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ABSTRACT

In this paper, we define the intrinsic shape of an object
in three-dimensiona! (3D) space as the shape invariant to
affine-permutation geometric shape distortions. We present,
an algorithm that blindly recovers from an arbitrarily affine-
permutation distorted shape ils intrinsic shape. This algo-
rithm referred to as 30 BLAISER (BLind Algorithm for
Intrinsic ShapE Recovery) executes as one of its steps 3D
PRA (Point-based Reorientation Algorithm). 31 PRA re-
orients (blindly) rotated versions of the same object so that
they become exactly aligned. 31D PRA extends 2D PRA to
3D space, but is much more complicated due to the multi-
ple axes of rotation and the associated fold numbers. We
describe the algorithms of 3D BLAISER and 31 PRA in
detail. )

1. INTRODUCTION

The affine distortion model is widely used by the image
processing and machine vision communities because it pro-
vides a good approximation to the actual imaging process
with a manageable complexity. The affine model describes
geometric shape distortions such as translation, rotation,
reflection, uniform and non-uniform scaling, and skewing.
Further to these distortions, the order by which the fea-
ture/pixel points are scanned by the input device is usu-
ally unknown-—we refer to this as a permutation distor-
tion. The inirinsic shepe.is the shape that remains after
these distortions—affine and permutation—have been fac-
tored out, i.e., the shape of the object that is invariant to
the combined affine-permutation distortions. This concept
is very useful in detection, classification, and identification
of objects from distorted images of their shapes.

This paper presents a three-dimensional (3D) extension
of the 2D intrinsic shape and 2D shape orientation pre-
sented in [1] and (2], respectively. As with the 2D case, the
most critical step of the 3D BLAISER, the algorithm that
reduces any affine-permutation distorted shape to its in-
trinsic shape, is the shape reorientation algorithm referred
to as 3D PRA ({point-based reorientation algorithm). Even
though the main concept of 3D PRA is very similar to its
2D equivalence, the 3D version is much more complicated
because 3D shapes may have multiple axes of rotation with
a different fold number associated with each of them. The
3D orientation problem has been studied in its own right
for many years now, [3], [4], [5], but these methods often
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work aonly with edges and surfaces, are limited to a certain
class of shapes, or require matching with stored models.
The algorithm that we present in this paper works directly
with arbitrary 3D shapes with no a priori knowledge or
pre-computed models.

The paper is organized as follows. Section 2 describes
our models for 3D shapes and affine-permutation shape dis-
tortions. Then, it introduces the notion of intringic shape
in 3D. In section 3, we present 3D BLAISER. Section 4 fo-
cuses on the orientation of 3D shapes and 3D PRA. Section
5 summarizes the paper.

2. MODEL

Shapes: A 3D shape consisting of N featurc/pixel points
is described by a 3 x N configuration matrix

fial Ea .. N
X=|ywm ¥ ... Yy~ |. (1)
21 Zo N

Each column in X represents the location of a point in the
reference coordinates with z-, y-, and z-axes. The configu-
ration space A contains all 3D patterns of N points in 3D
space, modulo trivial configurations with repeated points.
Shape Distortions: Two configuration matrices X
and X are affine distorted from each other if they are re-
lated as
X'=AX+1" 24 (2)
where the linear distortion matrix A is a 3 x 3 invertible
matrix of real numbers and the translation vector é is a
3 x 1 vector of real numbers. Note that ® is the Kronecker
product [6] and 1 is a IV x 1 vector of ones. We now add to
the model a N x N orthogonal matrix P representing the
permutation distortions. Then, the two shapes X% and X

are related by an affine-permutation distortion if

X! =(AX+1T 08P =AXP +1T ®56. (3)
In wec notation, the above equation is written as

x'=(FPToA)x+104 (4)
where x? = vec X® and x = vec X, Note that the matrix
PT ® A is invertible.

Intrinsic Shape: We define the intrinsic shape S of an
object as the shape that is invariant to affine-permutation
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distortions, The appropriate abstract setiing to formalize
this notion of invariance s the framework of group theory.
We extend here to 3D the set-up that we presented for 2D in
[1]- The group of interest is the affine-permutation group,

A={a=(PT'®A125)}. (5)

Consider now the action ¢ of the group A on the configu-
ration space X. That is,

CiAXX — X,

T’he group element a = (PT ®A,1 ®5) € A acts on the
configuration matrix X as

AXP+1T®é " (6)
(PT@A)vecX +1@4.

aX =

Two configuration matrices X1 and X2 are in the equiva-
lence relation X; =4 Xy defined by ¢ if and only if there
exists ¢ € A such that ¢(a,X1) = X2, By the invert-
ibility of the group element ¢ € A, we have also that
¢ ((f],XQ) = Xi. An equivalence relation partitions the
configuration space X into disjoint equivalence classes C,,
also referred to as orbits. The set C4 of orbits is

Ca={CaC X : VX, XoeCuX1=4X2}. (T

We formalize the concept of intrinsic shape as the canonical
representative S of the orbit C_4. Of course, this definition
makes sense only if it can be defined uniquely and if there
is a way to recover it from any other element in the orbit.
This i¢ considered in the next section.

3. 3D BLAISER

In this section, we develop BLAISER (BLind Algorithm
for Intrinsic ShapE Recovery) that recovers from any X €
C.4 the corresponding intrinsic shape 8 € Ca. The algo-
rithm is blind because it finds S by working only from the
given shape X and no additional information is used by
BLAISER. We first define the intrinsic shape.

Definition 1 The intrinsic shape S € C 4 is defined uniquely
try the following four properties:
1. The center of mass of the shape is located at the ori-
gin O of the reference coordinate system

2. The matriz outer product SST 15 the $D identity me-
triv I

3. The reorientation point (see subsection 4) falls on the
2D planez =0,y >0, and 2 > 0

4. The columns of 8 are ordered in ascending z coor-
dinate values, then in ascending y coordinate values
for the columns with the same z velues, finally in as-
cending r coordinate values for the columns with the
same y and z values

Definition 1 is one out of other possible ways of defining the
intrinsic shape of the object.

Theorem 1 The following four sieps reduce any member
X of an orbit C4 to its canonical representative, or inirin-
sic shape, S€ C,4

1. Centering: X = ASP +17® 6 — X° = ASP
2. Reshaping: X¢ = ASP — X* = USP

4. Reortentation: X° = USP — X" = SP

4. Sorting: X* =8P — X" =8

" Note that U is a 3 x 3 orthogonal matrix representing a 3D

rotation in 3D space. It represents the oricntation ambigu-
ity of 3D shapes.

BLAISER is the algorithm that carries out the four
steps in Theorem 1. The proof of Theorem 1 is omitted
here due to lack of space. We explain below the centering,
reshaping, and sorting operations. The reorientation step
is discussed in the next section. Step 1 centers the shape
at the origin O of the coordinate system, i.e., the shape
is rigidly translated so that its center of gravity becomes
the origin O of the coordinate system. Step 2 reshapes
and rescales the centered shape to its normalized shape.
Step 2 is accomplished by applying the “compactling” algo-
rithm. That is, given a centered 3D shape X¢, we multiply
a 3 x 3 reshaping matrix W as in X° = WX*¢ = USP
where W = A=¥V7 and X°X°T = vAVT by a singular
value decomposition. The outer product of the normalized
shape X* then becomes an identity matrix, i.e., X*X°7 = L.
After the reorientation step, the configuration X* = SP is
reduced to X™ by sorting its columns as described in Defini-
tion 1 (4). The result is defined to be the intrinsic shape 8.
We consider next how to remove the orientational ambigu-
ity U from X7 in the reorientation step.

4. 3D PRA

Determination of the orientation of 3D shapes is an im-
portant research topic in application areas such as machine
vision, computer graphics, and medical imaging. In the
shape reorientation step, the patterns extracted from the
image are brought consistently to the same orientation so
that further processing, such as detection, recognition, and
matching, can proceed.

In this section, we introduce a new algorithm referred to
as 3D PRA (point-based reorienation algorithm), which is a
3D extension of 2D PRA presented in {2]. In 3D, determin-
ing the rotational symmetry involves identifying the axes of
rotation and the associated fold numbers: Reflections are
considered irrelevant for 3D shapes. Instead, the direction
of the axis of rotation becomes an issue — for example, one
must distinguish the positive z-axis {out of the page) from
the negative z-axis (into the page).

PRA works with shapes that are described by a config-
uration of feature/pixel points. The main idea of 3D PRA
is to identify a unique point in the shape, referred to as the
reorientation point, and use this point to bring the shape
to its normalized orientation. Given a 3D input shape that
has been centered and reshaped by BLAISER, PRA first
identifies the axes of rotation and associated fold numbers
of the shape. Then, it uses these clues to locate the reori-
entation point of the shape. The shape is finally rotated
to its normalized orientation using the reorientation point.
We start by introducing the terminology used in 3D PRA.
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4.1, Terminology

Rotational Symmetry A 3D shape has &-fold rotational
symmetry with respect to the given axis of rotation if it
is indistinguishable after being rotated about its center of
mass by an angle 2%, n = 1,---,k. The fold number of
a shape is the largest integer & for which the shape is k-
fold rotational symmetric. The fold number measures the
degree of rotational symmetry of a shape, e.g., the square
is 4-fold symmetric.

Spherical Coordinates A shape X consisting of A
poinls is represented in spherical coordinates {p, ¢, 1} where
p is the radius from the coordinates origin, ¢ is the polar
angle measurcd from the z—axis with 0 < ¢ < &, and ¢ is
the azimuth angle in the z-y plane (z = 0) measured from
the positive 2-axis towards positive y-axis with 0 < ¢ < 27

Sub-shapes A shape is decomposed into a set of sub-
shapes. Each sub-shape is composed of feature/pixel points
located at the same distance [rom the center of the shape. A
sub-shape is ohtained hy sorting the coliumns of the matrix
X? in decreasing order of the p;. Then, columns with the
same value of p are grouped together as a sub-shape Oy,
F = 1...R where N; is the number of points contained
in the sub-shape O; and R is the total number of distinct
values of p in the shape. In 2D, a sub-shape is a set of
points locatéd on a ring centered at the coordinate origin.
In 3D, a sub-shape is a set of points located on a sphere
centered at the origin, numbered from the cutermost one
that has the largest radius.

Axis of Rotation An axis of rotation 7= [1 ¢ %|7 is
defined as a unit vector starting from the coordinate origin,
The axes of rotation ¥ and —7 are considered to represent
the same axis when the rotational symmetry of the shape
is concerned. For the shape reorientation process, however,
these two axes are distinguished from each other to bring
the shape to the unique orientation in 3D space.

Rotational Distance The rotational distance dj be-
tween two points p! and p® is defined as the angle £p} Op%
where p'| is the orthogonal projection of the point #* on the
plane that is perpendicular to the rotation axis ¥ and O is
the coordinate origin.

List of Angles The list of angles Z is generated by
measuring the angles between each rotationally consecutive
points in the shape. In the 3D case, two versions of the
list of angles are generated depending on the sorting order
of the shape. In the first version denoted as Z*, the shape
is sorted in descending order of the azimuth angle +, and
again in ascending order of the polar angle ¢ among those
with the same value of ¥, and finally in descending order
of the radius p among those with the same values of 4 and
¢. The difference in the second version denoted as Z9 is
that the polar angle ¢ is sorted in descending order. The
superscripts ¢ and d stand for escending and descending,
respectively. Once the shape is sorted, we measure the an-
gles Athy; = iy — 1y, starting from an arbitrary point in
the shape. If Aty ; = 0 between two points p; and p, in the
sorted order, we enter the angle Ag; ; to the list. If both
Ay ; = 0 and Ag;; = 0, we enter the difference Ap;; to
the list.

Fundamental List of Angles The fundamental list of
angles L is a non-periodic segment of the list of angles Z.
Given the fold number k of the shape, the fundamental list

of angles is obtained by collecting N/E consecutive elements
from the list of angles. There are also two versions of the
fundamental lists of angles L® and L? depending on the
sorting order of the corresponding list of angles Z°¢ and Z¢.

4.2, Algorithm

The reorientation point is the most critical concept for the
correct operation of 30 PRA. PRA performs the crientation
normalization by (1} first choosing one of the axes of rotation
and its associated fold number, (ii) rotating the shape until
the chosen axis of rotation coincides with the positive z-axis,
(iii) identifying the unique reorientation point of the shape,
and finally (iv) rotating the shape until the reorientation
point falls on the plane 2 = 0, 4y > 0, and ¢z > 0. The steps
of 3D PRA are shown below.
Given a 3D shape with NV featurc/pixel points,

1. ldentily thc axes of rotation and the associated {old
numbers

2. Select one of the axes of rotation by choosing the axis
associated with the largest fold number

3. Rotate the shape so that the chosen axis of rotation
coincides with the positive z-axis

4. Generate lists of angles Z% and Z¢

5. Extract corresponding [undamental lists of angles L®
and L? from Z* and Z¢, respectively

6. Identify the reorientation point p, of the shape using
the fundamental lists of angles L® and L2

7. Rotate the shape so that the reorientation point falls
ontheplane =0,y > 0,and 2 > 0

‘We now discuss each step in detail.

Step (1) Axis of rotation and fold number: A 3D
shape may have a multiple set of rotation axes and asso-
ciated fold numbers. In this step, we identify all of these
rotation axes. We first decompose the shape into a set of
sub-shapes Oy, 7 = 1..R. When a k-fold symmetric sub-
shape is rotated by an angle 27 /k about the corresponding
axis of rotation, each point in the shape either stays at the
same location or moves to the location that was previously
occupied by another point. That is, for any sub-shape con-
sisting of N points, there are at most N2 distinct pairs to
be tested for the existence of a rotation axis, i.e., p; — p;
for i, § = 1...N. Therefore, the entire set of rotation
axes can be found by exhaustively testing these candidates.
Fortunately, the number of candidates can be greatly re-
duced, allowing an early termination. A sub-shape with
N points can only have k-fold rotational symmetry where
k=1,...,N. Thus, the angular distance between any two
points that form an actual rotation axis must be one of
2n/k rad. We can eliminate those candidate pairs with the
angular distances that are not in the set © = {2x/k} for
k=1...N.

The fold number of each sub-shape is computed from
the list of angles generated for the sub-shape. The sub-
shape, with the constant radius p, is sorted in increasing
order of ¢ and then again in decreasing order of v among
those with the same value of ¢. At each value of ¢, a sub-list
of angles is generated by measuring the angles Ay, Each
sub-list is periodic with the periodicity d;. Finally, the fold
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number of the sub-shape is determined as the greatest com-
mon denominator of {d;}, i = 1...0 where D is the total
number of sub-lists in the sub-shape.

Cnce all axes of rotation and associated fold numbers
are identified for each sub-shape, the rotation axes of the
overall shape are the ones common to all sub-shapes. The
fold numbers of the overall shape are computed as the great-
est common denominator of the sub-shapes’ fold numbers
corresponding to each of the common axis of rotation. The
outline of the algorithm implementing Step (1} is shown
below. .

1. 'Decompose the shape into sub-shapes, Oj,§ =1--- R

2. For each sub-shape with N; points, generate the set
@ = {2n/k} of angular distances where k = 1,. .., Nj.
Execute the following loop:
forn=1...N;, m=1..N;

« Compute the rotational distance dj for each pair
of points {pu,pm)

» I the rotational distance dj belongs to the set
8, move every point in the sub-shape by the
same rotational distance about the axis of rota-
tion ¥

e If every point stays at the same location or moves
to the location previously occupied by another
point (i.e., the sub-shape appears unchanged),
store the axis of rotation 7, and computed the
associated fold number

end for

3. The axes of rotation for the overall shape are obtained
by collecting the axes of rotation that are comnmon to
all of its sub-shapes

4. The associated fold numbers are computed as the
greatest common denominator of the sub-shapes’ fold
numbers with each of the common axis of rotation

‘Step (2)~(3) Selecting an axis of rotation for the
shape: Given the set of rotation axes and associated fold
numbers, we need to choose one that is uniquely identifiable
for the shape. Since more distinguishing characteristics of
the shape are represented by a larger fold number, we select
the rotation axis that is associated with the largest fold
number. !

Step (4)~(5) Fundamental list of angles: Starting
from an arbitrary point in X, we measure the angles A¢ and
generate the lists of angles Z% and Z%. From these lists of
angles, we extract a pair of fundamental lists of angles, L*®
and L%, The Fundamental list of angles L® is generated by
extracting N/k successive elements from the list of angles
Z° where N is the total number of feature/pixel points and
k is the largest fold number of the overall shape. The list
L% is generated similarly from 2%,

Step (6)~(7) Reorientation point: We identify the
reorientation point p, for the shape using the two funda-
mental lists of angles, L® and L%. The shape reorientation
process is then completed by rotating the shape with respect

_to the reorientation point. First, we identify the point pj

1We are extending 3D PRA to include the case when the ro-
tation axis associated with the largest fold number is not, unique.

from the fundamental list of angles L* and pd from the LY.
The reorientation point p, is chosen as one of (p%,p2). If
Ts = Pa, the orientation normalization is completed by ro-
tating the shape about the axis of rotation until p, falls on
the 2D plane z = 0, y > 0. If p, = p2, we rotate the shape
by = rad so that the rotation axis ¥ moves to —7, i.e., the
upper and lower hemispheres are swapped. Then, we ro-
tate the shape again so that p, falls on the 2D plane z = 0,”
y > 0. The reorientation points p2, p¢, and p, are identi-
fied in the same way as done in 2D PRA. First, the clement
with the maximum value is chosen [rom the fundamental
list of angles. When there are more than one such element,
we compare the magnitudes of the neighboring elements in
the lists. Sce [2].

5. CONCLUSION

This paper defines the intrinsic shape of a 3D object, which
is invariant to afline-permutation distortions. BLAISER
is the algorithm that recovers from any affine-permutation
distorled shape its intrinsic shape. 3D PRA, which is the
critical step of 3D BLAISER, provides an efficient approach
to the 3D shape orientation problem. The performance of
3D PRA is affected by the variation in the locations of the
points due to finite resolution of the input/display devices,
background noise, or erroncously added/deleted points. We
are currently extending to 3D the robust version of 2D PRA
in [2].
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