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ABSTRACT

We present an energy based automatic image segmentation algo-
rithm that uses a novel active contour scheme, called the stochastic
active contour scheme (STACS). The algorithm overcomes some
unique challenges arising in cardiac magnetic resonance (MR) im-
ages by minimizing an energy functional with four terms, each
representing the region and edge based information of the image
and the global and local properties of the contour. We use anneal-
ing schedules to control the relative strength of each of the terms
during the minimization process. The segmentation results when
applying STACS to a set of real cardiac MR sequences of a rat are
presented and quantitatively assessed by comparing them to the
manually-traced contours using two similarity measures, the area
and shape similarity measures. This assessment validates STACS’s
results, demonstrating its very good and consistent segmentation
performance.

1. INTRODUCTION

Cardiac MR image segmentation is challenging because the tex-
ture of the myocardium (the heart muscle) is perceivably undistin-
guishable from the texture of other heart structures and anatomy
parts, such as the papillary muscles or the chest wall. Most of
the available active contour methods lead to problematic results
when applied to cardiac MR images. Purely edge-based active
contour schemes [1-3] are sensitive to noise and initialization, i.e.,
the initial contour must reside close enough to the true boundary
for the contour to evolve. Further, turbulent blood flow in some
cardiac MR images often causes faulty edges. Papillary muscles
and other anatomy parts like the chest wall pose additional chal-
lenges for segmentation because they have textures similar to the
myocardium’s but should be excluded when segmenting the left
ventricle. Purely region-based schemes [4, 5], though more robust
to initial conditions, can not resolve objects with similar textures,
thus can not distinguish the myocardium from the papillary mus-
cles or the chest wall. We address these problems by modeling the
image textures stochastically and imposing prior shape constraint
onto the contour. Our new active contour scheme for segmenting
a cardiac MR image in small animal models (rats) is referred to
as stochastic active scheme or STACS [6, 7]. Our compounding
energy functional includes stochastic modeling of the image tex-
tures and shape priors, in addition to the usual edge-based and con-
tour smoothness terms. When applied to real MR image sequences
of a rat’s heart, STACS correctly segments the heart region (my-
ocardium) from other anatomy parts.
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In this paper, we describe an annealing algorithm on the pa-
rameters weighting the different terms of the STACS’s energy func-
tional and assess the quality of the STACS’s segmentation results
quantitatively with two similarity measures: area and shape. Sec-
tion 2.1 summarizes STACS. In section 2.2, the annealing sched-
ules are presented. We then validate the performance of STACS
by comparing STACS’s segmentation results to the ones obtained
manually by an expert using the area similarity measure, described
in section 3.1, and the shape similarity measure, detailed in section
3.2.

2. STOCHASTIC ACTIVE CONTOUR

2.1. Energy Minimization

We adopt an energy minimization approach to segment the heart
and its structures (the left and right ventricles). Since MR im-
ages often have low contrast, it is very difficult to segment the my-
ocardium from surrounding tissues, for example, the chest wall. A
second major issue arises because the myocardium is essentially
the same tissue as the papillary muscles but they are not to be in-
cluded in the segmented left ventricle. To address successfully
these problems, we design an energy functional that has four terms

J(C) = AiJ1(C) + A2 J2(C) + A3J3(C) + A Ju(C), (1)

where C is the contour that delineates the boundary of the desired
heart structures (the left or right ventricle, or the epicardium), and
A1, A2, A3, Aq are the relative weights of the four terms J1, Js, J3,
J4, respectively. In the first term J; (C), we assume two different
stochastic texture models: M, for the object (the left or right ven-
tricle), residing within the contour, and M, for the background,
residing outside the contour. This term is called the region-based
term because it utilizes the regional statistics within the image to
help evolving the contour C during the segmentation process. The
second term J>(C) is the edge-based term. Its purpose is to attract
the contour C to clues given by prominent edges within the edge
map, derived from the image. The third term .J5(C) regulates the
global properties of the contour to resemble the prior knowledge
about the heart shape C(€). Assuming an ellipse shape for the
heart contour, we have

Cu(0) = {(a:,y) :0Tv=0; 4dac—b>> O}, 2

where the parameter vector@ =[a b ¢ d e f]T andv =
[ zy y®> z y 1]7. The last term J4(C) enforces the
smoothness (the local properties) of the contour.
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When actually minimizing the energy functional (1), we adopt
a level set approach [8] where the contour C is embedded as the
zero level set of a function ¢(z, y), i.e.,

C={(z,y) €Q: ¢(z,y) =0}, ©)

where €2 defines the image domain. Hence, J(C) becomes J(¢)
and we have an energy functional

J(@) = MJi(9) + Aad2(@) + A3 J3(9) + AaJa(¢p)
- / MM (2, 5)He (8) + M Mo, y) [1 — He ()]
+P(2,) 6.($)IV G| de dy, @

where

(u(z,y) —m)®

207 for k=1,2 (5)

1
My, = 5 I (2n0}) +
are the negative log of the probability density functions of the ob-
ject and the background models, respectively; #H. and J. are the
regularized Heaviside and delta functions used to mask the pixels
inside and on the contour C, respectively; and the potential func-
tion
P(l':y) :)‘2T($7y)+)\3D2($7y)+)‘47 (6)
where Y is the edge map [3] derived from the image, and D = 67v
represents the signed distance to the ellipse contour of the heart.
We minimize the functional (4) by iterating between three tasks.
In the first and second tasks, we fix the contour C, and then esti-
mate the parameters my, and o} for k = 1,2 of both models in
J1(¢) and the parameters 6 of the ellipse contour in J3(¢). In the
third task, we fix all these parameters, and then evolve the con-
tour C, or equivalently the level set function ¢, according to the
contour evolution equation
V¢

— M) —VP- ool ~ Plﬁ:| 6(9). (V)

where - is the vector dot product; V is the gradient operator;
. V¢ )
k=div|{ — ), (8)
(IIWII

representing the curvature along the contour C; and the potential
force field

% - o

VP = \oVY + 2\ DVD. )

Details on the formulation of the energy functional (4), the deriva-
tion of the partial differential equation for the contour evolution
(7), and the estimations of all parameters can be found in [6, 7].

2.2. X\-Annealing

The energy functional (1) has four terms. Balancing these terms
poses very difficult challenges in automatic image segmentation.
We learn from our experience with real cardiac MR data that these
different terms should be given different weights as the segmen-
tation progresses. For example, at the beginning of the segmen-
tation process, we should first let an arbitrarily placed contour to
freely evolve (under the image conditions) toward desired bound-
ary of the object (the left or right ventricle). Hence, the first and
second terms, .J; and .J», should initially play a dominant role be-
cause they are derived from the image. However, as the segmen-
tation progresses, the shape prior J3 should weigh more heavily,

so the final contour resembles, as much as possible, the desired el-
lipse shape. Finally, the contour smoothness term .J; should be
enforced constantly throughout the segmentation process. This
dynamic adaptation of the functional (1) can be achieved by an-
nealing the relative weights A\, for k = 1,2, 3,4, so that A; and
A2 start high and end low, while A3 goes from low value to high
value, and A4 stays constant.

Our segmentation algorithm nests two loops: the inner loop
minimizes the energy functional (4) by iterating between the three
tasks described in 2.1, and the outer loop sets each ), for k =
1,2, 3 according to the corresponding annealing schedules below:

An) = =, (10)

Ao(n) = %(Aiz b (1 + cos (%)) FIDVSNCED
AL -2 i

As(n) + As, (12)

cosh (10 ("W7T 1))

where n is the (outter loop) iteration number, NV is the total num-
ber of (outer loop) iterations, and A}, and )\L are the initial and final
values of \;, for k = 1,2, 3, respectively. The annealing schedule
(10) is linearly decreasing the value for A;. The annealing sched-
ule (11) reduces A, value moderately in the middle range accord-
ing to a cosine function. The annealing schedule for A3 increases
from the initial value A} to the final value )Q;, most dramatically
at the end of the process. Finally, we choose A4 to be constant
throughout the segmentation process.

3. RESULTSAND QUALITY ASSESSMENT

Fig.1(a) depicts the segmentation results obtained automatically
by STACS and Fig.1(b) shows the contours traced manually by
an expert on the same set of 3 real cardiac MR sequences of a
rat, each with 8 frames throughout one cardiac cycle. Three sets
of contours, representing the boundaries of the epicardium (the
outter contour), the left ventricle (the lower inner contour), and
the right ventricle (the upper inner contour) of the rat’s heart are
present. Although STACS’s segmentation results in Fig.1(a) are
visually pleasing, we want to find a more quantitative approach to
compare our automatically generated contours in Fig. 1(a) with
the manually traced “gold standard” contours in Fig. 1(b). We
introduce two similarity measures: the area and shape similarity
measures.

3.1. AreaSimilarity Measure (ASM)

Let C, be a set of points on an automatically generated contour,
and C,. be a set of points on a reference contour (or the hand-traced
contour). One of the methods currently and commonly used in MR
image segmentation is comparing the areas within C, and C,. [9].

2n(A. AN A
n(Aa) + n(Ar) '

where A, and A, are the set of pixels representing the areas within
contours C, and C,., respectively; n(A) represents the number of
elements in A; and A is the element-wise “and” operator. Accord-
ing to [9], Sarea > 0.7 indicates an excellent agreement between
the two comparing regions but the absolute value of Sarea may be
difficult to interpret.

(13)
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(b) Contours traced manually by an expert.

Fig. 1. Comparing the segmentation results obtained automati-
cally by STACS in (a) with the “gold standard” hand-traced results
in (b): three cardiac sequences of eight frames each throughout
one cardiac cycle; three contours in each image are the epicardium
(outer contour), the left ventricle (inner lower contour), and the
right ventricle (inner upper contour).

We computed the area similarity measure (ASM) for the left
ventricle (LV), the right ventricle (RV), and the eplcardlum (EP)
contours and summarize their values in three matrices: Sarea, Sarea,
and SEB,, respectively. An entry (4, ) in each of these matrices is
the ASM value corresponding to the (7, j) image pair in Fig. 1(a)
and (b).

[ 0.94 0.74 0.85 0.77 0.85 0.94 0.89 0.92
SY.=1 0.94 0.85 0.85 0.90 0.91 0.95 0.86 0.93 |,
| 0.89 0.87 0.94 0.83 0.94 0.85 0.82 0.78

[ 0.81 0.65 0.56 0.67 0.85 0.93 0.84 0.91
Sarea— 0.91 0.75 0.74 0.82 0.79 0.93 0.87 0.90 |,
0.82 0.80 0.65 0.70 0.79 0.89 0.93 0.84

[0.97 0.97 0.95 0.97 0.95 0.96 0.93 0.93
Sarea— 0.97 0.97 097 096 0.97 0.96 0.97 0.96
0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96

We observe that all entries of Sarea are greater than 0.74. For the
right ventricles, we find 19 out of 24 frames having the ASM val-
ues greater than 0.7, while the remaining 5 values are moderately
below (or equal to) 0.7. We also observe that turbulent blood flow
appears in each of the corresponding frames with below 0.7 ASM

values. This turbulent blood flow may be the cause for the less
satisfactory performance of the segmentation of the right ventri-
cle with these images. Finally, all entries of SaE,'Za are above 0.9,
indicating excellent result agreement with the gold standard.

3.2. Shape Similarity Measure (SSM)

Although ASM, when comparing two contours, is a good indica-
tor on how similar their sizes (or areas) and their relative locations
are, it may be less informative with respect to details on the shapes
of the two contours. A pair of very different shape contours may
yield the same area similarity measure as a pair of contours with
identical shape as long as their intersecting regions and the sums of
individual areas inside the contour pair are the same. We introduce
an alternative to assess the similarity in “shape” between a pair of
contours, a modification of the chamfer matching method. Fol-
lowed the idea described in [10], we modify the chamfer matching
method so that it appropriately measures the similarity in shape
between two given contours.

Let C, be a set of points on the contour automatically gen-
erated by STACS and C, be the set of points on the reference
contour obtained manually. Our goal is to find a similarity mea-
sure Sghape € [0, 1] that quantitatively assesses how similar the
shape of the two contours are. Our algorithm for the determination
of the shape similarity measure (SSM) proceeds in several steps.
First, we generate the binary edge templates, E, and E,., where the
“on” pixels represent the pixels on each of the two contours being
compared. Second, we propagate the shape of the contours in each
binary edge template by applying the signed Euclidean distance
transform
—min ||p—q|| if q isinside C

pecC

PEw=)" iy lp - 4
peC

if q isoutside C

where q is a pixel in the image domain, p € C represents a pixel
on the contour C, and ||-|| is the Euclidean norm. Applying the
signed Euclidean distance transform (14) to the binary edge tem-
plates E, and E.., we obtain the corresponding distance maps, D,,
and D,., respectively. These distance maps simply contain the scal-
ing replicas of the contour shapes throughout the image domain.
Third, we calculate the corresponding phase maps by taking the
inverse tangent of the ratio of the gradient components in each
signed distance map, i.e.,

-1 VyD(z,y)
sz(I,y)7

where V. D and V, D represent the x and y components of the
gradient of the signed distance map D, respectively. In the fourth
step, we compute the normalized phase similarity between the two
contours by

®(z,y) = tan (15)

[Po =% 7], (16)
where @, and ®, are the corresponding phase maps of contours
C, and C,, respectively. The index Spnase takes values in [0, 1],
the value of 1 indicates that the two contours have the same phase
and a value of 0 refers to the maximum phase difference of =
In the final step, we measure the shape similarity by taking the
weighted sum of the phase similarity measure along C, against
C,, e,

Sphase =

1
Sshape = n(T Z Fr(x,y) Sphase(xyy); (a7

(z,y)ECq



where n(C, ) denotes the number of pixels on the contour C,, and
Iy (z,y) € [0,1] is derived from D, as
D2(z,
Fr(myy):exp{_%}v (18)
where o2 is a positive constant.
The findings for the SSM of the LV, RV, and the EP contours
are respectively the following:

[ 0.89 0.70 0.86 0.75 0.83 0.92 0.87 0.83
Stpe=| 0.91 0.77 0.77 0.91 0.84 0.91 0.70 0.89
0.80 0.81 0.92 0.83 0.92 0.80 0.68 0.62

0.79 0.43 0.64 0.40 0.72 0.89 0.75 0.90
Siepe=| 0.88 0.73 0.70 0.83 0.65 0.89 0.78 0.87 |,
| 0.81 0.87 0.78 0.77 0.67 0.84 0.87 0.68

[ 0.92 0.90 0.85 0.92 0.88 0.88 0.75 0.74
Seape=| 0.92 0.91 0.91 0.89 0.90 0.87 0.89 0.86
0.87 0.84 0.90 0.86 0.87 0.89 0.86 0.91

For the left ventricles, 21 out of 24 values of the SSM are above
0.7. For the right ventricles, 17 out of 24 values of the SSM
are above 0.7, where 5 SSM values are between 0.6 and 0.7, and
2 SSM values fall below 0.5. Again, in the image frames with
low similarity measures, blood flow may have affected the perfor-
mance of the algorithm. Finally, all of the SSM values for the epi-
cardial contours are above 0.7, indicating excellent segmentation
agreement with the gold standard.

4. RESULT ANALYSIS

The very good visual agreement between the segmentation results
by STACS and by human expert is confirmed both by the area sim-
ilarity measure (ASM) and the shape similarity measure (SSM)
shown by the matrices in the previous section. Here we compute
average statistics of the ASM and SSM results presented above.
The best results are obtained for the epicardium where the aver-
age ASM is 0.95 + 0.01 and the average SSM is 0.87 =+ 0.05.
These good results may be attributed to the role played by the
shape prior because the epicardium does look visually like an el-
lipse. Although STACS still segments very well the right ventricle
with an average ASM of 0.81 £ 0.10, and SSM of 0.75 + 0.13,
these numbers are smaller than the average values for the other
two contours. This can be attributed to the fact that the shape of
the right ventricle is not as close to an ellipse as the left ventricle
or the epicardium, and due to the presence in many MR frames of
turbulent blood flow. We note that the left ventricle is well seg-
mented, with the average ASM of 0.87 £ 0.06 and the average
SSM of 0.82 £ 0.09, even though the presence of the papillary
muscles represents in practice a major challenge in other segmen-
tation algorithms. As may be expected, the SSM generally yields a
smaller value than the ASM because the SSM is more sensitive to
local discrepancies between the contours than the ASM, which is
a more global measure. Finally, we observe that the standard devi-
ations of all average similarity measures are quite small, implying
that STACS consistently produces good results.

5. CONCLUSION

Automatic segmentation of the heart in MR image sequences of
small animals is desired in medical studies because of the enor-
mous amount of data involved. Our studies have been concerned

with studying the rejection of heart transplantation in rats and mice
[11]. We have presented in this paper a new automatic segmen-
tation algorithm, stochastic active contour scheme (STACS), and
showed with several real cardiac MR data very good agreement
between STACS results and the “gold standard” provided by an
expert segmenting the same images. The three main features of
STACS are: stochastic modeling of the textures of the different
anatomy structures and the heart muscle; the incorporation of the
heart shape prior; and the annealing schedules on the parameters
weighing the contribution of each of the four terms in the en-
ergy functional. The good quality of the segmentation results by
STACS are confirmed not only visually but also quantitatively by
computing two similarity measures, area and shape. The average
values of both measures are above 0.7 for the epicardium, the left
ventricle, and the right ventricle.
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