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Three-Dimensional Entities
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Abstract—Very low bit-rate coding requires new paradigms
that go well beyond pixel- and frame-based video representa-
tions. We introduce a novel content-based video representation
using tridimensional entities: textured object models and pose
estimates. The multiproperty object models carry stochastic in-
formation about the shape and texture of each object present in
the scene. The pose estimates define the position and orientation
of the objects for each frame. This representation is compact. It
provides alternative means for handling video by manipulating
and compositing three-dimensional (3-D) entities. We call this
representation tridimensional video compositing, or 3DVC for
short. In this paper, we present the 3DVC framework and
describe the methods used to construct incrementally the object
models and the pose estimates from unregistered noisy depth
and texture measurements. We also describe a method for video
frame reconstruction based on 3-D scene assembly, and discuss
potential applications of 3DVC to video coding and content-based
handling. 3DVC assumes that the objects in the scene are rigid
and segmented. By assuming segmentation, we do not address the
difficult questions of nonrigid segmentation and multiple object
segmentation. In our experiments, segmentation is obtained via
depth thresholding. It is important to notice that 3DVC is in-
dependent of the segmentation technique adopted. Experimental
results with synthetic and real video sequences where compression
ratios in the range of 1:150–1:2700 are achieved demonstrate the
applicability of the proposed representation to very low bit-rate
coding.

Index Terms—Content-based video handling, model-based video
coding, range and image sequence processing, 3-D object model-
ing, video sequence representation.

I. INTRODUCTION

A video representation is the intermediate form into which
a coding system transforms video. The representation

defines the internal structure of the codec, and determines
the limitations and capabilities of video handling and content
access methods.

Waveform-based representations describe video as a se-
quence of two-dimensional (2-D) signals in time. They lead
to concepts like transform coding (DCT) and quantization.
Temporal redundancy is reduced via differential pulse code
modulation (DPCM) and block motion compensation. This
representation is successfully incorporated in several standard
video codec’s such as the H.26x series, MPEG-1, and MPEG-
2. Waveform-based representations have proven very useful,
but have practically reached their limit in terms of coding
efficiency. More importantly, being waveform-based, these
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representations are not tailored for content-based access to
video.

Model-based representations consider video as a sequence
of 2-D projections of a three-dimensional (3-D) scene. A set of
models and parameters is extracted from the video sequence,
such that the original video sequence is reconstructed using
only this given set of constructs. Semantic coding [1], [2],
object-oriented coding [3], [4], and layered representations
[5]–[7] are examples of model-based representations.

Semantic coding assumes that detailed explicit parameter-
ized 3-D object models are available. Typical examples are
head and shouldersparametric models [8]. Analysis of the
video sequence leads to adjustments to shape that are para-
metrically encoded. This technique provides high compression,
but does not support free-formed objects.

Object-oriented coding constructs models from observa-
tions. These models can be 2-D or 3-D. Musmannet al. [3]
propose object-oriented analysis–synthesis coding (OBASC),
a generic model-based representation where objects in the
scene are described by three parameter sets defining object
motion, color, and shape. They construct 2-D models assuming
that the scene is composed of planar rigid objects moving
in 3-D. Shape is not explicitly extracted, and the motion
between frames is encoded as a set of affine mappings, one
for each planar patch detected in the scene. An extension
using 3-D models is implemented by Ostermann [4] to encode
typical head and shouldersvideoconferencing sequences. His
technique assumes the cross section of the subject to be
elliptical in order to construct 3-D surface models from 2-D
silhouettes.

In a visionary position paper, Bove [9] presents the general
idea of object-oriented television—“a computational frame-
work for a television receiver that can handle digital video
in [several] forms from traditional motion-compensated trans-
form coders to sets of three-dimensional objects.”

The 3-D structure of objects is recovered for the purpose
of data compression by [10] and [11]. Stereo pairs are used
to construct triangular mesh descriptions of object shape.
The proposed methods do not deal with uncertainties in the
sensorial process. Our approach handles these uncertainties
through the use of volumetric models that convey shape and
texture, as explained in Section II.

Surveys about prior work in model-based representations
for very low bit-rate (VLBR) coding and videotelephony
applications are found in [12] and [13].

A current trend in model-based representations uses lay-
ered 2-D models. In layered models, each video frame is a
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superposition of a set of 2-D mosaic models constructed by
cut-and-paste operations [5]–[7], [14]. Layered representations
generate highly constrained 2-D models that mix motion and
structure information. An object performing a simple rotation
around an axis not parallel to the camera principal axis is not
consistently represented by a layered 2-D model without major
model updates from frame to frame.

Several researchers address the issues of object modeling
from observations outside the specific realm of video represen-
tation. These techniques usually fail to attend the demanding
requirements of video processing as incremental modeling,
automatic integration without user interaction, and robustness.

Early work in object modeling from a sequence of range
images assumes measurement registration, i.e., that the relative
position and orientation of the object are known for all frames
[15]–[18].

The factorization method of Tomasi and Kanade [19] com-
putes shape and motion from a sequence of intensity images.
The geometric object model obtained is a sparse set of
unorganized points in space. Measurements are taken under
orthography, features are extracted, tracked over time, and
organized in a measurement matrix. The singular value decom-
position (SVD) of the measurement matrix provides motion
and shape factorization. For video processing, the number of
observed views can be as large as the number of video frames.
Complex objects may also require a large number of features
to be tracked for a proper shape description. Under these
circumstances, the computation of principal components from
the measurement matrix via SVD becomes a computationally
hard problem. This technique provides no support for incre-
mental model construction, i.e., the computation of principal
components must be performed whenever a new measurement
is to be incorporated.

Azarbayejani [20] constructs polygonal surface models of
outdoor sequences of buildings from intensity images without
prior assumptions about shape or pose. Feature extraction
and correspondence must be performed by hand, requiring a
considerable amount of user interaction. Becker and Bove [21]
propose a technique to extract polygonal models of scenes
containing orthogonal planes and parallel lines, which are
typical to man-made environments. Camera calibration is not
assumed, but a great deal of human interaction is required to
cluster features and establish cluster correspondences between
frames.

Koch [22], [23] presents a system to build 3-D parametric
surface models without user interface from a sequence of
stereo images. The sequences depict buildings and other man-
made objects. Surface model construction requires merging
sequences of incomplete parametric models, a task that usually
generates shape artifacts. Merging surfaces is a computation-
ally hard problem, as discussed by Turk and Levoy [24].

Curless and Levoy [25] recently showed that surface merg-
ing techniques may fail if the object has high curvature or
sharp edges and presented an alternative integration algorithm
based on volumetric models and implicit functions. Their
algorithm assumes accurate alignment of the data sets, does
not handle surface texture, and does not provide support for
handling sensor uncertainty.

To enable tridimensional handling and access to video
content, and to also yield compact storage, we propose a novel
system to represent video based on 3-D entities: textured object
models and pose estimates.

To explain our approach, we start by considering the dual
problem of generation of realistic synthetic images. First, 3-D
geometric models with defined surface properties are created
for each of the objects to appear in the scene. Then we
assemble a scene by placing object models and light sources
in space according to animation motion scripts. Finally, we
position a virtual camera in the synthetic scene, and render
an image by computing the light captured by each of the
camera sensors after reflecting on the scene components. The
fundamental entities for the representation of a synthetic video
sequence are then the set of 3-D object models and respective
motion scripts.

The generation of a representation for video based on 3-D
entities is theinverseproblem of synthetic image generation.
Given a video sequence, the problem is to compute automat-
ically for each of the objects present in the original scene a
set of 3-D pose estimates and a 3-D object model representing
shape and texture.1

We adopt a stochastic voxel-based structure for the object
models that represents free-formed objects, allows incremental
model updates, and considers sensor uncertainties. The original
video sequence is reconstructed by rendering projections of 3-
D scenes assembled using the 3-D constructs. We call this
method of compositing video with 3-D entitiestridimensional
video compositing, or 3DVC for short.

In 3DVC, motion, shape, and texture are explicitly ac-
counted for. Each individual element of the set of component
3-D entities can then be manipulated independently. For
example, the shape of an object can be altered independently
of the object motion script, or motion scripts modified to
generate synthetic motion patterns. 3DVC allows the insertion
of additional frames by rendering frames with interpolated
pose estimates. This leads to video with higher frame rate
and smoother perceived motion than the original sequence.

Video is represented in 3DVC as a composite of perceptu-
ally meaningful entities. Each object model can be visualized,
and the motion scripts bear physical significance. Object
curvature, texture moments, and acceleration can be extracted
from the 3-D entities. By accessing the underlying structure of
video, 3DVC creates innovative and flexible ways for editing
and accessing the video content. 3DVC synthesizes distinct
video sequences by altering the motion scripts and/or object
models previously generated. Explorable features of 3DVC
include missing frame insertion, variable focus of attention,
cast selection, content-based search, and insertion/deletion of
virtual and real entities.

The paper is organized as follows. Section II presents the
3DVC representation framework, and the stochastic structure
for the object models and measurements. Section III is ded-
icated to video analysis. This section addresses the methods

1In this paper, “texture” refers to the light captured by a camera after
reflecting on the object surface. Also known as object radiance, “texture” de-
pends on object surface photometric properties and environment illumination
conditions.
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Fig. 1. In 3DVC, a video frameFk is given by the 3-D object model�jk
and the object pose�qjk.

for incremental object model construction and pose estimation.
Section IV describes the synthesis of the original video from
the constructed 3-D entities, i.e., scene assembly and frame
reconstruction. Experimental results are in Section V. Appli-
cations of 3DVC to video coding and content-based handling
are in Section VI. Section VII concludes the paper.

II. 3DVC REPRESENTATIONFRAMEWORK

In 3DVC, a scene is specified by a set of 3-D entities:
the object models and the respective pose estimates,
as in (1)

for (1)

where is the discrete time index, is the object index, and
is the number of objects in the scene.

Video is a sequence of frames in time. Each frameis
obtained via perspective projection of a dynamic 3-D scene

, as defined in (2) and (3)

(2)

for (3)

where is the number of frames in the video sequence.
Factoring out frames and scenes, 3DVC provides a struc-

tured representation for video in terms of 3-D entities as in
Fig. 1 and in (4)

(4)

3DVC builds the 3-D object models incrementally
without user interference. This is accomplished by analysis of
the video sequence, via integration of multiple measurements
in a Bayesian framework. The 3-D object models contain
stochastic information about the shape and texture of the
objects. As more video frames are processed, 3DVC reduces
model entropy and eliminates redundant information. No prior
information about the object shape and texture is assumed to
be available.

For each frame , the pose of object is estimated
by measurement/model registration. The pose is sequentially
stored in a motion script for the given object. The methods
for incremental object model construction and pose estimation
are considered in Section III.

The video sequence is reconstructed in two sequential
steps: recreation of the scene by positioning the 3-D
object models in space according to the corresponding
pose estimates , and reconstruction of video frames by
a ray-casting volume renderer. Both steps are addressed in
Section IV.

Object Model: We adopt a nonparametric volumetric struc-
ture for the object models. This model structure allows rep-
resentation of free-formed objects, permits incremental model
update, and provides efficient spatiotemporal support for data
fusion and storage. This contrasts with the majority of previ-
ous work on 3-D model-based video coding that relies on
parametric surface-based models [13]. Surface models are
usually chosen because they allow the use of well-known
surface renderers as image synthesis tools. For information
fusion, however, surface representations present challenging
surface-merging problems [24].

Our nonparametric object model is voxel-based. It is defined
as a compact uniform tesselation of 3-D space ,
where each cell represents multiple properties and the
index spans the compact 3-D space. The object shape is
represented by cell occupancy , and the object surface
texture is represented by cell texture . Occupancy is a
binary property: a cell may either beoccupiedor empty.
Texture may assume any valid value drawn from the color
pallete .

A nonparametric voxel-based object description is suit-
able for video representation because free-formed objects are
supported with selectable spatial resolution, frame rendering
performance is independent of object and scene complexity,
and the parallel nature of volume rendering algorithms can be
explored [26].

The tesselation stores a set of conditional probabilities that is
obtained through the integration of the multiple measurement
grids as in

(5)

Holding probability functions instead of current estimates is
what makes a useful representation for Bayesian integration
of a sequence of measurements. Initial lack of knowledge is
expressed by assigning equiprobable probability distributions.

The stochastic nature of the object models enables robust
operation when dealing with inconsistent and noisy measure-
ments or pose estimates. The stochastic representation supports
both active exploration and passive integration of sensory
data. Model entropy is used to guide exploration if active
sensors are available. A stochastic framework for measurement
integration has been considered for the unidimensional case
by [27]. Deterministic integration does not cope with sensor
uncertainties and imprecisions in pose estimation. This may
cause insertion of persistent holes and fissures in the object
surface.
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(a) (b) (c)

Fig. 2. Steps in the construction of a measurement grid. (a) Data are collected in a nonuniform tesselation established by the perspective pinhole camera.
(b) The warped temporary grid� is constructed to avoid the perspective nonlinearities. (c) The uniform measurement grid	k is obtained by unwarping grid�.

Earlier work on sensor fusion for robot navigation and
object modeling for robotic manipulation have successfully
explored a similar stochastic model structure [28]. In visual
communications, the probabilistic approach for measurement
integration is seldom used. In [27], the outputs of multiple
range-sensing methods are integrated using a probabilistic
framework assuming that all observations are registered or
taken along a single direction. 3DVC integrates multiple
unregistered measurements taken from distinct points of view.
Preliminary experiments with synthetic data applying the
3DVC model structure to video representations were reported
in [29].

Measurements:We assume that a range sensor produces a
depth map and a coregistered image. By coregistered, we
mean that the pair of measurements is taken with respect to
the same reference, through the same perspective camera, and
that for every intensity image pixel, there is a corresponding
depth measurement and vice versa.

The availability of the depth map simplifies the experimental
setup. Alternatively, the depth map can be estimated directly
from the video sequence using structure from motion [30]. If
multiple cameras are available, depth is estimated in real time
using stereo [23] or for added precision using multibaseline
stereo [31]. Another alternative is to use depth from defocus
techniques. These employ a single camera with controllable
focus, and have been successfully implemented in real time
[32]. 3DVC supports multiple heterogeneous depth sources as
detailed in Section III-B.

A depth map is defined as a set of points in space.
Similarly, an image is an organized set of color or intensity
measurements , where each measurementassumes one
of the colors listed in pallete. For color images, the pallete
is a set of tridimensional vectors. For gray-level images, it is
a set of scalars.

Intensity (or color) images provide information about the
texture already mapped on the object surface. Texture infor-
mation depends on the properties of the surface material, the
viewing direction, and the environment illumination.

Sensor Model:A 3-D probabilistic sensor model character-
izes the uncertainties in the data as measured by the range
finder. It is given by the conditional probability function

, where represents the ground truth and the
measurement. This sensor model is either provided by the
sensor manufacturer or obtained experimentally.

Uniform Measurement Grid:The depth and intensity mea-
surements corresponding to a video frame are organized into an
auxiliary data structure that we calluniform measurement grid.
This preprocessing step greatly simplifies the video analysis
tasks by eliminating later concerns with camera geometry,
sensor model footprint, and viewing direction.

As the sensor output is a set of discrete measurements, each
individual measurement corresponds to a volumetric cell
in the compact 3-D space. Assuming that data are collected
using a pinhole perspective camera, the dimensions of each cell
in this 3-D lattice depend on the depth of the cell. Therefore,
a pinhole perspective camera defines a nonuniform tesselation
of 3-D space due to perspective nonlinearities; see Fig. 2 for
a bidimensional example.

Dealing directly with these nonuniform tesselations is incon-
venient because the tesselations depend on camera geometry
and relative object-camera position. Also, model construction
would require casting conic rays in distinct directions through
a nonuniform voxel grid.

To avoid these difficulties, we collect the information avail-
able in each coregistered set of measurements into a
uniform measurement grid , taking into account the camera
geometry and the sensor model.

We define , the uniform measurement grid associated
with the th set of measurements, as a compact uniform
tesselation of the 3-D space. This tesselation is an organized
set of cells where the index spans the com-
pact 3-D space. Each measurement grid cell represents
multiple properties. Cell occupancy defines the object
shape, and cell texture represents surface texture.
Occupancy is a binary property: a cell may be eitheroccupied
or empty. Texture values are drawn from the color pallete

. The structure of the measurement grid is similar to the
structure of the object model described at the beginning of
this section. The only difference regards the probabilities each
cell carries. A measurement cell carries the conditional
probabilities of the current measurement given cell occupancy

occupied) and cell emptiness
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Fig. 3. Perspective camera model: viewing frustum in unwarped space.

empty). These probabilities are derived from the sensor model,
and are fundamental to measurement integration in object
model construction. Further discussion about the computation
and role of these probabilities in measurement integration is
carried out in Section III-B.

The measurement grid is aligned with the sensor principal
axis. Given the depth map and the image , and with
camera calibration and sensor model known, we compute the
texture and conditional probabilities for each cell of the
measurement grid as follows.

The creation of measurement grid is realized in two
steps. In the first step, the measurement data are used to create
a warped temporary grid . The warping is defined to cancel
the perspective nonlinearities. In the second step, the warped
grid is unwarped via resampling to generate the uniform
tesselation . Fig. 2 shows the two steps in the construction
of a bidimensional measurement grid. Fig. 2(a) presents the
nonuniform grid defined by the perspective pinhole camera
associated with the input data. Fig. 2(b) displays the auxiliary
warped grid constructed by placing the individual mea-
surements in a warped space where all cells have the same
dimension. Fig. 2(c) presents the resulting uniform measure-
ment grid obtained by unwarping grid . Observe that
both grid and grid are uniform grids. The construction
of could be implemented directly from the data, but the
auxiliary grid simplifies the computation of the probability
distributions associated with the sensor model that are stored
in the measurement grid.

In the perspective pinhole camera model, all visual rays
reaching pixels in the retinal plane pass through the camera
center. For a set of rectangular pixels, the set of visual rays
forms a pyramid. The section of this pyramid delimited by
the focal and retinal planes, shown in Fig. 3, is known as the
viewing frustum.2

The warping and unwarping transformations used in mea-
surement preprocessing are given by the camera geometry.

2Frustum: a part of a solid, such as a cylinder or pyramid, between two
parallel planes cutting the solid.

Fig. 4. Perspective camera model: viewing frustum in warped space.

We define the warping transformation such that the shape
of the viewing frustum is mapped from a pyramid in the
original unwarped space to a rectangular orthogonal prism in
the warped space; see Figs. 3 and 4. Through this mapping, the
viewing rays become parallel in the warped gridand reach
the retinal plane perpendicularly. This warping cancels the
nonlinear effects of perspective, simplifying the construction
of the measurement grid and avoiding generation of artifacts
in the final object model .

To construct the auxiliary grid , we cast a ray parallel
to the principal axis for each individual measurement
transversing the warped space through the point. We update
texture and probabilities of occupancy for all cells hit by the
transversing ray.

As all viewing rays are parallel and aligned with the grid,
ray casting becomes much simpler in the warped space. The set
of cells from that gets updated with nontrivial probabilities
due to a given pointwise measurement depends on the
sensor model footprint. In the warped space, the direction of
the sensor model is always parallel to the sensor principal
axis, simplifying the identification of the cells affected by
each individual measurement.

After is constructed, it is unwarped to provide a properly
resampled grid .

This method for 3-D model generation from measurements
taken under perspective using an intermediate warped space is
motivated by the shear-warp volume rendering algorithm [33].
In a volume renderer, 2-D views are generated from existing
3-D object models. The measurement grid creation method
presented here is aninverse volume renderer, where 3-D point
models are created based on the available 2-D measurements
and knowledge about the sensor model.

We create a distinct measurement grid for each new
measurement before integrating the new measurement into the
object model.

The video analysis methods proposed for object model
construction given a set of unregistered measurement grids
are detailed in the following section.
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III. V IDEO SEQUENCE ANALYSIS

For each segmented object, the process of model construc-
tion requires two steps for each new measurement: registration
and integration.

Measurement registration, or pose estimation, estimates the
current position and orientation of the object in 3-D space
with respect to an arbitrary model-centered coordinate system,
given the current measurement and a 3-D geometric model.

Integration of the registered measurement updates the cur-
rent model by incorporating the new measurements. The first
task in this step is to map the registered measurement to
a canonical model-centered referential using the pose esti-
mate computed in the registration step. The actual integration
method is heavily dependent on the model structure. Distinct
deterministic techniques have been proposed for the integra-
tion of range measurements into surface-based models [24],
[34]–[36]. Stochastic integration techniques, as the one we
propose in this work, consider a probabilistic sensor model,
and are based on Bayesian updating or Kalman filtering [28],
[29]. In these techniques, redundant measurements help to
reduce overall model entropy, while conflicting or ambiguous
measurements are handled gracefully.

A. Measurement Registration: Iterative
Pose Estimation Method

Registration is dual to the problem of computing point
correspondences between overlapping regions of a model and
a measurement grid. Given a set of correspondences, there is
a closed-form solution to the pose problem [37], [38]. With
precise correspondences, it is possible to compute a mapping
to juxtapose the new measurement and the existing model.
This duality highlights the importance of accurate registration
for successful model generation.

Registration is usually accomplished by minimizing a cost
function based on discrepancy metrics between potential
model-measurement correspondences. Traditional registration
algorithms use only shape and adopt Euclidean distances as
measure of discrepancy.

Each new measurement must have some overlapping area
with the model in order to allow for the establishment of
a large set of reliable correspondences. This assumption is
satisfied if motion is small between successive measurements.

The iterative closest point algorithm (ICP), introduced si-
multaneously by several groups [39]–[42], solves the mini-
mization problem by hypothesizing correspondences to be the
closest points iteratively. An important issue not addressed
by most ICP implementations is the handling of incomplete
models, where measurement-model correspondences may not
exist for all individual measurements. This is frequently the
case in applications where registration is performed when
models are still under construction. The approach we present
below handles this problem.

Some extensions of ICP reduce the cost of closest point
search by operating only on selected features, or by creating
search index trees. A fast implementation of the ICP algorithm
capable of pose estimation at 10 Hz has been reported [43].
Recently, ICP has been extended to employ a generalized

distance function that considers surface normals as additional
cues for increased reliability in pose estimation [44].

Other registration and motion estimation methods are based
on features and on factorization [19]. These methods require
precise feature extraction and the solution of large-dimensional
singular value decompositions, which are computationally
expensive tasks. For surveys on registration methods, refer
to [39], [45], and [46].

We propose a method for model-measurement registration
that extends the ICP algorithm. Our method uses texture
and shape for pose estimation, and deals with incomplete or
inconsistent models.

To consider texture and shape information, we define an
intercell discrepancy metric as

(6)

where is the position of cell in 3-D with respect to
a model-centered coordinate system, andis the color of
cell . The parameter controls the relative importance of
shape and texture in the discrepancy criterion. Notice that both
positions and must be taken with respect to the same
model centered reference.

Given an arbitrary pose , the generalized distance
between a model and the th measurement

is defined as

(7)

where is a cell from model is a cell from measure-
ment is the set of correspondences , and is
the mapping derived from the arbitrary pose. It is important
to notice that the set of correspondencesalso depends on
the pose .

To handle models that are potentially incomplete, we modify
the definition of generalized distance presented in (7) to
consider only correspondences whose distances lie within a
plausible range as in

(8)

This modification removes false correspondences and outliers
from the computation of the generalized distance. As motion
is assumed small, correspondences based on shape cannot be
too far apart. Texture variations due to differences in illumi-
nation are usually very small. Larger differences in texture,
as specular reflection highlights, are localized spots that are
considered outliers according to this improved criterion. Zhang
[42] successfully applied a similar outlier removal technique
to pose estimation based only on shape information. In his
proposal, the threshold is determined by identification of
the clusters of outliers and matching points in the distances
histogram for every frame. In our experiments, we adopted a
simpler technique by normalizing the distances to lie between
[0,1] and fixing the threshold.
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The pose estimate is the argument that minimizes the
generalized distance

(9)

Pose Estimation Algorithm:Before the first measurement
, the model holds no information, so the object position

and orientation are assumed to be in an arbitrary canonical
position .

For each subsequent measurement, we perform the
minimization in (9). As ICP performs a local minimization,
a good initial estimate is important to ensure reliable results.
When processing a sequence of measurements under the
assumption of small motion between measurements, a good
initial value for pose is the pose estimate obtained from the
previous measurement .

Binary index trees are useful structures to speed up read
transactions. To reduce the computational cost of searching
for the closest cell, we construct an auxiliary four-dimensional
binary tree for the model data.

Due to space constraints, the algorithm details are not
reported here. For additional information and experimental
results regarding the proposed pose estimation method, refer
to [47].

B. Measurement Integration: Incremental
Object Model Construction

We integrate the set of registered measurement grids
into the object model using

a Bayesian framework. We construct the model
incrementally using the previous model version and the
new registered measurement as it becomes
available.

We consider initially a single measurement. With a uniform
cost function, the optimal Bayes’ estimator for variablegiven
the measurement is the MAP estimator [48]

(10)

(11)

The conditional probability distribution is the sensor
model previously described. The prior knowledge about the
parameter is given by the prior probability . The
probability is a normalization factor.

If multiple measurements are available, the MAP
estimate is computed as follows. We introduce the notation

(12)

(13)

Assuming independent measurements and applying Bayes’
theorem, the incremental update rule follows:

(14)

The estimate is computed by (13), and is recursively
updated in time through (14).

We now consider the estimation of the whole object shape
from a single measurement. We introduce the notation

to represent the occupancy state of the
whole tesselation , given by (17). Let be the
probability distribution of the set of discrete variables given
by (15)

(15)

(16)

(17)

Unfortunately, the direct estimation of the occupancy state
for the whole tesselation is a problem doomed by the curse
of dimensionality. This can be noticed in (16), where the
normalization factor is a sum over all possible tesselation
configurations . As occupancy is a binary property, the
number of possible occupancy configurations for a given
tesselation is , where is the number of cells in the
tesselation. Typical tesselation sizes may be on the order of
millions of voxels. To make this problem computationally
tractable, we factor in (15), approximating the
estimation of the occupancy status of each individual cell

independently as follows:

(18)

(19)

To compute the probability required in (19), we
resample the measurement grid using the mapping

derived from the pose estimate

(20)

Recalling the structure for the measurement gridproposed
in Section II, each cell carries probabilities of measurement
conditioned to occupancy occupied and
emptiness empty . These probabilities are
computed using the sensor model according to

(21)

(22)

where, for a given configuration is the depth of the
nearest occupied cell.

Due to sensor uncertainties, captured by the sensor model,
a single measurement may affect several cells in the object
model during integration. Which cells are affected depends on
the sensor model footprint, on the sensor orientation during
data acquisition, and on the measurement value. The mea-
surement grid is constructed such that the sensing direction is
always parallel to one of the tesselation axes, which eliminates
the concerns regarding sensor model orientation.

When multiple measurements are available in the form
of a single measurement grid, we extend (19) assuming
independent measurements and compute .
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The integration of a new measurement grid is realized
incrementally. The probability of occupancy is
computed for each cell of the model , according to
the incremental update rule

(23)

where the conditional probability is com-
puted from the measurement grid via resampling. The
prior probability of occupancy is available at
the current model , and the probability is a
normalization factor.

When multiple distinct sensors are available, we generalize
(11) and (22) to consider the corresponding sensor models

.
The only cells visible in the process of scene assembly are

the occupied cells. Therefore, only cells that are occupied after
the occupancy update need to have their texture updated. For
all occupied cells in , we obtain a new texture value by
resampling the measurement grid as in

(24)

This texture update policy keeps models consistent with the
most recent measurement. This may generate some model
updating overhead for moving specular surfaces or when
illumination changes over time. Alternative Bayesian texture
update policies can be applied to minimize model updates,
thus penalizing temporal model consistency.

IV. V IDEO SEQUENCE SYNTHESIS

To reconstruct the original video sequence, two major tasks
are performed for every video frame. First, a 3-D synthetic
scene is assembled using information stored in the 3DVC
entities for the current frame. Then, the 2-D video frame is
rendered as a perspective projection of the 3-D synthetic scene.

Scene Assembly:A scene is a uniform tesselation of 3-D
space with structure identical to an object model, as described
in Section III.

A synthetic 3-D scene is assembled by positioning 3-D
object models in space according to the pose estimates for
the current frame. Due to potential model-scene grid misalign-
ment, all models are resampled using the scene as sampling
grid. For every cell of the scene, occupancy and texture are
computed as an MAP estimate.

In the process of sequential scene assembly, only models
that change, either by moving in space or by changing its shape
or texture, are deleted from and reinserted in the synthetic
scene. Taking into account the visibility of objects in the scene
with respect to current camera position can further reduce the
cost of scene assembly.

Frame Reconstruction:Given an assembled scene, the
corresponding frame is reconstructed by computing the
scene perspective projection. This is accomplished by a simpli-
fied first-opacity volume renderer operating in warped space.

In a conventional first opacity volume renderer, for every
pixel in the projective plane, a ray is cast from the camera
center toward the scene passing through the given pixel. When

the ray hits the first occupied cell in the scene, the color
of the pixel in the projective plane is computed by merging
contributions from all of the light sources in the scene. The
result is known as the rendering equation solution [49].

As we have texture information stored in each occupied cell
of the scene, whenever a ray reaches an occupied cell, there is
no need to solve the rendering equation. The solution captured
by the video camera was recorded in the object model during
the video analysis phase.

The available camera calibration provides information about
the geometry of the camera frustum. This information is used
to warp the assembled scene. This warp is dual to the one
described in Section II, and reduces the overall complexity of
the rendering process.

In summary, to retrieve pixel color for the current 2-D frame
from the 3-D scene model, we prewarp the scene grid, and then
trace parallel rays through every pixel of the 2-D frame. When
the ray hits the first occupied cell of the warped scene model,
we read the texture value for this cell.

V. EXPERIMENTS

We implemented the 3DVC analysis and synthesis modules
in “ ” on a DEC AlphaStation 200 4/233. To demonstrate the
potential of 3DVC for video representation, we use synthetic
and real video sequences. In both data sets, the scene is
composed of a single rigid object performing 3-D motion in
front of a static background.

Synthetic Video Sequence:To create the synthetic se-
quence, we use constructive solid geometry (CSG) primitives,
as cylinders, cones, and disks to define a 3-D object with the
shape of a lamp. We create an animation script where the
object performs a rotation around the horizontal axis. This
motion pattern is chosen because it is especially difficult to be
treated by waveform-based and layered representations, and
provides abundant self-occlusion episodes.

The synthetic video and range sequence was rendered using
Rayshade[50], a raytracer that uses the-buffer algorithm
[49] to generate realistic synthetic images. The-buffer values
are available, providing ground truth depth information. We
use this sequence to evaluate the performance of 3DVC
without the uncertainties that arise in actual range sensing.

The synthetic coregistered video and range sequence is
composed of 36 frames, each of dimension 100100 pixels,
8 bits/pixel. Six sample video frames extracted from the
complete sequence are shown in Fig. 5, and the corresponding
depth maps are shown in Fig. 6.

We specify the geometry of the camera-viewing frustum
through a set of raytracer parameters. Knowledge of the
intrinsic camera parameters is required to define the warp
mapping required by 3DVC analysis and synthesis methods.

In this experiment, the depth sensor is considered approx-
imately ideal, and segmentation is obtained by thresholding
depth information. The ideal sensor model is not adopted
to avoid the persistence of spurious artifacts that may arise
due to imprecisions in pose estimation. The parameter
is set to 0.1, giving more importance to shape information
during registration because the texture surface of the object in
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Selected intensity frames from synthetic video sequence.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Selected range frames from synthetic video sequence.

this particular sequence lacks distinctive features. Using these
assumptions, the stochastic model is incrementally built
according to the method described in Section III.

In order to visualize the constructed 3-D probabilistic object
models, we create a visual representation using CSG prim-
itives. For each cell of the model , we create a small
sphere positioned in 3-D space according to the position of the
cell, with radius proportional to the occupancy probability. To
avoid excessive image cluttering, we subsample the grid by
2 in every direction. Fig. 7 presents a pair of views of the
model after the first two frames are registered and merged
into the model. We notice that even though model is
clearly incomplete, it carries sufficient information for the
reconstruction of the two frames already processed. In Fig. 8,
the model is observed after 30 frames have been processed.
We notice a higher level of model completeness in when
compared to .

The original video sequence is reconstructed using the
method proposed in Section IV. Samples of the reconstructed

sequence are presented in Fig. 9. A comparison with the
original sequence reveals that some artifacts are introduced,
especially near the object edges.

These artifacts are due to two major factors: aliasing and
resampling.Aliasing artifacts are introduced by the discrete
nature of the model. To eliminate them, we must choose
voxel dimensions small enough to meet the Nyquist cri-
terion for shape and texture frequencies. This establishes
a tradeoff between model size and spatial resolution. The
object models generated by this experiment are composed of
approximately 4.5 10 voxels, of which 4879 voxels were
occupied in model and 13 986 were occupied in model

. Resamplingis required because the motion script may
require the model grid to be placed in a nonaligned position
with respect to the scene grid. Proper resampling requires
reconstruction of the field for all new sampling points using
the currently available set of samples. Each reconstruction
entails taking into account contributions from all samples
available, i.e., one must compute the sum of the values of
a set of sync functions, each centered at one of the voxels
that compose the model. This is a costly procedure, given
that the models constructed usually have large voxel counts.
This procedure is simplified by local weighted averaging or
trilinear interpolation. These simplifications reduce signifi-
cantly the computational cost, but introduce artifacts near the
object edges.

Real Video Sequence:In this experiment with real data, we
use a video and coregistered range sequence obtained by using
a light stripe range finder with a liquid crystal shutter and a
color CCD video camera.

To have control of object pose during data acquisition, we
mounted the object of interest at the end effector of a precise
computer-controlled robotic arm. To create the sequence, we
define a simple motion script where the object performs a
complete 360 rotation around the vertical axis.
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(a) (b)

Fig. 7. Frontal and side views of object model�2; obtained after integration of two frames.

(a) (b)

Fig. 8. Frontal and side views of object model�30, obtained after integration of 30 frames.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Frames reconstructed using object models and pose estimates.

Camera calibration is obtained using a calibration box of
known size and shape. The calibration procedure produces a
projection matrix that represents the transformation between
world and image coordinate systems. This information is

required to determine the warping mapping used by 3DVC
in measurement grid creation and frame rendering.

The coregistered range and video sequence has 256256
pixels/frame, 8 bits/pixel. Six sample video frames extracted
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Selected intensity frames from real video sequence.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Selected range frames from real video sequence.

from the complete sequence are shown in Fig. 10, and the
corresponding depth maps are shown in Fig. 11.

As before, the object is segmented by thresholding depth
information. The parameter is set to 0.5, giving equal impor-
tance to shape and texture information during registration. We
assume a zero-mean unit variance Gaussian sensor model, and

apply the 3DVC analysis method to incrementally construct
the stochastic model .

Using the same technique for object model visualization
described in the previous experiment, we generate a pair of
views of the model after two and eight frames are processed;
these views are presented in Figs. 12 and 13, respectively. We
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(a) (b)

Fig. 12. Frontal and side views of object model�2 obtained after integration of the first two frames.

(a) (b)

Fig. 13. Frontal and side views of object model, obtained after integration of all frames.

notice that model is sufficient to reconstruct the already
processed frames.

Samples of the video sequence reconstructed by 3DVC are
shown in Fig. 14. As with the synthetic data, artifacts are
introduced near the object edges.

VI. 3DVC APPLICATIONS

Video Coding: A video codec based on 3DVC implements
the video analysis module at the transmitting end. The video
synthesis module reconstructs the video sequence at the re-
ceiving end. We send through the channel only the required
object model updates and pose estimates.

The codec achieves high intraframe compression because
the size of the object model updates reduces as the model
becomes complete, and the pose estimate specification requires
a small amount of data that is independent of the frame size.

During model construction, the occupancy entropy de-
creases from frame to frame proportionally to the new
information about the model in each frame. If the object
performs a motion pattern that displays the same regions of
the object in a repetitive fashion, the model entropy and voxel
count reach a steady state after several frames are processed.
In our experiments with a rotating mug, after the first 360
rotation, the model voxel count reaches steady state; refer
to Fig. 15.

Ideally, after the model reaches steady state, only pose infor-
mation is required for reconstruction. A six-degree-of-freedom

pose estimate is represented by six floating-point variables, i.e.,
24 bytes of information. Without further applicable motion
prediction via Kalman filtering, or lossless compression, this
leads to the compression ratio of .
Here, is the number of frames with interframe motion,

is the total number of frames, and is the byte count
for a given input video frame. In our real data experiment,
each frame has bytes and, as the object
keeps moving continuously, all frames require transmission
of the pose estimate. For this scenario, the codec requires

bytes/pixel or a bandwidth
of 2.812 kbps/s at 15 frames/s.

Changes in environment illumination and objects with spec-
ular reflection cause modifications to the surface texture from
frame to frame. Imprecision in pose estimation and range
sensing generates ambiguous information that leads to alter-
ations in occupancy. Due to these factors, models usually do
not reach the ideal steady state, where no update information
is required, but reach a distinct steady state that requires a
fraction of the voxels to be updated from frame to frame.

To avoid the overhead of transmitting model update infor-
mation every frame, we implement an update policy based
on model entropy after the model reaches this steady state.
We keep updating the model at the transmitting end every
frame. We only transmit information to update the model at
the receiving end if the entropy difference between the models
at the transmitting and receiving ends is larger than a threshold.
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Frames reconstructed using object models and pose estimates obtained from real data.

Frames where an update is necessary are called keyframes. To
avoid reconstruction of nonkeyframes with incomplete models,
we use a pipeline. The length of the pipeline determines the
amount of look-ahead allowed for keyframe detection. Once a
keyframe is detected, the model is immediately updated.

The number of voxels to update depends on the motion
between updates. Larger motion implies larger uncertainty in
motion estimates and larger illumination effects. For the real
data sequence example, we observe that, for an interframe
motion of 45 , approximately 5% of the occupied voxels are
updated. This update policy leads to the compression ratio

given by

(25)
where is the the number of bytes required to transmit the
steady-state model once, is the number of frames, is
the average number of bytes per keyframe, and is the
number of keyframes.

In our experiments, after we detect that the model has
reached steady state, we set the entropy threshold to 5000
voxels. Updating each voxel independently requires the trans-
mission of 30 bits: 22 bits for addressing and 8 bits for texture.
Addressing each voxel individually, the transmission of the
steady model requires bytes. For the
frames encoded with the entropy policy, we get key
frames with an average size of bytes/key frame.

The compression ratio for this setup is
bytes/pixel. We analyze each of the

Fig. 15. Number of occupied and altered voxels in the model over time.

terms in (25):
, and

.
The term can be substantially reduced. We used a

naive addressing scheme to encode the model (22 bits/voxel
address), which leads to a large . Octree addressing and
other entropy coding methods will reduce this overhead sig-
nificantly. Further, as the number of framesgrows,
in (25) becomes negligible. Not accounting for this term, the
remaining terms lead to a compression ratio

.
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The term is a function of the entropy threshold and
scene properties. A higher entropy threshold leads to a smaller
number of keyframes and to a reduced . Object surface
and illumination characteristics define the average keyframe
update size. If objects present specular surfaces, a reduction
in the number of keyframes may lead to an increase in
illumination artifacts in the reconstructed sequences. If these
illumination artifacts are not tolerable, the term can
still be reduced by extending 3DVC models to carry surface
reflectance properties that can be estimated as in [51]. The
reduction of leads to the compression ratio of

bytes/pixel.
In summary, not accounting for the overhead introduced

by the term , this experiment shows that a codec based
on 3DVC has a potential compression ratio in the range of
150–2700.

Video Editing and Handling:Using 3DVC, we access the
3-D structure of the scene. It is possible to insert objects not
present in the scene, change the camera viewpoint, alter the
motion patterns of objects, and even remove objects.

All of these alterations are constrained by model complete-
ness. If the original sequence explored the regions occluded by
an object, these regions will be visible after the given object is
removed. If regions were last observed from a given viewpoint,
it is likely that artifacts will be generated if the current
viewpoint is completely different, especially in the presence
of specular surfaces. These cases would require modeling the
surface properties as in [51].

Due to space constraints, we explore and demonstrate these
novel methods for video handling and editing enabled by
3DVC elsewhere.

VII. CONCLUSION

We introduce 3DVC, a novel system for compact video
representation that provides a useful description of the 3-D
structure of the scene. 3DVC decomposes the video sequence
in a Bayesian framework into a set of perceptually meaningful
3-D entities: object models and motion scripts.

3DVC has interesting features: it is robust against sensor
noise and estimate uncertainties, accepts explicit knowledge
about sensor behavior, and allows incremental model con-
struction. 3DVC eliminates interframe redundancy and enables
content-based access to video.

We discuss the applicability of 3DVC to content-based
video coding, handling, and editing. Analysis shows that
the interframe compression ratio grows with video sequence
length, and also depends on the complexity of scene dynamics
and object persistence in the scene.

Experiments achieve high-quality results without blocking
artifacts, meeting VLBR bandwidth requirements without us-
ing further applicable intraframe coding.

The proposed video analysis method is a generic tool for
the efficient generation of 3-D textured models from video
sequences. We currently investigate alternative applications
beyond the scope of video coding, e.g., object recognition,
special effects, generation of realistic models for telepresence,
virtual manipulation, and 3-D facsimile.
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