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Abstract— Recent polarimetric SAR (POL-SAR)
platforms have indicated the promise of producing im-
agery of a scene acquired at several frequencies, inci-
dence angles, polarizations, and at multiple time inter-
vals. Such large amounts of data necessitate the con-
struction of robust algorithms that can process a wide
range of data with minimal retraining and supervision
while minimizing the complexity of the algorithm. For
statistical target detection and classification, the chal-
lenge is to build a robust classifler that operates satis-
factorily even when the statistics of the desired targets
migrate from a single prescribed model. In this pa-
per, we present a technique for performing robust tar-
get classification when the targets are different terrain
types. The algorithm accounts for variability in ter-
rain signatures by deriving a single representative pro-
cess for each terrain from a family of stochastic scat-
tering models. A best-basis search through a wavelet
packet tree, using the Bhattacharyya coefficient as a
cost measure, determines the optimal unitary basis of
eigenvectors for the representative process and offers
a scale-based interpretation of the scattering phenom-
ena. The associated eigenvalues and means are deter-
mined through iterative algorithms. The technique is
tested using images acquired from the BOREAS field
campaigns in Canada.

I. INTRODUCTION

The use of polarimetric synthetic aperture radar (POL-
SAR) imagery for detecting and classifying targets has
led to a substantial number of applications beyond the
realm of military surveillance and reconnaissance. The
ability of POL-SAR to capture the salient features of the
Earth’s surface through the polarization and amplitude
of electromagnetic backscatter has made it a leading tool
in the effort to monitor environmental processes such as
deforestation and erosion on a global scale.

Accompanying the rapidly increasing amount of POL-
SAR data is the need to efficiently process measurements
at or beyond an acceptable standard of performance while
minimizing the necessity for human supervision and sys-
tem retraining. Future POL-SAR platforms will undoubt-
edly deliver data at numerous frequencies with increasing
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spatial resolution. Combined with the desire to capture
temporal changes of a region by analyzinging images col-
lected at several time intervals, it becomes easy to com-
prehend the necessity for efficient and autonomous signal
processing algorithms.

In this paper, we introduce an algorithm that processes
POL-SAR data in order to detect and classify land cover
on the surface of the Earth. Recent efforts in this area
have made significant progress using data from current
platforms [1],[2],[3]. The emphasis on vegetated terrain
as “targets” does not preclude the applicability of our
work to targets of other varieties, military or otherwise.
The models used to develop the algorithm only employ
statistics describing the phenomenology that occurs be-
tween the incident radar and the reflecting medium and
do not incorporate specific material properties of the tar-
gets. Consequently, the generality of the algorithm is re-
tained, and the technique may be adapted for alternative
applications by incorporating the statistical backscatter-
ing models for the desired targets.

The model derived for a single terrain is dependent on
how the terrain is imaged. Temporal, spectral, and an-
gular variations induce changes in the radar-target phe-
nomenology and yield statistics for the backscatter that
are subject to variation. Because the signature for each
terrain is susceptible to variation, designing a single clas-
sifier to operate successfully on a wide spectrum of input
data is highly problematic. Only recently have efforts in
land cover classification begun to tackle this problem [4].

To address this weakness, we develop a framework for
robust terrain classification that creates a single represen-
tative statistical description of a terrain from a family of
empirically-derived statistics. Wavelet packet bases serve
as building blocks for the representative description. The
advantage of such a classifier is the ability to correctly
categorize terrain even when its scattering statistics have
migrated from the original signature, while at the same
time minimizing the dimensionality of the algorithm. This
flexibility permits the algorithm to operate on a broader
spectrum of input data than less robust algorithms that
require greater and more frequent supervision.

To test the performance of the algorithm, images from
the BOREAS (BOReal Ecosystem Atmospheric Study)
are used. Fully polarimetric data (HH, HV, VV) was col-
lected at three frequencies (P-band, 441 MHz; L-band,
1.25 GHz; C-band, 5.36 GHz) on July 21, 1994. The
images were all calibrated and radiometrically corrected
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before processing was applied.

II. PROBLEM FORMULATION

The scattering statistics of a terrain are frequently or-
ganized in a polarization covariance matrix (PCM), which
relates the four channels of co-polar and cross-polar radar
returns, X = [zgg THv Tve Tyy], recorded in each
resolution cell. A terrain covariance matrix (TCM) is a
spatial extension of a PCM that relates four-channel data
from one or more resolution cells. For example, a TCM,
K, for four channels of POL-SAR data obtained from two
adjacent cells is defined as:

K = E{(X - px)(X —pux)"} 0]
with u x being the mean vector for X, which is
x = [x@w) x@17 )

where
X(1) = [zgr(l) zav(@) zva(l) zvv(l) ](3)
X@2) = [z zav(2) zve(?2) zvv(2) |@4)

We construct a representative process from a family
of processes by mazimizing a scalar measure of similar-
ity, the Bhattacharyya coeflicient, between the represen-
tative process and each mean vector and covariance ma-
trix in the family of terrain descriptions. The result is
a wavelet-based process which maximizes an aggregate
measure of stochastic distance. The wavelet-based TCM
is constructed by inserting the eigendecomposition of its
covariance matrix, as well as that of the original processes,
into the analytic expression for the sum of the individual
Bhattacharyya coefficients.

Consequently, the maximization reduces to the opti-
mization of the two defining quantities of the wavelet-
based TCM: its unitary matrix of eigenvectors and the
associated eigenvalues. The unitary matrix containing
the eigenvectors is one of any orthonormal wavelet packet
bases derived from a tree spawned by a single mother
wavelet, and the eigenvalues are any set of acceptable val-
ues satisfying an overall power constraint. Finally, the
representative mean vector is derived in a subsequent op-
timization utilizing the representative TCM.

Once representative processes are constructed for each
target terrain, they are inserted into an M-ary likelihood
ratio test that classifies radar data on a pixel-by-pixel ba-
sis.

I1I. MATHEMATICAL FOUNDATIONS

For two equally probable, real-valued, N-dimensional,
Gaussian processes, N(m,X;) and N(mg, Is), the Bhat-
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tacharyya coefficient, p, is given by [5]:
(8)

p(ml, 211""2, 22) =e ¥,

Letting Am = m; — mg, p is defined by:

1 142, 1 IM|
= (Am)I[Z——=21"Y(Am) 4= In ——2——. (6)
w= g @m B A

p must necessarily be between 0 and 1, and a higher value
of p indicates increasing similarity between the two pro-
cesses.

Consider a set, (m,X), of Q equally probable, real-
valued, N-dimensional, Gaussian, stochastic processes:

(m: 2) = {(mlazl))(m% 22),---’(mQ)ZQ)}° (7)

Let (1,3) be the wavelet-based process that represents
the means and TCMs in (m, ). The members of (m, X)
can be thought to represent the multiple descriptions of
the same terrain whose statistics have been perceived dif-
ferently due to a change in observation or a change in the
underlying behavior of the original process.

If the pairwise Bhattacharyya coef-
ficient, p(m;, i, 7, 3), indicates the similarity between
(ms, ;) and (1, £), then

Q
a1 .
p(m,z, m, 2) = 6 zp(mia X;,m, 2) (8)
i=1

represents the overall measure of similarity to be maxi-
mized.
¥ can be expanded into an eigendecomposition:

£=0-§.0% 9
and, for 1 <17 < Q, similarly for &;:
%i=Ui-S;-Uf (10)

where § and S; are diagonal matrices and U and U; are
unitary matrices.

Substituting the eigendecompositions from (9) and (10)
into (8) yields:

Q
p(Z,8)=27%3" |81}

i=1

S 8+08s0 7Y, (1)

Letting (L, %) = (Rzl_)ﬁ_))z and retaining only relevant
terms, ’

1
(L1 18: 131 8+ UHS0 |32
i (12)
The expression for (X, %) in (12) is the expression to
minimize with respect to U and S that will result in max-
imizing p(Z, £).

Qz,8) = 5|4



IV. THE MATCHING ALGORITHM

In [6], an algorithm is presented for optimally match-
ing a Gaussian, wavelet-based process to one arbitrary
process when the means of both processes are equal. The
algorithm was extended in [7] to match a wavelet-based
process to a family of Q processes when the means are un-
equal. The detailed procedure discussed in [6],[7] is sum-
marized here. The task is addressed by first assuming the
means are all equal in order to find a wavelet-based £
to match X,,...,Xq. Based on this intermediate result,
an optimal 1 is derived. The minimization of Q(Z, )
with respect to U/ and $ can be viewed as the combina-
tion of two independent algorithms: 1) the minimization
of Q(L, L) with respect to S when U is fixed, and 2) the
minimization of (X, £) with respect to U when S is fixed.

A. Optimal Eigenvalues: Fized-Point Algorithm

Consider the constrained problem of minimizing
(%, %) when a unitary basis matrix, U, has been fixed.
What remains is to find the matrix, § that contains
the eigenvalues, g1,...,gn, for the wavelet-based pro-
cess, £, that maximize Q(E $), subject to the constraint
g1 +g2+...+gn = P, where P is the average trace of
the matrices, ..., 2.

In (12), let G =| §|~%, and allow V to be:

1

TS Vi (13)

where L )
Vi=8+U¥%;0. (14)

Then, partial derivatives of Q(Z, ﬁ) may be taken with
respect to g; and set equal to zero:

onN oG ov

— = =Zv+G= 15
0gi 0g; 0g; (15)
Q18 |3V || VI
=_1_1_G‘,+GZ | S; 1} II%I,,)
249i (o | Se 12| v |-3)3

= 0, )

where | V7 |;; represents the i-th principal minor of | V7 |.
Rearranging (15)-(17) yields:

z
R 1
%= (18)
where
Q 1 : 1
z = Y |83 VIS (19)
j:l
Q
_ L 'V Iu
5 = 2Z|Sk| Ve (20)
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Fig. 1. The wavelet packet tree

Both z and z;, ¢ = 1,..., N, are functions of g;,...,gn.
The expression in (18) is a fixed-point algorithm for g;,
i=1,...,N. Let (-)" denote the n-th iteration value and
insert, R"~!, a normalizing constant. R"~! assures that
the total power in the eigenvalues, g1,...,gn, upholds the
power constraint, g1 + g2 +...+ gnv = P. The expression
in (18) can be rewritten in vector form as:

gr a7
P o= RV (21)
9% P

The matrix expression in (21) may be iterated to yield
values for g;, i = 1,..., N, and hence, §, that minimize
Q(Z,3) when U is fixed

B. Optimal Eigenvectors: Basis Migration Algorithm

Alternately, minimizing Q(Z,%) when § is fixed re-
quires a technique to find the unitary matrix, U from
a wavelet packet tree, such as the one in Figure 1. The
Bhattacharyya coefficient, unfortunately, is not an addi-
tive cost function (8], i.e., the branches of the wavelet
packet tree cannot be pruned independently and still lead
to an optimum solution. An alternative is to pick an ini-
tial basis and allow its vectors to “migrate” up and down
the branches of the tree until it arrives at a new basis
which minimizes Q(Z, ). Without sacrificing generality,
assume U9, the initial choice for the unitary basis, is pop-
ulated by the vectors at the bottom scale of the wavelet
packet tree in Figure 1.

=[¥ v3| ¥§ ¢3] 1931 ¥% ] (22)
Fori=1,...,N, let
X =UHO°S0 U, + 8. (23)

The equation for (X, ) in (12) can be rewritten as:

(24)

” N 1
902,2=S_
R =S S s mx Ty
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Consider the migration of U° to U? as pictured in Fig-
ure 1 so that U? is defined as:
1982 9% |-

0'=[%° %1 ¥ ¥l
(25)

The change in Q°(X, £), AQ%(E, £), can be shown to be
approximately:

N

O S o N0 (z, %)
AQ°(Z,E) = 2_; P (26)
where
N
& = 3 &(kDVik1) 27
k=1
=2
& = VR ai@idi - 92uP)U; (28)
=1
Vi = Adi(UFU°SUCHU; + ;) (29)
00°(%, £) ISI‘% (S 131X | +e)-E

= 0
b 008 1} 0 X7 1+ oY

If AQO(T, $£) > 0, then the migration increases
Q°(%, £) and necessarily decreases the similarity between
the processes. If AQ%(X, %) < 0 then the new basis will
result in a wavelet-based process that is closer to the fam-
ily of processes in X, and the migration is justified. This
procedure is repeated for each group of vectors in the ba-
sis. Migration of vectors to another scale only occurs if
its impact is to decrease °(%, &).

C. Optimal Mean Vector

Having determined ¥, 72 can be found to maximize (8).
It can be shown that s may be determined from a fixed-
point algorithm having the form of:

2+53

= [Zp(m., i, E) (= =)

i=1

[Z p(my, Xi, 1

It has been found that a good starting point for 7 is the
average value of my,...,mq.

)3+E

; )( )—lm'] (31)

D. The Complete Algorithm

The integration of the algorithms presented in Section
A. and B. is discussed in [6]. The algorithm presented in
Section C. permits processes with unequal means to be
matched. Together, the complete algorithm constructs
a wavelet-based process that is matched in the Bhat-
tacharyya sense to a family of Q means and covariances.
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V. APPLICATIONS TO AIRSAR DaTA

To test the ability of the algorithm to robustly classify
terrain across images, two sets of images were analyzed
with the objective of designing a single classifier that sat-
isfactorily categorizes terrains in both sets. The images
were collected from the Canadian boreal forests at L-band
and P-band during the AIRSAR missions and have 1024
rows and 1279 columns. Each of the two sets consist of
HH, HV, and VV images. All images were co-registered
and calibrated, and one pixel corresponds to a 6 m x 12
m rectangle.

Five terrains were identified in the images as having
disparate characteristics. Figure 2 identifies these areas.
For both frequencies, an 8 x 1 data vector, r(z,y), was
defined for the (z,y)-th pixel point that included data
from two polarizations at the specified pixel location as
well as from pixels in the surrounding neighborhood. For
example, using the images corresponding to L-band, this
experiment defined r(z,y) as:

LHH<$:y)

LHV(ma y)
LHH(a:,y - 1)
Lpy(z,y - 1)
LHH(xay + 1)
LHV(m7y + 1)
LVV(‘T - lvy)
LVV(z + l,y) J

For each of the five terrains identified in Figure 2, mean
and covariance information was collected from 1800 pixels
to provide a statistical signature for that terrain type.

(33)
(34)

r(z,y) = (32)

b

(Len,Luv,Lyy) = (mL1,,5L,1))
(PHH) PHV) PVV) - (mP,T.', 2P,T.’)

To generate a representative description for each of the
five terrain types, the two mean vectors and covariance
matrices describing the same terrain at different frequen-
cies are used to create a representative mean vector and
covariance matrix using the algorithm described in Sec-
tion IV.

(myz, EL1,mp, SpT) - (hr,En) (35)

The Daubechies-8 wavelet was used to spawn a full, or-
thonormal, dyadic wavelet packet tree. Table I summa-
rizes the values of the Bhattacharyya coefficient when
comparing the resulting representative descriptions for all
five terrains. The diagonal values of Table I, which is
symmetric, are equal to one since the Bhattacharyya co-
efficient of two identical processes must necessarily be one.
By inspecting the values in the first row, 7 has virtually
no similarity to 73,73, and T4, and only marginal simi-
larity to Ts. Conversely, the high entries in the second,



Fig. 2. P-band HH image with T1,T3,T3, Ty, and Ts

| T T, T3 Ty T3
T 1.0000 | 0.0319 | 0.0366 { 0.0029 | 0.1528
T3 0.0319 | 1.0000 | 0.8410 | 0.4576 } 0.0000
T3 0.0366 | 0.8410 | 1.0000 | 0.4459 | 0.0000
Ty 0.0029 | 0.4576 | 0.4459 | 1.0000 { 0.0000
Ts 0.1528 | 0.0000 | 0.0000 } 0.0000 | 1.0000
TABLE 1

Bhattacharyya Coefficient Values for Repr tative Pr of Terrains
third, and fourth rows indicate that T3, T3, and Ty possess
considerable pairwise similarity.

The quantities described in (35) are used to design an
optimal M-ary Bayes classifier. The classifier relies on the
result of M — 1 likelihood ratio tests, which for two N-
dimensional, Gaussian processes, (m,, X,), (s, Zs), hav-
ing prior probabilities, P, and P,, is defined by [9]:

(. —m)TE7(z — my) — (& — mp) T, (z — my)
H, P,
< 2log() +1log(| T |) ~ log(] Ta - (36)

a

To provide a benchmark of performance, two additional
classifiers were applied to each set of images. The first is
the optimal P-band Bayes classifier which relies on the
terrain statistics obtained from the P-band images; its
performance on the P-band images will be considered the
paradigm in comparison to other classifiers. The optimal
L-band Bayes classifier is constructed similarly and is a
paradigm for all other classifiers operating on the L-band
images.

Tables II-V are confusion matrices illustrating the per-
formance of the three classifiers on the L-band and P-band
images. Diagonal entries represent the proportion of pix-
els classified correctly, and off-diagonal entries represent

Pixel Classifier assignment

Class 5 ) T3 Ty T5
T 0.5820 | 0.1667 { 0.2463 | 0.0038 | 0.0012
T 0 0.1935 | 0.3509 | 0.4556 0
T3 0.0003 | 0.5168 | 0.3779 | 0.1050 0
T, 0 0 0.2285 | 0.7715 0
Ts 0.4406 0 0 0 0.5694

TABLE II

Confusion matrix for wavelet classifier on L-band images

Pixel Classifier assignment

Class Ty Ty T3 Ty Ty
Ty ]| 0.2528 | 0.5223 [ 0.0852 | 0.0054 | 0.1342
T [ o 0.0192 | 0.3464 | 0.6343 0
Ts || 0 0.3971 | 0.4299 ] 0.1730 0
s || o0 0 0.1995 | 0.3005 0
Ty || 0.1952 0 0 0 0.8043

TABLE M1

Confusion matrix for P-band classifier on L-band images

the proportion of pixels in a terrain class that were mis-
classified. For example, in Table II, the entry in the first
row and second column, 0.1667, indicates that 16.67%
of all pixels classified as belonging to 71 by the optimal
L-band Bayes classifier were classified by the wavelet clas-
sifier as belonging to T5.

VI. DiscussioN AND FUTURE WORK

The results documented in Section V. suggest that clas-
sification using the wavelet-based representative processes
exceeds the performance when the data and classifier are
mismatched. As expected, the performance falls below
that of the paradigm, i.e., when the image and the classi-
fier are perfectly matched.

In Tables II and III, a comparison of the diagonal val-
ues shows that the wavelet-based classifier outperforms
the P-band classifier on the L-band images for 77 and
T, provides comparable performance for T3 and Ty, but
falls short for 75. Tables IV and V demonstrate signif-
icantly better overall performance by the wavelet-based
classifier. It is worth noting that for T3, the (2,2) entries

Pixel Classifier assignment

Class Ty T, T3 Ty T
T 0.8104 0 0 0 0.1896
T, 0.2144 | 0.4082 | 0.3604 { 0.0170 0
T3 0.0104 | 0.0827 | 0.8666 | 0.0403 0
T4 0 0.0560 | 0.0376 | 0.9064 0
Ts 0.1913 | 0.0005 | 0.0005 { 0.0001 | 0.8076

TABLE IV

Confusion matrix for wavelet clasgifier on P-band images
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Pixel Classifier assignment

Class T, T2 T Ty Ts
T 0.6374 0 0 0 0.3626
T 0.4309 | 0.0016 | 0.5675 0 0
Ts 0.0277 | 0.0571 | 0.7221 | 0.1932 0
T4 0.0010 | 0.0605 | 0.2180 { 0.7205 0
Ts 0.1371 0 0 [ 0.8629

TABLE V

Confusion matrix for L-band classifier on P-band images

for Tables II and III demonstrate that the wavelet-based
classifier delivered performance one order of magnitude
better than the P-band classifier for L-band data; simi-
larly, the (2,2) entries of Tables IV and V show that the
wavelet-based classifier outperformed the L-band classi-
fier by over two orders of magnitude. In all four tables,
the significant amount of confusion between T3,T3, and
T4 can be attributed to the corresponding high values in
Table I; the similarity of the processes increases the like-
lihood of misclassification.

Several factors may be weighed to improve classifica-
tion. The Daubechies-8 wavelet was used for this experi-
ment, but other wavelets will yield different performance.
Selecting an alternative form of classifier corroboration
such as using actual ground truth to verify accuracy can
boost the results of the wavelet-based classifier. The re-
gion pictured in Figure 2 is a portion of a larger region
that has been classified with a high degree of accuracy us-
ing ground studies and infrared measurements. Utilizing
these results will allow the wavelet-based classifier to be
compared on equal footing with the optimal P-band and
L-band classifiers.

Because the total number of pixels in the test image
are not equally distributed among all five classes, there
is good reason to believe that the assumption that each
terrain type is equally likely can be improved upon to
more accurately reflect the real probabilities of each ter-
rain. One alternative to equal priors is to develop a prior
model for each pixel based on the classification values in
the surrounding neighborhood. Reclassification of the im-
ages using priors derived from the first iteration has led to
some improvement in performance, at a cost of doubling
the processing time. Prior knowledge might also be in-
corporated into the design of the representative processes
by weighting the individual pairwise Bhattacharyya coef-
ficients appropriately.

Finally, the use of wavelet packet bases introduces flex-
ibility into the traditional likelihood ratio test defined in
(36) that may lead to significant improvement by exploit-
ing the ability of wavelet packet bases to systematically
expose time- or frequency-specific features of an input vec-
tor. More rigorous classification can be achieved by de-
termining how specific components of a signal may con-

tribute to classification in a binary hypothesis test. This
capability will certainly be an important consideration for
future research.
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