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1. INTRODUCTION where - denotes a backway stochastic differential
(and backward Ito integral respectively).

In this paper we would like to consider the joint
states and parameter estimation problem for the Let
following non-linear stochastic differential
system:

L(e,t) - E(A(e,t)Ix(t)-z), (1.6)

dx(t) - f(x(t),O)dt + g(x(t),9)dw(t), O<t<T (1.1)
where E denotes expectation with respect to the
path space measure of x(').

with the observation system

As a criterion, we choose as an estimate
dy(t) - h(x(t),9)dt + dv(t), O<tST. (1.2)

2(t) - Arg Max L(z.9,t).
-In the above, w(t) and v(t) are standard z,e
independent Brownian motions, f,g,h are at least
thrice continuously differentiable with bounded which is a maximum likelihood criterion.
derivatives with respect to xeR and OaR and
g(x,9) > an>O, x, 9eR. 2. STOCHASTIC HAMILTON-JACOBI BELLMAN

EQUATION FOR L(z,O,t)
In addition we assume

Using the work of Fleming-Mitter El] and the theory
of backway stochastic differential equations [cf.

-LE f h(x(t),9) dt < -, (1.3) Kunita, loc.cit] one can show that

S(z,O,t) - -ln L(z,O,t) (2.1)
-and the initial state satisfies

satisfies the stochastic Bellman Hamilton-Jacobi
Either i) x(O) = XO8R (1.4) equation:

iit x(O) - xO, a random variable with

2 dS(x,O,t) - a(x,e)(S -S )dt + a(x,O)S dt (2.2)
density p0o(X) a Cb(R;R), p0 (x)>O. xx x x

Let ~s t(x) denote the solution of the stochastic + h(x,) 2dt - h(x,8).dy(t)
differential equation (1.1) starting at xs=x. Then
from a result of Kunita [2], we know that Os t isla where
Ck-diffeomorphism, and the inverse map st
satisfies a backward stochastic differential
equation. e(x*0) _1 g(x,)2

Let
a(x,O) = 2ax - 2a(xo)Sx - f(x,e)

A(O.t) - exp( h(x(s),O)dy(s) - 1 h(x(s),)ds)-ln pfo 2 fo S - -in p (x,t)

t where under our assumptions pO(x,t), the density
- exptJ (O1 W(x(t)),O)dM(s) (1.5) corresponding to the x(') process exists and is

o s,t positive for all x,t.

t We now define a recursive maximum likelihood
I fh( '-1 (x(t)))2dt], estimate. By applying the Generalized Ito

2 s,t Differential Rule (cf. Kunita, loc.cit], we get-
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atvs + V2Sd4(t) + 1 V3Sd<,4> t-V(Vh)d<y,> t = 0

(2.3)

where

Vi= , o(t) a i(t

which is obtained from the stationarity condition

VS = 0. (2.4)

In 12.3) all partial derivatives are computed along
(*,9) which is obtained from the stationarity
condition (2.4).

Assuming V2S is invertible, we obtain a maximum
likelihood trajectory for 4(t) from (2.2), (2.3)
and (2.4) and using atVS = VdS.

A rigorous derivation of these results will be
presented elsewhere.
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