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ABSTRACT

In a multipath communication channel, the optimal receiver
is matched to the maximum likelihood (ML) estimate of
the multipath signal. In general, this leads to a computa-
tionally intensive multi-dimensional nonlinear optimization
problem. In this paper, we develop a detection algorithm
that avoids the ML estimation while still achieving good
performance. Our approach is based on a geometric inter-
pretation of the problem. The ML estimate of the multipath
signal is the orthogonal projection of the received signal on
a suitable signal subspace S. We design a second subspace
G, the representation subspace, that is close to S, but whose
orthogonal projection is easily computed. The “closeness”
is measured by the gap metric. The subspace G is designed
by using wavelet multiresolution analysis tools coupled with
a reshaping algorithm in the Zak transform domain. We
show an example where our approach significantly outper-
forms the correlator receiver and an alternative suboptimal
approach.

1. INTRODUCTION

In a multipath communication channel, the detection prob-
lem can be cast as follows

Hy :r(t) sm(t) +n(t) (1)
Ho:r(t) = n(¥) (2)

where the multipath signal s () is

K
sm(t) =Y ans(t— ) (3)
k=1

The transmitted signal s(t) is assumed to be known. The
number of paths K, the attenuation factors {ax}, and the
delays {rx} are all unknown parameters. For simplicity, we
assume that the additive noise n(t) is white and Gaussian.

For a known signal s(t), a simple detector is the corre-
lator receiver which correlates the received signal r(t) with
the transmitted signal s(t), and uses the peaks in the cor-
relator output to estimate and detect the multipath signal.
This method is simple and easy to implement. If different
returns of the transmitted signal are separated in time by
more than the duration of the signal autocorrelation func-
tion, the correlator receiver is equivalent to the optimal
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generalized likelihood ratio test (GLRT) receiver. Unfor-
tunately, this condition is not satisfied in many practical
situations. When the condition is not satisfied, the correla-
tion method is not optimal.

On the other hand, the optimal GLRT receiver requires
the ML estimates of the unknown channel parameters. This
involves a multi-dimensional nonlinear optimization over
these parameters. If K is large and delayed replicas of the
transmitted signal overlap, as in the shallow water channel,
the GLRT receiver is out of reach.

In this paper, we explore an alternative approach which
preserves the simplicity of the correlator receiver while ex-
hibiting the performance of the optimal GLRT receiver.
The approach is based on a geometric interpretation of the
multipath detection problem. We observe that the multi-
path noise free signal s, (t) forms a multipath signal sub-
space S. The GLRT statistic is only a function of the or-
thogonal projection of r(t) on S. However, finding this
orthogonal projection directly is difficult because, as men-
tioned before, it requires a multi-dimensional nonlinear op-
timization over all the {rx}. Instead, we approximate the
optimal orthogonal projection by projecting r(t) onto an-
other subspace G, a representation subspace [1}, [2], whose
orthogonal projection is easily computed and which remains
close to the multipath signal subspace S. The “closeness”
between subspaces is measured by the gap metric. The sub-
space G is designed in two steps: the first step designs G
as the subspace close, in the gap sense, to the integer shift
signal subspace Sj,¢; and the second step reshapes the gen-
erating function g(t) of G to be as shiftable as possible [3].
Simulation results have shown that, in the presence of se-
vere multipath, the minimum gap receiver provides about
3.4dB gain over the correlator receiver and 4dB gain over a
multiple replica integer shift receiver.

2. GEOMETRIC INTERPRETATION AND
GAP METRIC

We start by reviewing the geometric interpretation of the
multipath detection problem proposed by [1]. We introduce
the multipath signal subspace

K
S= {xm(t:'y,K)z Zm,a(t—- ), K€ ZY,ar,m€R

k=1
(4)
which is the collection of all possible multipath signals. The
parameter 7 is the set of channel parameters {(a,7x)}.
The GLRT statistic for the detection problem given in (1)
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and (2) is

L =|| Ps(r(9) Il3- ®)
where || - ||, is the Lz norm and Ps(r(t)) is the orthogonal
projection of r(¢) on &

Ps(r(t)) = sm(t: 7", K") (6)

where v*, K* are the ML estimates of the unknown channel
parameters

(v*,K*) =arg Goin | r®)—smt: Kz ()

Minimizing (7) is a difficult multi-dimensional nonlinear op-
timization problem because sy, (t) is a nonlinear function of
the delays {7x}. It is desirable to find a computationally
fast algorithm that avoids the explicit computation of the
unknown parameters. This is the goal of this paper. In
our approach, we design an alternative subspace, the repre-
sentation subspace G, whose orthogonal projection is easily
computed and which is close to the multipath signal sub-
space S. The “closeness” between subspaces is measured
by the gap metric.

The gap metric [4] is a distance measure between two
closed subspaces. Given two closed subspaces S and G in a
Hilbert space H, we denote by Ss the unit sphere of S (the
set of all 4 € § with || u ||, = 1) and let

5(S,6) = sup dist(x,G) (8)
u€ESg
where dist(u,G) = infyeg|| u — v||,. Likewise, we define

59,8 ). The quantity

6(S,6) = max(8(S, ¢),58(6,S)) (9)

is called the gap between S and G.

An equivalent perhaps more intuitive definition of the
gap metric is also given in [4]. It is defined in terms of
the orthogonal projection operators of S and . Denote by
Ps and Pg the orthogonal projection operators of S and ¢
respectively, then the gap metric is

88,9) =l Ps— Po || (10)

here || - || is the L2 induced operator norm.

As we mentioned early, our goal is to find a represen-
tation subspace G such that the orthogonal projection on
G is close to the orthogonal projection on S. From equa-
tion (10), we can achieve this goal by minimizing the gap
between S and G because if the gap is small, Pg is close to
Ps in the norm sense, then we can approximate Ps(r(t))
by Po(r(1)).

Once the representation subspace G has been designed,
we approximate the GLRT statistic by using the orthogonal
projection of the received signal r(¢) on g, i.e., by

L=| Pe(r() II; (11)

Since each element in S is a linear combination of different
delays of the transmitted signal s(t), it is intuitive to design
the representation subspace in a similar way. We choose as
the representation subspace

+ oo
G= { D" Bnglt—n).Bn€ m} (12)

n=-—oo

i.e., G is spanned by the integer delayed replicas of a single
function g(t). The design of the subspace G is now reduced
to the design of its generator, the function g(t). We assume
that {g(t—n),n € ZZ } is a Riesz basis of G, [5], i.e., 3 A, B
such that 0 < A < B < oo and

ALY IF(f+n)P LB ae. (13)

where Fy(f) is the Fourier transform of g(t). With this
assumption, Pg(r(t)) is easily obtained by calculating the
inner product of r(t) with integer shifts of the biorthogonal
function §(t) of g(t), thus, avoiding the multi-dimensional
nonlinear optimization.

3. SUBSPACE DESIGN

In this section, we discuss the computation and optimiza-
tion of the gap metric. Our goal is to find a representation
subspace G in the form given by (12) that minimizes the
gap 8(S,G) between S and G. From the definition of the

gap
§(5,6)= sup inf  lsm(t) —gm(t) ; (14)
| sm ll,=1 gm(t) €6

where sm(t) is the multipath signal in (3) and gm(t) =
Y. Bng(t — n). Calculating 3(8,9’) directly is not an easy
task. Since s, (t) is a nonlinear function of {rx}, taking the
supremum over || 8, ||, = 1 requires a multi-dimensional
nonlinear optimization which is what precisely we are try-
ing to avoid. The major reason for this difficulty is with
the optimization over arbitrary real valued {7x} in equa-
tion (14). To circumvent the problem, we design G in two
steps. We first introduce an integer shift signal subspace

Sint
+ o0
Sint = { Z ans(t—n),an € lR.} (15)

n=-00

We then design G to be close to Sip; in the sense of the gap
metric. Secondly, we use the reshaping algorithm in Benno
and Moura [3] to reshape the generating function g(t) of
G so that g(t) is as translation invariant, or shiftable, as
possible, see [3] for details. A function g(t) is shiftable if

gt—71)= Zﬂng(t —-n) Vre[o,1) (16)

What equation (16) says is that if a function is shiftable,
then any arbitrary delay of the function is well represented
by a linear combination of the integer shifts of the same
function. The goal is for the new nearly shiftable function
and its integer shifts to represent well not only a linear com-
bination of the integer shifts of s(t), but also its arbitrary
real valued shifts.

The first step has been reduced to finding a linear sub-
space G* such that the gap 8(Sint,§) between Sjy¢ and
G is minimized. In the following, we also assume that
{s(t —n),n € Z} is a Riesz basis for Sjp;.

We need an explicit formula for the gap §(Sj,¢,G) be-
tween S;nt and G. Theorem 1 provides this.
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Theorem 1 Let Sipy = {3 ans(t—n)}, G = {3 Bag(t -
n)} be two closed linear subspaces, where {s(t —n)} and
{9(t — n)} satisfy the Riesz basis condition in (13). Then,
the square of the gap between Si,; and G is given by

inf N DaFelf ) F(f+ )
selon Yo IF(F + )P 2, | Fo(f + "()I2
17)
where F.(f) and Fy(f) are the Fourier ‘transforms of s(t)
and g(t). F,(f) is the complex conjugate of Fo(f). The
infimum is taken over the regions where the function is con-
tinuous.

8 (Sint, §) =1~

Theorem 1 is used to find the optimal subspace G* that
minimizes §(Si,;, ), i-e.,

g" = argmin §(Sint, 9) (18)
Equivalently,

n |2, Folf + m)Fo(f + )

s 2alF(f + )2 3 1Fo(f + )2

(19)
To perform the optimization over g(t) in (19), we restrict
the search of the function g(t) to the set of compactly sup-
ported orthonormal scaling functions of a multiresolution
analysis. There are three major reasons to do this. First,
it is clear that if g(t) = s(t), then the gap in (17) is zero.
However, s(t) is in general not shiftable. After reshaping
8(t) using the algorithm in [3] to make it nearly shiftable,
we have observed that the subspace spanned by the integer
shifts of the new reshaped signal does not approximate the
subspace Sj,; well. On the other hand, from our simula-
tions, the reshaped orthonormal scaling functions do still
approximate well Sj,¢. Secondly, if we look at §(Sin,G)
carefully, we notice that, for a fixed value of §(Sj,¢, G), there
are many choices of g(t) because §(Siy, G) is only related
to the minimum of

|, Folf + mF Tl )
NECEDI WAV

We use this additional freedom to require the minimizer g(t)
to be a compactly supported orthonormal scaling function.
Finally, compactly supported orthonormal scaling functions
are nicely parameterized, [5], [6]. Using these parameteri-
zations of the function ¢(t, 8), the optimization of §(Siy¢, G)
is done by a search over the parameter space of ¢

in [2 2. Folf +0)F4(6, f + )
séiy Ll F(F+n)2 30 1Fo(8, f +n)2
(21)
where 8 = [8;,---,0x]T is the vector of parameters defin-
ing the compactly supported orthonormal scaling functions
and N is the number of unconstrained parameters [6]. The
optimal scaling function is given by

9°(t) = g(t,0") (22)

The corresponding representation subspace G* represents
Sint well. The second step of our approach considers the
arbitrary shifts of s(t). We use the reshaping algorithm
in [3] which essentially reshapes the Zak transform of the
energy density function of ¢*(t) to make it nearly shiftable.

g"(t) = argm

9‘
=argmax i

4. SIMULATION RESULTS

In this section, we illustrate the use of the detector de-
scribed above with a numerical example.

We choose a modulated decaying exponential as the
transmitted signal s(t)

s(t) = exp(—t) - cos(t) - u(t) (23)

where u(t) is the unit step function. The number of paths
K is set to 15. We set all attenuation factors {ax} to be
equal to 1. The delays {rx,k =1,..+,15} are generated by
a random number generator. The test statistic

L= Po-(r)) 113 (24)

is chi-square distributed under Ho and noncentral chi-square
distributed under H; [7}.

We compare the performance of our new receiver with
two other receivers. The first receiver that we compare
with is the correlator receiver. Secondly, we compare our
detector with a “matched filter with integer shifts” (MFIS)
detector. The MFIS matches the received signal with in-
teger shifts of s(t). It provides an approximation of the
GLRT detector without the large penalty in computational
effort when the number of paths K is large. We did not
compute the performance of the optimal GLRT receiver be-
cause of its high computational cost of optimization over a
15-dimensional parameter space.

Fig.1(a)-(d) show the detection probability Pp as a func-
tion of the SNR for different multipath delay patterns. The
false alarm probability Pr is fixed at 0.01. There are 4 sets
of curves in the figures. The solid lines represent the ideal
matched filter which are obtained by assuming the multi-
path signal sm(t) is fully known, i.e., the parameters K,
{ax} and {rx} are all known. Since in practice, the channel
parameters are not known, the solid lines provide an over
optimistic bound for the performance. The performance of
the optimal GLRT receiver (which is not computed) will
degrade the performance of the ideal matched filter. The
dashed lines are the minimum gap receiver we have de-
signed. The dashdotted and the dotted lines represent the
correlator receiver and the MFIS receiver respectively.

Analysis of Fig.1(a)-(d) shows that the minimum gap
receiver provides an average gain of about 3.4dB over the
correlator receiver and a gain of about 4dB over the MFIS.
The reason for the gain over the correlator receiver is that,
in our example, different delayed replicas of the transmitted
signal overlap, so the correlator receiver is not optimal. The
reason for the gain over MFIS is that . fBag*(t — n) not
only matches well with linear combmatlons of integer shifts
of s(t), but also with linear combinations of arbitrary shifts
of s(t) while the MFIS only matches with linear combina-
tions of the integer shifts. The figures also show that the
performance of our approach is almost the same for different
delay patterns. The dashed lines in the figures that repre-
sent the minimum gap detector performance are practically
coincident. In other words, the gap detector is robust to
the multipath distortion. On the contrary, the performance
of MFIS varies with the delay patterns. There is about a
1.5dB difference between Fig.1(a) and Fig.1(d).
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Figure.1 ROC curves, the solid line is the ideal matched
filter, “~~" is the minimum gap receiver, “—.” is the cor-
relator receiver and “..” is the MFIS receiver (K = 15,
Pr = 0.01). (a) Delay pattern 1. (b) Delay pattern 2. (c)
Delay pattern 3. (d) Delay pattern 4.

5. SUMMARY

This paper develops a shiftable minimum gap detector that
is fine tuned to multipath detection. We design a represen-
tation subspace G that is matched to the multipath signal
subspace S in the gap sense. The minimum gap receiver
is simple to implement. It avoids the multiple-dimensional
optimization required by the optimal receiver while provid-
ing about 3.4dB gain over the simple correlator receiver and
4dB gain over the multiple replica integer shift receiver.
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