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ABSTRACT

This paper develops an algorithm to detect abnormali-
ties of small animals’ transplanted hearts in MRI, at early
stage of rejection when the hearts do not display promi-
nent abnormal features. Existing detection methods require
experts to manually identify these abnormal regions. This
task is time consuming, and the detection criteria are oper-
ator dependent. We present a semi-automatic approach that
needs experts to label only a small portion of the motion
maps. Our algorithm begins with representing the left ven-
tricular motions by a weighted graph that approximates the
manifold where these motions lie. We compute the eigen-
decomposition of the Laplacian of the graph and use these
as basis functions to represent the classifier. The experi-
mental results with synthetic data and real cardiac MRI data
demonstrate the application of our classifier to early detec-
tion of heart rejection.

1. INTRODUCTION

The current gold standard for diagnosing rejection after heart
transplantation is biopsy, which is invasive and prone to
sampling errors. Cardiac magnetic resonance imaging (MRI)
is a non-invasive alternative to monitor rejection of an in
vivo heart. Using MRI, we can observe that, in early stages,
heart rejection starts from a small region, which then spreads,
in late stages, to the entire myocardium [1]. Early diag-
nosis and treatment of rejection increases the survival rate.
However, early stage rejection does not present prominent
abnormal motions. To detect subtle abnormalities, cardiol-
ogists have to carefully and manually label the images. This
is labor-intensive and the results vary from expert to expert.
To achieve consistent classification, we need a quantitative
algorithm that reduces human involvement.

We present in this paper a semi-supervised classifica-
tion algorithm. The classifier is initially trained with a small
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number of normal and abnormal motions labeled by an ex-
pert, and then it classifies the remaining unlabeled motions.
The classifier is developed using the framework of spectral
graph theory [2, 3, 4]. We first generate motion maps of
the heart through the cardiac cycle. The motion vectors are
treated as samples of a Riemannian manifold embedded in
the original data space. A graph representation of the data
is an approximation to the manifold. We represent the heart
motion map as a graph where similar motions are connected
by an edge. Spectral analysis of the graph Laplacian pro-
vides a basis of functions on the graph. We use this basis to
find the optimal classifier.

This paper is organized as follows. Section 2 develops
in detail our classification algorithm. Section 3 tests the
algorithm with synthetic data and real cardiac MRI data,
demonstrating the good performance of our classifier. Fi-
nally, Section 4 concludes this paper.

2. METHODOLOGY

We process a sequence of cardiac MR images sampling the
cardiac cycle and determine for each phase a dense motion
map; i.e., at each phase n in the cardiac cycle, every my-
ocardial pixel i is assigned a motion vector ui[n]. We focus
in this paper on a single MRI heart slice and in a particu-
lar phase of the cardiac cycle, so we consider ui ∈ R

2 and
drop the time dependence n. The classification problem is
to design a classifier h such that the class label ci of pixel i

is

ci = c(h(ui)) =

{
1, if ui is normal;

−1, if ui is abnormal.
(1)

Or equivalently,

ci =

{
1, if h(ui) ≥ τc ;

−1, if h(ui) < τc ,
(2)

where τc is a threshold.
The 2D motion vectors of the myocardium are data points

in R
2. We can think of these points assembling a Rieman-

nian manifold M ⊆ R
2. In our case, the manifold M could
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be a plane, a contour, or a point. Associated with M is
the Laplace-Beltrami operator ∆ that acts on differentiable
functions on M, see [2]. When M is compact, ∆ has a dis-
crete spectrum and its eigenfunctions {er}, also called har-
monic functions, provide an orthogonal basis for the Hilbert
space of square integrable functions on M. Since the clas-
sifier h is square integrable on M, it can be represented in
terms of the harmonic functions; namely,

∀x ∈ M : h(x) =
∞∑

r=1

arer(x) . (3)

Hence, our task becomes the problem of finding a function h

on M such that c(h(x)) → {−1, 1}, where 1 indicates nor-
mal and −1 abnormal.

We have to approximate the manifold M because the
number of available data points is finite. Belkin and Niyogi,
[3, 4], suggest using a graph model to represent the data;
that is, the graph approximates the manifold M where the
data lies. The Laplace-Beltrami operator is accordingly the
discrete Laplacian, see [2]. In Section 2.1, we describe the
graph model for our data. Similar to (3), the spectral analy-
sis of the graph Laplacian L provides the basis function for
the classifier, see [4]. Once we have a representation for the
classifier, we use the labeled data to find the coefficients ar,
and develop a rule for classifying abnormalities in the unla-
beled data. Section 2.2 details the classifier design.

2.1. Graph Representation

Assume that a slice of the myocardium is imaged by N pix-
els. From two consecutive phases, we estimate a motion
map U that collects all motion vectors ui:

U = {u1, u2, · · · , uq, · · · , uN} . (4)

We assume that the first q motion vectors in U have been
labeled by human experts. In the framework of spectral
graph theory, we represent the set U of motion vectors by
a graph G. In G, vertices vi, vj corresponding to motions
ui, uj are connected by an edge if the distance κij between
ui and uj is smaller than a threshold τκ. For simplicity,
here, we adopt the distance measure κij between two vec-
tors ui and uj to be the Euclidean distance, see Fig. 1,

κij = ‖ui − uj‖ . (5)

With reference to Fig. 1, κij is the distance between ui and
uj , and τκ defines the neighborhood.

A graph can be represented by an adjacency matrix, whose
entry (i, j) is one if the vertices vi, vj are connected, and it
is zero otherwise. To take account for the different values of
κij , we use a weighted graph and a weight matrix W. The
entries of the matrix W in this paper are taken to be

Wij =

{
e−κij , if κij ≤ τκ ;

0, if κij > τκ .
(6)
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Fig. 1. Distance measure κij between vectors ui and uj .

The Laplacian L for the graph G is defined as, see [2, 4],

L = D− W , (7)

where D is a diagonal matrix with the ith diagonal entry
Dii =

∑
j Wji. The Laplacian is a symmetric, positive

semidefinite operator acting on functions defined on the ver-
tices of the graph. Then, we solve the eigenfunction prob-
lem:

Le = λe , (8)

where e is an eigenfunction and λ is the corresponding eigen-
value. We index the eigenfunctions according to their eigen-
values in ascending order, 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN . The
eigenfunctions with small eigenvalues are low frequency
harmonics on the graph G.

In order to approximate functions on the graph G, we
pick the first p eigenfunctions and form them into the eigen-
matrix E:

E = [e1, e2, · · · , ep] . (9)

Hence a function h on G can be written as

h =
p∑

r=1

arer = Ea . (10)

The meaning of Eq. (10) is clear. The ith entry hi of h is
a function mapping the motion vector ui to a real number;
namely, hi : ui → R.

2.2. Classifier

Our task of designing a classifier reduces to finding a func-
tion h in (10) such that the class ci to which the motion ui

belongs is determined by the following rule:

ci =

{
1, if hi ≥ τc ,

−1, if hi < τc .
(11)

We use the first q labeled motions in U to find the opti-
mal a in (10). Let c be the q-dimensional vector denoting
the classes of these data points; i.e., the ith entry of c is

∀i ≤ q : ci =

{
1, ui is labeled normal

−1, ui is labeled abnormal.
(12)
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Since abnormal motions are not easily distinguishable, we
introduce a parameter αi to indicate the confidence level of
the experts who classify the motion ui. We let the values
of the confidence level range from 0 to 1. The higher the
value, the more confident the experts. We modify the la-
beled class c to be c̄ with

c̄i = ciαi. (13)

Vector c̄ trains the classifier by finding out the coeffi-
cients a in Eq. (10). The optimal a minimizes the quadratic
error

ε = ‖c̄− Elaba‖2 , (14)

where Elab is the eigenmatrix corresponding to the q labeled
data points obtained from the first q rows of E. Minimizing
ε gives aopt:

aopt = (ET
labElab)−1ET

labc̄. (15)

The remaining unlabeled motion data is classified according
to the rule in Eq. (11) for all i > q.

3. EXPERIMENTS

In this section, we present experimental results. We use syn-
thetic data to demonstrate the feasibility of the algorithm
and study its performance. We then apply our algorithm to
real MRI sequence of a transplanted rat heart. To run the
classifier, we have to adjust two parameters: the number p

of eigenfunctions in Eq. (9) and the decision threshold τc in
Eq. (11).

Synthetic Data: We simulate the heart as a circular hol-
low disk and synthesize a map of 612 motion vectors, shown
in Fig. 2(a). Each pixel has a unit motion vector in the cir-
cumferential direction. We generate three regions of abnor-
malities marked by rectangles in Fig. 2(a). In rectangle 1,
we halve the length of the vectors. In rectangle 2, we per-
turb the angles of the vectors by adding to them Gaussian
noise with zero mean and unit variance. In rectangle 3, we
increase the length of the vectors by the factor 1.2. An ex-
pert labels a few pixels in the normal and the two abnormal
regions, inside the ellipses in Fig. 2(a). The labeled regions
A, B, C with confidence levels α = 1, 0.5, 0.75, respec-
tively, see Eq. (13), are used to train the classifier. We use
the first 42 eigenfunctions to build the classifier and set the
decision threshold τc = −0.4. Fig. 2(b) shows the classi-
fication results, where the classified abnormal motions are
marked by dots. The motion vectors in the three rectan-
gle boxes are correctly classified. Abnormal regions 1 and
2 that were partially identified by the expert are correctly
classified. The detector can also recognize part of the third
abnormal region.

We study the performance by plotting the receiver oper-
ating characteristic (ROC). The ROC curve is a plot of the

probability of hit PH versus the probability of false alarm PF,
see [5]. In this paper, we define PH and PF as:

PH =
number of correctly classified abnormal pixels

total number of abnormal pixels
,

PF =
number of misclassified abnormal pixels

total number of normal pixels
. (16)

For a given τc, we get a pair of PH and PF. We ob-
tain the ROC curve in Fig. 2(c) by changing sequentially
the threshold from −1 to 1 in increments of 0.02; i.e., τc ∈
{−1,−0.98, · · · , 1}. This plot shows that the best operat-
ing point of the curve is at PH = 0.75 and PF = 0.07.

Cardiac MRI Data: Transplanted rats were studied by
using heterotopic working hearts, adopting DA to BN trans-
plant pairs. The transplanted hearts receive proper pressure
pre-load and exhibit similar cardiac outputs and ventricular
pressure, close to those in native hearts. We use ECG and
respiration gated cine MRI to obtain images with resolution
of 156µm. We adopt a modified DANTE sequence for MR
tagging. We cover the heart with 8 transversal slices at 10
time phases through the cardiac cycle. All MRI scans were
performed on a Bruker AVANCE DRX 4.7-T system. Each
image has 256 × 256 pixels. We use MATLAB R© to imple-
ment all the algorithms.

Figure 3(a) shows a rejected rat heart imaged on the
third day after transplantation. In this image, there are 2170
pixels in the myocardium. During the preprocessing step,
we apply segmentation, tag line detection, and motion es-
timation using the algorithms developed in [6]. Fig. 3(b)
shows the heart’s dense motion map. In this figure, the
pixels in the ellipses are labeled with the confidence level
αel = 0.8 and the pixels in the square with αsq = 1.0. Two
ellipses and one square indicate the labeled abnormal and
normal regions, respectively, with about 80 pixels in total.
We choose 112 out of possible 2170 eigenfunctions to build
the classifier. The detector then automatically classifies the
remaining unlabeled regions. Fig. 4 shows the detected ab-
normal motions marked by dots. We repeat the experiment
by changing the confidence levels αel, αsq ∈ [0.1, 1]. The
classification results are not sensitive to αel ∈ [0.5, 1] or
αsq ∈ [0.7, 1].

To evaluate the performance of the algorithm, we use
contrast MRI to provide ground truth. We inject the rat with
a contrast agent that binds with abnormal myocardial cells
and displays dark intensities under standard cine MR imag-
ing. Injecting a contrast agent is invasive and not desirable
from a clinical point of view because it may be harmful or
induce allergies.

We segment the dark abnormal regions of contrast MR
images. These are the contours shown in Fig. 4. These
contours provide ground truth. The ground truth illustrates
that the heart has begun experiencing rejection in the epi-
cardium. Although there are small regions of false alarms
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(c) ROC curve of the classifier.

Fig. 2. Experimental results using synthetic data.

(a) Cardiac MR image. (b) Motion map

Fig. 3. A rat heart imaged on post-transplantation day 3.

marked by triangles in Fig. 4, the epicardial regions show
good agreement with our detected abnormal regions. This
verification shows that our approach is promising to detect
early rejection of heart transplants.

4. CONCLUSIONS

In this paper, we develop a semi-supervised algorithm to
classify early rejection of heart transplants. We use a graph
based model to represent the motion data and use this model
to design our algorithm. Classification is achieved by com-
puting the eigenfunctions of the graph Laplacian, which we
use to express the classifier. Human-labeled data trains the
classifier. Experimental results with real cardiac MRI im-
ages demonstrate that our approach will be a helpful tool
for early rejection diagnosis.
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