly

correlated narrowband sources or, in a multipath channel,

A(bo, 0)-, > 1 In (1 + SNRy). (24) when only the spatial structure of the observations is modeled,
’ = SNRy i.e., only the intersensor delays, or directions of arrival, for the

We illustrate this discussion with an example where tHdlane wave approximation are taken into account, any temporal
classical ambiguity is not applicable, and we instead use diffucture being ignored.

definition. We study the localization of a narrowband GaussianAssume that the signal component of the observations is
acoustic source (100 Hz) in a shallow water channel of 26@own to belong taM, = Sp{a;(8)}1%,, i.e., to the linear

m depth. The boundaries are perfectly flat; see Fig. 1. Thpan of theP; vectorsa;(6), such that the covariance matrix

+

Using the inequality: > In (1 + z) in this equation yields
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of the observations can be written as

R(8, s) = oI + A(0)ss A(6)H (25)

where s € €' is an unknown vector, andi(6) is the
matrix that collects the basis vectous(#). Using, in (19),
the expression for the covariance matrix yields

B 1{1 o? + sHAH(6)A(0)s
2™ 02+ ST AH(60)A(60)s0

s AH(O)R(0o, 50) A(8)s

o%[o? + sHAH(0)A(6)s] } (26)

SéfAH(eo)A(eo)So
+ 2
g
The vectors that minimizes this expressioi{f),,, satisfies
A(6)3(0)p, = a1, [A(6o)s0]

1(90, S0 - 9, 8)

301

Fig. 3. Ambiguity surface for spatial model.

wherellq, denotes the orthogonal projection operator onto \y/hile in Section IV-B1 ¢ unknown) the location of the

M. Define

72 (60, 6) = |[TLas, [A(Bo)s0]1%-
Then, the minimum of (26) is

(27)

~ 1 02 +,7§ (9079)
I(60:0),, == |In — 2
Bo: 0 =51 T A @) 0
| A(Bo)sol|> 2 (6o,6)
+ 2 - 2 :
a a
Since0 < 2 (6g, 8) < [|A(6o)so]|?, we can set
1 ||A(6o)soll?
I = -0 000
ub(90)50 2 0_2

Analogous to the previous subsection, define the SNR as
ra Al

g
Then, the ambiguity function for the present scenario can
put into the form

SN

2
. Vso (9079) 1
Albo, 0)s, = lA(60)sol? ~ SNR
it SNRyZ, (6o, 6)/|| A(6o)s0|?
1+ SNR ’

d

50

Denote the first term in the previous expression4iyo, 6)
d A '7520 (9079)

* ||A(fo)soll*

We can now state the following fact.
Fact 3: Consider the problem of estimation &ffrom zero

mean Gaussian observations with covariance matrix given

(25), where A(6) is a known matrix, ands is an unknown

peaks of the ambiguity function was independent of the
unwanted parameter (see the discussion following Fact 2) now,
this is not so. Different directions of the complex vectgr
result in different shapes of the conditional ambiguity function.
Comparing with the expression obtained for unknowfsee
(22)], we see that uncertainty in the direction &) results

in an increased ambiguity. Even for large SNR'’s, when the
second term in (29) becomes negligible, the value of the
ambiguity is larger in the present framework since

‘s |2 A(6)H A(6)s0|”

* 7 [[A(Bo)soll?

Fig. 3 illustrates the ambiguity surface for the same acoustic
source localization problem, but when only a spatial model
is considered, i.e., when the differential delay between the
g'gect and the reflected rays is ignored. The ambiguity function
Is now flat around the source position (positioh= 1600,

y = 0). Comparing Fig. 3 with the ambiguity structure in
Fig. 2(b) of the complete model, we see that the deep valleys
in Fig. 2(b) are now absent, causing the widening of the lobe
structure. The ambiguity surface in Fig. 3 is much smoother,
with fewer secondary lobes. The sharper main lobe in Fig. 2(b)
leads to better local performance (marked peaks), as CRB
studies show [9], but may be prone to ambiguity problems as-
sociated with the presence of important secondary lobes of the
likelihood function. Another interesting comparison between
Figs. 2(b) and 3 is the improved range observability provided
by accounting in the model for multipath. This is illustrated by
e fact that beyond a certain value of the horizontal distance,
the surface in Fig. 3 exhibits a flat structure. This predicts

./4(90, 9)

vector. Then, the ambiguity function conditioned on the trugie well-known problems associated with range estimation of

value f(90) = A(90)80 is
d

50

L
SNR

1+ SNR A(6q, 6)
1+SNR

d

sa

A(bo, 8)s, = Albo, 0)

(29)
d

50

Comparing expressions (29) and (22), we conclude t

where A(6y, 6)¢ is defined in (28).

the role of the classical ambiguity function in (22) is hergé

played by.A(6y, 6)¢ , which is determined by the norm of the

projection of A(fy)so onto M.

distant sources. The detailed analysis of the shape of the two
surfaces is closely linked to the features of the underwater
acoustic channel and will be pursued elsewhere.

C. Upper and Lower Ambiguity Bounds

We consider now (28) as a function of the true source signal
rameter vectofy, and verify that in this case, we are able
o find upper and lower bounds to the surfad&,, ).,

A(bo, O)nin < A(bo, )+, < A(fo, O)max.
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Assume, for simplicity, thaR,, = ¢%I so that we are dealing on the Kullback directed divergence between two probability
with the usual Euclidean metric. The material presented belagnsities used to describe the observed data and follows
holds in the general case, with a convenient reinterpretationfadm a geometric interpretation of ML estimation. By using
the inner products. Sanov’s theorem and Stein’s lemma, [2], [3], [7], we relate

Let {Uf}f;el and {UfO}f:efi denote an orthonormal basis forour ambiguity function to the probability of certain types of
My and My, respectively, and define thE, x P, matrix error in decision problems.

Q% % of generic element We consider three definitions of ambiguity. The first def-
0.001 A, 6 inition is a direct generalization of the classical ambiguity

[Q 7 ]w = {vi, Yj )- function of Woodward. We make no specific assumptions
Let s(f, o) denote the vector of coordinates faf= A(6y)so regarding the structure of the observed data beyond com-
in the basis{v{"} plete knowledge of its statistical description. This definition
Po, shows that in a wider context, the angular interpretation

fo = A(6o)so = Zsi(907 ’Vo)vieo- of Wooo_IV\_/a_lrd’s amblgu_lty gen_erallzes to direct d|verg¢nc_e.

= Our definition reveals interesting features of the ambiguity

Then, an equivalent expression for the ambiguity is function, for example, in general, it is not symmetric and
00 9 depends on the noise characteristics, in particular, the signal-

A _[|Q%%s(80,70)]| e : e
(60, 0)~ = . to-noise ratio. The second definition allows for the presence
[[5(60,70)]12 of nuisance parameters like for example unknown power level

The function.A(6o, ), is a quadratic form in the Hermiteanor when the parameters of interest only restrict the signals
matrix (Q% %) Q%% As is well known, the largest andto a particular finite-dimensional linear space. In the latter
smallest eigenvalues determine upper and lower bounds &se, we show that the principal angles between subspaces
the value of a quadratic form. determine upper and lower bounds on the ambiguity function.

Let X be aP x P matrix, and denote by, (X) andAp(X) The third definition of ambiguity addresses the problems where
the largest and smallest eigenvaluesiafrespectively. Then, there are mismatches between the assumed model parameters

Ary, [(QF ) H Q0] < A(B, 6)-, < AL[(QF 0 QP00 anq t.he acFuaI vaIL_Jes these _param.eters taI§e in the real \_/vorld.

, . H ) This is particularly important in applications like matched field
Since the eigenvalues of *.X" are the squares of the singular, , -essing, where detailed physical models are coupled with
values of the matrixt” and recognizing the singular values oy,q gjgna| processing algorithms. Our definition provides a tool

6.6 . o _ _ g al _ _ _
the matrix” ™ as the cosines of the principal angles bet_we% identify systematic biases induced by the mismatches in the
the subspacedt, and My, [6], we can state the following estimation of the desired parameters.

fact.

L - The paper illustrates our definitions in the context of source
Fact 4. The ambiguity (28) verifies

localization in a multipath environment. We compare the

cos?(0min) < Ao, 0)~, < c05* (Oax) (30) ambiguity surfaces associated with distinct channel models:

where o, and ey are the largest and smallest principa?'”gka direct path, dlrgct and surface reflected path, an(_j an

angles between the subspaces betwéénand M, incomplete model that ignores the temporal structure provided
-

An alternative lower bound can be found, noting that by the incoming rays. This study shows that modeling the
9 temporal structure can be a determining factor to resolve
[t [A6o)s0] |

Albg, 0)s, =1 — > 1 — cos?(Pmux ambiguity in source localization.
( 0 ) 0 ||A(90)80||2 = (p )
wherep,,.x is the largest principal angle betwegi,)+ and APPENDIX
Mey,. We note thatin?(ppax) = 1 — cos?(pmax) iS the gap
metric between the two subspaces [5]. A. Geometric Interpretation of ML

If Mg and My, have an intersection of dimension greater
than or equal to 1, thermos? (0,.x) = 1. In this way, the
upper bound in (30) indicates the structural ambiguities of t
problem, i.e., that there may be pairsfof 6, for which there
are~, vo such thatp(7|97 ,7) = p(7)|907 70)

We recall in this Appendix concepts and results from infor-
ﬁ‘gation theory and ML estimation. We omit proofs referring
the reader to the relevant bibliography.

B. Kullback Directed Divergence

The Kullback directed divergence (KDD) [7] is a measure
V. CONCLUSIONS of similarity between probability densities and bears a funda-
We present a novel definition for the ambiguity functiofinental relationship to ML theory; see [1]. The KDD is defined
that generalizes the classical definition of ambiguity functiody
introduced by Woodward. Woodward’s definition considers
narrowband, completely known deterministic signals. Ours is Ip:q) = Ep{hl E} (31)
valid under much broader conditions that include wideband 1
signals, stochastic signals, signals with unknown (nuisanaehere E{-} is expectation with respect to the pgf The
parameters in their specification, or problems where the mod#@D does not satisfy all the properties of a distance. As seen
is incorrectly specified. Our definition of ambiguity is baseffom its definition (31), the KDD is not symmetric and does
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not satisfy the triangular inequality. However, it can be showhhe quantities defining the family are

that [7] )
a=p c(a) = Zp" R

2
N
birr) =R™! Z Tt
where the second equality holds except, possibly, on sets of i=1
measure zero. . N S N P
dirr) = — 5 ZTTR Tt In (27) — 5 In |R|.

=1

I(p:q)>20 and I(p:q)=0&p=q (32)

C. Kullback Directed Divergence of a pdf to a Submanifold
he inner product in the definition of the exponential distri-

ution is the usual, inner product.
If the mean is known and the covariangeunknown, the
N ) inverse R~! is the natural parameter of the familyz =
Ha:9)= ped Ha:p). (33) {p(rr|R):R € S}, whereS is the cone of symmetric positive
definite matrices. With the following identification§g is an
As an illustration, we consider the KDD between two mulexponential family.
tivariate Gauss pdf'e and ¢ parametrized by parameters

Let G be a submanifold of densities. We introduce the KD
of the pdf ¢ to the submanifold;

_ p-1 _1
anday. If the pdf's have the same covarianfeand different a=R , c(a) = 5 I [R]
meansy, and u,,, the KDD is given by the square of the 11 & T
Mahalanobis distance b(rr) = — 2N Z(M — w)(re, — )
i=1
N
I(p:q) = 5llia = paoll% d(ry) = —% In (27).
10 _ TR —
= 3(e = trag)” R (pta = ). (34) The inner product is defined in the cone of positive definite

matrices a4, B) = tr[AB].

1) Curved Exponential Familyln many applications, the
natural parametet of the exponential family is itself param-
etrized by a vector of parametefis In parameter estimation
problems, these may represent the unknown quantities in the

. . model. We indicate this dependence of the natural parameter
As a short-hand notation, when the pdf's are parametrized QY he vector of parameters by writing a(c)

a and ag as in (34) and (35), we will often writd(«, o)

If the multivariate Gauss pdf's and¢ have the same mean
and distinct covariance matricés, and R, the KDD is

I(p:q) = 5[r[R7" Ray] = N =In|RZ' Ry [l (39)

The subfamily of exponential pdf's that results by

for the KDD. parametrizing the natural parameterby « is called the
curved exponential familg,,. In other wordsg,, is a curved
D. Exponential Family exponential family if its members are written as
In many parameter estimation applications, the pdf's of Vac A: p(rela) =plro|a(a)]
interest are a subfamily of the family of exponential densities. = exp {{a(®), b(rr))
The family of exponential densitigsis well known to statisti- ’
cians. Exponential densities enjoy a number of properties that — da(@)] +d(rr)y  (37)

make them attractive when dealing with inference procedurgghere A is the space of the parameter We denote by
see [1]. The exponential family is a parametric family ofs, - A the image ofA under the mappingx — ala)
densities of the form and similarly for B, C B.
2) Exponential Data pdf(rr): In the geometric interpre-
p(rrla) = exp{{a, b(rr)) — c(a) +d(rr)} ~ (36) tation of parameter estimation and detection, we associate

with each observationr = 7. the exponential datapdf
where the parameter vectois called thenatural parameter of (7). We show how to construct this exponential density from
the family, b(-) andd(-) are known functionsexp [—c(a)] is 4. To compute the (unstructured) maximum-likelihood (ML)
the normalizing constant, and, -) is a suitably defined inner estimateq* of the natural parameter, evaluate the gradient
product. This family of densities includes several distributionsf the log of p(rr|a) with respect tas, i.e., the score function
such as the Gauss, gamma, binomial, Wishart, and Poissgi;) and equate to zero

However, from a practical viewpoint, of these distributions, dc(a)
the one with most practical significance as a noise model is b(ry) = 3 . (38)
the Gauss multivariate distribution so that when we refer to @ lar

the exponential family, we can in fact think of the Gauss pdf. The exponential datapdf p(rr) is now defined as the
We illustrate this definition for multivariate Gauss probabilpdf p(rr|a) corresponding toe*, i.e., p(rr) = p(rr|a®).

ity density functions (pdfp(rr) with meany and covariance With Gaussian densities, it is easy to show th@tr) is just

R. If the covariance is known, the mean is the natural the Gaussian density with mean and covariance equal to the

parameter of the exponential famiy, = {p(rr|n):x € RP}. sample mean and sample covariance matrix.
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3) Ideal Sampling AssumptiorOur definition of ambiguity
in Section IV makes the following assumption. We work with
the curved exponential familg, of pdf's parametrized by
«. Let the observation be7. With these observations, we
associate two pdf's. The first is the exponential datagief-)
determined from the observed dati, as indicated above.
The second is the true pgbh = p(rr|ao), whereay is the
true value of the parameter that gives rise to the observation
r%.. The ideal sampling assumptiostates that}. perfectly

determines the true pgf(rr|ao), i.e., that
p(rr) = p(rrleo). (39)

This is an asymptotic type assumption since, as it is well
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Natural
Parameter

Probabilistic
Model

p(rla(a))

Fig. 4. ML estimation.

known, the ML estimate is consistent, i.e., it converges in

the large sample size limit with probability one to the tru¢hese parameters, which are called nuisance parameters. For

value of the estimate. simplicity, consider the binary composite hypotheses problem.
Denote the two hypotheses I, and H, and letG, andG;

E. Geometric Interpretation of ML Estimation and Detectionbe the families of densities corresponding to each hypothesis.

of he test decides which of the hypothesék, (or H,) is true

in the absence of knowledge of what values the unwanted,

4inknown parameters take.

Fact 6 [7]: The generalized log-likelihood ratio for decid-

(Go) and Hy (G1) is

In HeXpicd pi(rr)
maxp, cg, Po(rr)
min I[p(rr) : po] — min I[p(rr) : p1])
PLEGL

In parameter estimation problems, the family of pdf's
interest is the curved exponential famify,; see Fig. 4. Let
the observed data be;. It determines the exponential dat
pdf p(rr) as given above. This pdf is a point in the larger
set of exponential family of pdf'§; of which G,, is a subset. "9 Petweeniy
The following fact establishes the role played by the Kullback
directed divergence in ML estimation. Optimal ML estimators A
& are obtained by finding the elemeptry|&) € G, that is
closer top in the sense of a conveniently defined distance. Po€Yo

Fact 5 [4]: Let G be an exponential family of probability =I[p(rr) : Go| = I[p(rr) : G1] (40)
density functions and a vector of parameters. Lét,, which
is the probabilistic model that describes the observed data,Weere p(rr) is the exponential density determined from the

a curved exponential family i¢. Then, the ML estimate of data (see D2 in this Appendix).
« is the pointé such that This fact asserts that the generalized likelihood ratio be-

tween two alternative hypotheses corresponds to comparing
(in the sense of the Kullback directed divergence) the densities
] ) ) that under each hypothesis best explain the observed data.
where I(p : g) is the Kullback-directed divergence between rqr simple decision binary test& and G, are singletons

densitiesp and q. Further, the pdfi(r) is a member of the yith pdfs p, and p;, respectively. In this case, the log-
exponential familyG of which G,, is a subset and is uniquely ikelihood ratio is simply

H07 Hl)

& = arg (Ilrélﬂ Hp(re) : plrela(e)]}

determined from the datay. It follows from this fact that the
geometry ofG,, as a subset of; is the factor that determines
the global performance of the estimation process. Two distinct
values of« are ambiguous, or easily mistaken one with the
other, if the distance between them is small. This is the ke}/l]
idea underlying our definition of ambiguity.

Fig. 4 illustrates the relationships between i) the unstruc-
tured ML-estimatez* in the natural parameter spaee and
the exponential data pdi(r7) in the probabilistic modelf  [3]
and between ii) the structured ML estimate of the natura

. S . [4]
parametera(&) € A, and the minimizing density for Fact
5 plrrla(a)] € Ga. 5]

Fact 5 provides us with a simple geometric picture of[6]
ML on which we will base our definition of ambiguity
function. We quote a second important fact that establishes tté
relationship between binary decision and Kullback divergencqg]
We considercompositedecision problems, where to each
hypothesis corresponds a set of possible density functior(lf9
The simpler case is when we have a parametric descripti n]
of each of these sets, but we do not know the values of

A(Ho, H1) = I[p(rr) s pol = I[p(rr) : p1].  (41)
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