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ABSTRACT 
 
This paper develops an energy minimization algorithm to 
reconstruct the 3D motion of transplanted hearts of small 
animals (rats) from tagged magnetic resonance (MR) se-
quences. We describe the heart by a layered aggregate of 
thin oriented elastic fibers. We use the orientation of myo-
cardial fibers to develop a local dense motion of the heart. 
This dense model is fit to the tagged MRI data by mini-
mizing an energy functional with two terms: the first term 
is the external energy, derived from matching the image 
intensities on the fibers across two consecutive frames; the 
second term is the fibers’ internal energy, derived from 
biomechanics analysis. This paper illustrates the applica-
tion of the approach to a set of cardiac MR sequences con-
taining four slices of a transplanted rat heart. 

 

1. INTRODUCTION 
 
Studying the left ventricle (LV) is most important in car-
diac function analysis. Cardiologists have widely used the 
left ventricle’s global parameters, such as stroke volume 
and electrocardiogram, to identify the severity of patients’ 
cardiac diseases. However, these global parameters are not 
good indicators of unhealthy hearts at early stages of dis-
ease. Cardiologists are increasingly interested in identify-
ing the local cardiac malfunction, for example, the local 
infarction and ischemia, so that they can start the treatment 
of sick hearts as early as possible. 

Cardiac magnetic resonance tagging [1] provides an 
opportunity for cardiologists to understand the local car-
diac malfunction. The tagged MR images display the myo-
cardium with lines superimposed, as shown in Fig. 1. 
When the heart moves, the tag lines deform consistently 
with the heart. Sun et al. [2] have developed a method that 
propagates the motions of tag lines to all pixels of the 

heart and then provides a dense representation for the mo-
tions in each 2D slice of the heart, see Fig. 2. 

At common MRI resolutions, heart slices are 10 to 15 
pixels apart. To reconstruct dense 3D motions, we propose 
here to use a cardiac fiber based model [3, 4]. The heart is 
represented by layers of thin elastic fibers that stretch and 
compress through the cardiac cycle. The fibers are de-
scribed as a concatenation of many small segments. We 
use this model in an energy minimization approach to re-
construct the 3D motion of the left ventricle.  

In this paper, Section 2 describes the myocardial fiber 
structure. Section 3 introduces a motion model for the fi-
bers. Section 4 develops the energy functional to be mini-
mized. Section 5 presents our experimental results in re-
constructing the 3D motion of the left ventricle of a rat 
heart. Finally, Section 6 concludes the paper. 
 

2. MYOCARDIAL STRUCTURE 
 

The cardiac muscle cells of the myocardium are arranged 
in layers that are tightly bounded together and completely 
encircle the blood-filled chambers, as shown in Fig. 3(a). 
Streeter [3, 4] quantitatively analyzed the myocardial fiber 
orientations. He excised a block of a canine myocardium, 
and cut the parallel cross sections from endocardial to 
epicardial surfaces through this block. His studies con-
cluded that the fibers are almost tangential to the endocar-

Fig. 1. A sequence of tagged cardiac MR images in a transversal 
plane of the left ventricle over a cardiac cycle. 

(a) Two frames at 
end-systole 

(b) The sparse and dense 
displacements of (a) 

Fig. 2. 2D dense displacements of the left ventricle. 
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dial and epicardial surfaces. Furthermore, the fiber orien-
tations vary from –60º at epicardium to +60º at endocar-
dium. This pattern is shown in Fig. 3(b). 

Physiologists usually view the myocardial fibers as 
small pieces of cylinders and take into account fiber orien-
tations in cardiac structural analysis [5]. This viewpoint is 
usually ignored in image analysis. In this paper, we use the 
orientations and cylindrical shapes of the myocardial fi-
bers to reconstruct the left ventricular motion from tagged 
MR sequences.  

We model the left ventricle as a thick, flexible cylin-
der with the height of h and with the outer radius of ρ, 
when the heart fully extends at the end-diastole, as shown 
in Fig. 4. This cylinder is composed of many fibers. Each 
fiber is one pixel thick and extends from the bottom slice 
to the top slice at an orientation η. From Streeter’s studies, 
η = –60º at epicardium, so that the length of a fiber is ap-
proximately 60 pixels, assuming four slices and 10-pixel 
slice thickness. 

We now discuss the generation of the fiber. The loca-
tion of a fiber on the epicardial surface can be described as 
a helix, see Fig. 4: 

cosx ρ θ= ⋅ , siny ρ θ= ⋅ , and z β θ= ⋅ ,             (1) 
where θ is the rotation angle in the x-y plane, i.e., the slice 
plane, and β is the coefficient controlling how fast the z 
component of the helix climbs. From prior knowledge, the 
fiber follows the known orientation η; this can be used to 
determine the parameter β. With reference to Fig. 4, for a 
small rotation on the slice plane Δθ, 

tan β θ
ρ θη ⋅∆

⋅∆= .                               (2) 

It follows that β = ρ⋅tan η. We assume η known and obtain 
ρ from MRI data; so, β can be estimated by (2).  

 
3. CONTINUUM MECHANICS MODEL 

 
We now develop a motion model for our fiber based heart. 
Since the left ventricle suffers small deformations through 
the cardiac cycle, an infinitesimal deformation model is an 
appropriate description for the movement. Based on this 
assumption, we divide a long fiber into a series of small 
segments each 1 pixel long. 

  

 
3.1. The Jacobian matrix 
 
The left ventricle in 3D space is denoted by B(t). Initially 
it is B(0) and deforms into B(t) at time t, as shown in Fig. 
5. A pixel a(0) within B(0) moves to a(t) within B(t). The 
location of a(t) is related to its initial condition by 

( ) ( ) (0)t t= +a u a ,                                  (3) 
where u(t) is the displacement. Let (0) (0)d+a a  be a 
neighboring point of a(0) that moves to ( ) ( )t d t+a a  ac-
cording to the equation, [6], 
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The Jacobian matrix is defined by 
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which is also known as the deformation gradient matrix. 
At t = 0, (0)F = I . By plugging (3) into (5) for each entry, 
the Jacobian has components, [6], 
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Fig. 4. A thick cylinder models the shape of the left ventricle, 
and a helix describes the location of a myocardial fiber 
on the surface of the left ventricle. 
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Fig. 5. The deformation of a left ventricle. 

endocardium 

mid-wall 

epicardium 

(a)                                                 (b) 
Fig. 3. The structure and orientation of the fibers of the heart.  



where δij is the Kronecker symbol that is 1 when i j=  and 
is 0 otherwise. From (6), the Jacobian can be rewritten as 
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3.2. The strain energy 
 
When a flexible rod is bent, the work applied is stored as 
strain energy. By measuring the displacements of the 
points of the rod, we can calculate the strain energy accu-
mulated by the rod. For finite deformations, the strain ten-
sor E is defined as  

T1
2 ( )−E F F I .                                     (8) 

Using infinitesimal analysis, in continuum mechanics, 
the strain tensor is usually approximated by the small 
strain tensor 

T1
2 ( )≈ + −S F F I .                                   (9) 

Approximation (9) follows by replacing (7) into (8) and 
ignoring the second order terms. Since S is symmetric, we 
vectorize the six entries located on the upper triangle of S 
as the vector s:  

[ ]11 22 33 12 13 23, , , , , TS S S S S S=s .                         (10) 
The segment da(0) in Fig. 5 is assumed small. When the 
small segment deforms to da(t), the strain energy e it ac-
cumulates is computed by a linear elasticity model [6]  

Te = s Cs ,                                         (11) 
where C is a 6×6 matrix describing the anisotropic proper-
ties of the myocardial fibers and takes the form 
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where E‖ is the along-fiber stiffness, E⊥ the cross-fiber 
stiffness, and ν‖ and ν⊥ are the corresponding Poisson’s 
ratios. Replacing (7) into (9), it follows that the small 
strain tensor S is a function of the displacement u. Hence, 
the strain energy e is also a function of u. 

In our fiber model, we divide an elastic long fiber into 
many small segments, as shown in Fig. 6. The fiber’s 
strain energy ε is given by the sum of the strain energy of 
each segment: 

T

all segments

ε = ∑ s Cs .                                  (13) 

It follows that the strain energy ε is a function of the dis-
placements of all segments. With reference to Fig. 6, we 
vectorize the displacements un of N segments of the fiber 

into the vector 
TT T T

1 2, , , N=   u u uU  ; hence, the strain 

energy ε is now a function of U. 
 

4. ENERGY FUNCTIONAL 
 
We now define the energy functional E(U) that will be 
minimized to derive the dense displacement field U. We 
first introduce the notation used to describe the deforma-
tion of a fiber, see Fig. 6. A fiber has N segments. The 
endpoints of a segment are referred to as nodes. The node, 
an(0) for n≤N, its displacement, un(t) = an(t) � an(0), and 

its small segment, an+1(0) � an(0), play the same roles as 
a(0), u(t) and da(0) in Section 3, respectively. We define 
the energy functional 

1 1 2 2( ) ( ) ( )γ γ= +U U UE E E ,                         (14) 

as the sum of two terms, where γi are the weightings. The 
term E1(U) is the external energy that accounts for the 
mismatch of the fiber image intensities across two con-
secutive frames. The term E2(U) is the internal energy that 
corresponds to the strain energy described in Section 3.2. 

External Energy: The intensity of a pixel (i,j,k) in a 
fiber at time t is labeled by Iijk(t). We vectorize all pixel 
intensities of the fiber at time t by the vector I(t). The ex-
ternal energy is then given by 

2

1 ( ) = ( ) ( 1)t t− +U I IE .                              (15) 
Internal Energy: Because a long fiber is represented 

by a series of tiny segments, we can apply the linear elas-
ticity model, (11), to each segment. From (13), the fiber’s 
internal energy E2(U) is 

2
1 1

( )
N N

n n n
n n

ε
= =

= =∑ ∑ TU s CsE .                            (16) 

The two terms of the energy functional attempt to 
strike a balance between matching the intensities across 
frames and the mechanics of the fiber. If E1(U) were not 
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Fig. 6. The deformation of a myocardial fiber. 



present, minimization of E2(U) alone would penalize any 
displacement and enforce the fiber to move back to its 
initial location. 

Displacement Constraints: Our 3D image domain 
consists of four transversal MR slices. We fill the space 
between a pair of MR slices by virtual slices obtained by 
interpolation. On the other hand, on the four MR slices, 
the movements of the tag lines can be accurately measured 
[2]. We treat the motions on the tag lines as a constraint in 
the energy functional. These constraints are considered via 
Lagrange multiplier λα. The energy functional becomes the 
Hamiltonian 

1 1 2 2

T( , ) ( ) ( ) ( )
α α α α

λ γ γ λ= + + −U U U U Θ uE E E ,    (17) 

where [ ]T0, , 0,1,1,1, 0, , 0
α

=Θ    has 1’s only at the 
entries of the location of the node α on the tag line. 
 

5. EXPERIMENTAL RESULTS 
 
Transplanted rats were studied by using heterotopic work-
ing hearts. 4 transversal slices are taken to cover the heart 
at 10 time frames per cardiac cycle. All MRI scans were 
performed on a Bruker AVANCE DRX 4.7-T system. 
Each image has 256×256 pixels. The segmentation, tag 
line detection, and 2D displacement estimation are carried 
out by using the algorithms developed in [2]. 

A left ventricle structure with 3 layers, as shown in 
Fig. 7(a), is generated according to the method described 
in Section 2. To initialize the minimization of (17), we 
assume that the myocardial fibers are oriented according 
to the prediction in [3, 4]. Since we only use 3 layers, the 
orientations of the fibers are taken to be from –45º at 
epicardium to +45º at endocardium. These are shown in 
Figs. 7(b) … 7(d).  

We apply the method in Section 4 to reconstruct the 
3D left ventricle. Figs. 8(a) and 8(b) show the systolic and 
diastolic 3D motions of the epicardial left ventricle, re-
spectively. The motions depicted in the figures are quite 
realistic. We see that the basal left ventricle (on the top) 
has more pronounced motions at the end-systole than at 
the end-diastole as it should be. The figures also illustrate 
well how the myocardial fibers deform through the cardiac 
cycle. The results show not only the fiber displacements, 
but also the myocardial rotation, stretch, and compression 
that are very useful in clinic studies. 
 

6. CONCLUSIONS 
 
In this paper, we develop a myocardial fiber based model 
to describe the left ventricle and use this model to recon-
struct accurately the 3D motion of the left ventricle. The 

reconstruction is achieved by minimizing an energy func-
tional that combines the fibers’ external energy, obtained 
from the images, with an internal energy derived from 
biomechanics. Experimental results with real tagged MR 
sequences demonstrate that the fiber model based recon-
struction is appropriate to study the myocardial rotation, 
stretch, and compression. 
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(a) systole (from left to right) 

(b) diastole (from left to right) 

Fig. 8. The epicardial deformation of the left ventricle. 

(a) The cylindri-
cal layers of LV 

(b) The epi-
cardial layer 

(c) The mid-
wall layer 

(d) The endo-
cardial layer 

Fig. 7. The initialization of the left ventricle. 




