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Abstract

In previous work, we developed a minimum mean
square error beamformer (MMSE-BF). When com-
pared to the minimum variance distortionless re-
sponse beamformer {MVDR-BF), we concluded
that it is specially suited for correlated returns.
This improvement is at the cost of some frequency
distortion in wideband applications. To circum-
vent this problem, we introduce the minimum mean
square error distortionless response beamformer
(MMSEDR-BF). Its behavior is compared with the
MVDR-BF and the MMSE-BF. Adaptive beam-
forming is discussed as an inverse problem. Within
this framework, we suggest the use of alternative
norms, e.g., the Ly norm. Preliminary results for
L, adaptive beamforming are presented.

1. MMSE-BE and MVDR-BF

Consider a linear array of equispaced omnidirec-
tional sensors and assume that the incoming wave-
fronts are planar. In matrix form, the array output
in the frequency domain is

P

Z(w) =) a(w,6,)1,(w) + W(w),

p=0

(1)

where

Z(w) = [Z1 (@), .-, Zn (w)]T,
W(w) = [Wl(w)r' . ')WN(W)ITv

(2)
(3)

and {a(w,8;)}/_, are the N-dimensional steering
vectors.

The objective of a beamformer is to estimate the
signal arriving from a desired direction 4, in the
presence of noise (ambient and sensor noise) and
interfering signals impinging on the array from di-
rections {6,}7_,.

In this paper, we consider intermediate solutions
between the MMSE-BF developed in [2] and the
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MVDR-BF studied in [1], [6].
derived as the minimizer of

E{|zo{w) - 20(w)I}

The MMSE-BF is

(4)

given the observations Z(w) defined in 1, where
Zo(w) is the estimate of the signal at the desired
direction §y. The MMSE-BF solution is
fo(w) = Soz(w)Sz "' (w)Z(w), (5)
where Sz(w) is the power spectral matrix of the
received wavefield which can be directly estimated
from the data, if a sufficient number of snapshots are
available, and S,z (w) is a row vector of the cross-
power between the desired signal and the observa-
tions.
We turn now our attention to the MVDR-BF.
This is specified by the vector of complex weights
h(w) which minimizes the output noise power

E{}h* (w)Z(«)*} (6)

subject to the distortionless constraint along 6

ht(w)alw, 8y) = ot (w,80)h{w) = 1 (n

The output of the MVDR-BF is then given by
r(w) = k" (w) Z(w) (8)

with
h(w) = [a+(w, 80)S7 H{w)a(w, 0.,)] . Sz_l(w)a(w, 60)
(9)

In {2] the analysis of the MMSE-BF was carried out.
The major characteristics are:

1. It uses in an optimal fashion the intercorrela-
tion between the signal and the interferences
(see Fig.1 for a typical beampattern, where
the source and interference are perfectly cor-
related). This is important in applications of
highly correlated “returns” along different di-
rections as in severe multipath environments
with no unique strong returns, or in weak signal
to noise ratio (SNR) ambients.
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"2. It explores to the advantage of the task of op-
timal signal reconstruction the correlation be-
tween the look direction and the secondary re-
turns, by placing local maxima in all directions
of correlated arrivals (if the separation is larger
than the main lobe beamwidth).

. For uncorrelated paths, the MMSE-BF is es-
sentially equivalent to the MVDR-BF placing
nulls at the interfering directions

. The optimal minimum mean square error re-
construction of the source signal is obtained at
the penalty of introducing frequency distortion.

The main properties of the MVDR-BF are:

1. For uncorrelated signals, it performs as a rejec-
tor of interferences and ambient noise.

. It reconstructs the signal with no frequency dis-
tortion if the source signal and the interferences
are uncorrelated. With a correlated interferer
the MVDR-BF minimizes the output power by
processing the interference signal in such a way
that cancels the desired signal [4].

To implement the MVDR-BF, (9), one only needs
to know the power spectral matrix of the observa-
tion’s vector Sz(w) which, as already pointed out,
can be directly estimated from the data. This major
advantage of the MVDR-BF fails to be true when
the source signal and interferences are correlated.
In contrast, the MMSE-BF requires either complete
knowledge of the signal and background noise, in-
cluding the cross-correlation between the source and
the interferences, or knowledge of the directions of
arrival of the desired signal and of the interferences,
as we now show.

Implementation of the MMSE-BF
Consider the model (1) written in a more compact
form ’

Z(w) = Y(w) + W(w) (10)

where

Y(w) = Aw, 8)z(w);

In this equation

(11)

z(w) = [zo(w), . .., z,(w)]T (12)
is the state vector of the incoming signals and
Alw,8) = [a{w,b0),...,e(w,8,)| (13)

is a full rank matrix of the steering vectors which
are assumed to be linearly independent. Under this
-assumption and using the linearity of MMSE esti-
mates, from (11) we get

2(w) = 4% (w, )Y (w), (14)
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where A% (w,8) is the pseudo-inverse and

¥ w) = S¢ ()5 () Z(w) (15)

The signal estimate at the desired direction 8, is
given by

Zo(w) = ef A%(w,0)Sy (w)57 (@) Z(w)  (16)
where el = [1,0,...,0]. If the statistics of the
uncorrelated noise term W (w) are known, up to a
scalar factor, then Sz(w) and Sy(w) can be esti-
mated directly from the data, by using well known
techniques for estimation of structured covariance
matrices [3;. In general the directions of arrival of
the interferences {6,}7_, are not known. Hence.
the MMSE-BF must be preceded by a preprocess-
ing that determines the directions {6,,}/_, see [7|.
This is common practice in other approaches also,
see [9] or [8].

In contradistinction with the adaptive procedure
described above, more accurate models for the prop-
agation channel provide prior knowledge about the
cross-correlation between the desired signal and the
observations, enabling, under some specific con-
ditions, the characterization of coherent paths in
terms of attenuation and direction of arrival, see [5]
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Figure 1: MMSE-BF

2. MMSE-BF with Distortion-
less Constraint

Although for narrowband {NB) problems the fre-
quency distortion introduced by the MMSE-BF
does not degrade seriously the recomstruction of
the source signal, for wideband (WB) signals this
may impair the performance of the beamformer.
To counteract this effects but at the same time
to preserve as much as possible the adaptation to
the possibly existent cross-correlation between the
source and interfering signals (as in multip'at.h appli-
cations), we study the design of a MMSE-BF with
the distortionless constraint (7). Using Lagrange



multiplier tecnhiques, the task is that of minimizing
the functional

J(h) = BE{lzo(w) - h*(w)Z(w)]*} (17)
+A[2 —at(w,0))h(w) — A (w)alw, 8o,

where ) is the Lagrange multiplier and the beam-
former output is specified by

Zy(w) = At (w) Z{w). (18)

By equating the gradient of J(h) with respect to k
to zero, it follows

hiw) = 57 (@)[Sz0(w) + Aa(w, 80)]; (19)

using the restriction (7) in (19), we obtain the La-
grange multiplier
_ 1- a+(w, 51.)52_1(0.))53“((;1)
at{w,8))5; " (w)a(w, du)

, (20)

which, when substituted in (19), gives

h(w) = S5 (w)x
—at (W )n T NN g (v 21
Sgo(w) + ettt ) ’a(w,o..)]. (21)

at (wdn) S 7 walw.on)

By substitution of (21) in (18), we get

A _ at{w 0057 (w)
Io(w) - a‘*‘(w.b‘u).\';‘(f}lu(u.(}u) (w)

+Szo(w)x

-1 SV wlaw i)t (w.0,) ST w)
[SZ (w) - == u'*lullu)h';llw)u(w.fli) ] Z{w).
(22)

Comparing the above formula with (5) and (9),
terms corresponding to MMSE-BF and the MVDR-
BF can be identified. It can be verified that, for
the limit case of uncorrelated sources, this minimum
mean square error distortionless response beam-
former (MMSEDR-BF) is equivalent to the MVDR-
BF and, except for a frequency dependent gain, to
the MMSE-BF.
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Figure 2: MVDR-BF

For completely correlated paths the three beam-
formers have remarkably different behaviors. In
Figs. 1, 2, 3 typical assymptotic beampatterns are
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Figure 3: MMSEDR-BF

presented to exemplify the above sentence. Two co-
herent signals impinge on a seven elements array,
the desired one from broadside and the interference
along the direction § = 10”. The signal to noise
ratio in the look direction is assumed to be 3dB
and the interference is 6dB stronger than the de-
sired signal. Notice the level of adaptation of the
MMSE-BF to the environment conditions, search-
ing for the stronger coherent signal, while combat-
ing ambient noise with secondary lobes exhibiting
severe attenuations. Notice also the failure of the
MVDR-BF neither combining the signals or reject-
ing the coherent interference. In contradistinction,
the MMSEDR-BF can be classified as good inter-
ference rejector but sensitive to the ambient noise
field. Insight on this behavior can be obtained by
interpreting equation (22). Only the first term in
(22) depends on the desired signal. In fact, the ma-
trix in brackets, in the second term, is the projection
matrix onto the orthogonal complement of the sub-
space spanned by a(w, 8y), on the norm of S,(w).
Hence, this term is responsible for the high sensi-
tivity of this beamformer to the ambient noise field.
However, the retained contributions from the cor-
related interferences are used to combat the poor
performance of the first term (MVDR-BF) under
these conditions, while getting the profit of its dis-
tortionless response property.

This shows that the adequated beamformer for
multipath applications, whenever some prior infor-
mation is available for the cross-correlation struc-
ture of the received signals, is MMSE-BF. Its perfor-
mance is at the cost of possible frequency distortion.
When this is a critical issue, the MMSEDR-BF is,
under the same conditions, better than the MVDR-
BF. The principal disadvantage of this beamformer
is its high sensitivity to the ambient noise.

3. Beamforming as an Inverse
Problem

In geophysics, or in image processing, like in beam-
forming, one is confronted with the task of field re-



construction from a set of possibly sparse spatial
measurements. Let z collect the available spatial
measurements and let z, represent the field to be re-
constructed. The problem is that of finding a good
estimate of zg, in the sense of minimizing the cost
function

J= d1(2 ~ Ayzo; R) + Ada(z0; Q) (23)

where @ and R are metrics constraining the solution
and the residue, respectively, and A is a regularizing
parameter. By choosing appropriately the strength
of the regularizing parameter A, the designer adjusts
the confidence placed on the prior knowledge versus
reliance on the measurements. Said in other words,
the first term in (23} tries to match the field to the
measurements, while the second term attempts fit-
ting the prior knowledge about the field.

We now recast both the MVDR-BF and the
MMSE-BF as solutions of an inverse problem. With
generality, the output of the beamformer is the sig-
nal z; that minimizes the functional (23). For an
L, norm

J=|lz—anzy ”??-l +A | =0 ”23—11 (24)

and R and @ being the covariances of the residues
and of the signal z,. The MVDR-BF and the
MMSE-BF can be recovered as particular solutions
of the problem formulated above. The first one re-
sults when A = 0 (high confidence on the measure-
ments), the second when A = 1 (reliable prior knowl-
edge). Also, when no prior knowledge exists about
the noise and signal statistics (A = 0, R = I), the
conventional delay and sum beamformer is recov-
ered.

Matrices R and @ can have no statistical mean-
ing, performing as penalty metrics on the functional
to be minimized. This suggests use of iterative al-
gorithms for searching the solution of the problem,
adapting those metrics at each iteration. With the
inverse framework, we can now consider alternative
norms, such as a mininium entropy norm or a gen-
eral L, norm.
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Figure 4: L, adaptive beamform

Fig. 4 shows an adaptive L, beamformer in the
absence of prior knowledge. Each trace corresponds

to a different snapshot. This was obtained by means
of the iterative reweighted least squares (IRLS) al-
gorithm. For each snapshot a maximum of 100 iter-
ations was specified. Although this L; beamformer
resembles the conventional beamformer, it may be
particularly relevant when outliers are present on
the data, as when faulty sensors arise. The robust-
ness of this L | beamformer under these adverse con-
ditions is presently under study.
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