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ABSTRACT

In previous work, we presented a method for constructing
dynamic input-output models for real-time state estimation
in correlated dynamic fields using wireless sensor networks
(WSNs). The input signals correspond to the sensors on the
boundary of the physical space under study, reflecting the as-
sumption there are no independent sources in the interior of
the region. In this paper, we present a method to identify sen-
sors not on the boundary that should be used as inputs in the
dynamic models when there are inner sources, i.e., sources
inside the physical space. We extend concepts from the be-
havioral model theory of Jan Willems to handle noisy time
series. We construct a block-Hankel structured matrix based
on the sensor data, and then calculate as an independence
indicator the angle between each row of the matrix and the
subspace determined by the span of the preceding rows. The
inner sources are identified based on these angle values. Ex-
perimental results with real temperature data collected with a
WSN, and including heat sources as inner sources, illustrate
the proposed method.

1. INTRODUCTION
Wireless sensor networks (WSNs) are promising for large-
scale environmental monitoring and control applications, such
as temperature regulation in office buildings [1] or data cen-
ters [2]. In [3] and [4], we propose a method for construct-
ing input-output models to estimate values of correlated dy-
namic fields using real-time measurements from a WSN. The
input signals for these models are identified as the sensors on
the boundary of the physical space being monitored, based
on the assumption that there are no independent sources in-
side this region. In many applications, this is not a realistic
assumption–there will typically be sources (e.g., heat sources)
within the region. This paper is concerned with the problem
of identifying which sensor signals should be used as inputs
in the input-output model used for real-time state estimation.

In 1986 and 1987, Jan C. Willems published a sequence of
papers [5, 6, 7] that proposed a new methodology for obtain-
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ing exact or approximate dynamical models for linear time-
invariant systems from a set of observed deterministic time
series. This work was further developed into a general ap-
proach, called the behavioral approach, for modeling and
analysis of multivariable dynamical systems [8]. We recast
our WSN problem of identifying the inner sources in Willems’
behavioral approach, except that we are concerned with find-
ing a method to distinguish the inputs from outputs in a set of
observed noisy time series, e.g., a set of sensor measurements
series.

One of the key features in Willems’ methodology is that
dynamical systems are considered without distinguishing be-
tween inputs and outputs a priori, i.e., without identifying
which components of the set of observed time series are in-
puts and which are outputs [5]. Causality is a matter of repre-
sentation and not an a priori axiom that needs to be imposed
on the studied systems. The inputs and outputs are distin-
guished, as a byproduct, in the process of exact modelling,
based on the linear independence of those time series [6].
However, the approach proposed in [6] is valid only for deter-
ministic/noiseless time series, rather than noisy time series, as
it is the case with sensor measurements in WSN. In this paper
we develop a general method extending Willems’ approach to
distinguish inputs from a set of noisy time series.

This paper is organized as follows. Section 2 states the
problem we consider, and describes briefly Willems’ algo-
rithm for deterministic/noiseless time series. In Section 3,
we propose an algorithm to identify inputs within a set of
noisy measurement series. In Section 4, we modify and ap-
ply the proposed algorithm to data from WSNs to identify in-
ner sources in our field estimation approach developed in [4].
Section 5 presents experimental results applying this method
to identify inner sources based on data from a WSN of 18
sensors in a large laboratory space with internal heat sources.
Section 6 concludes the paper.

2. PROBLEM FORMULATION
Our overall goal is to estimate a random field from sensor
measurements provided by a collection of sensors in a WSN.
We assume that at the locations where it is desired to estimate
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the field there are no sensors. An important step in our solu-
tion is to fit a dynamical system to model the random field. An
intermediate stage in this process is to distinguish within the
sensor measurements which ones correspond to field sources.
We refer to this as the inner source identification problem.

Suppose that the data collected by a WSN are noisy mea-
surements of the inputs and outputs of an LTI dynamic sys-
tems, but the separation into input and output signals is not
given. Our target is to identify the input signals from these
noisy measurements.

Assume that we have a set of q finite time series: wi =
[wi(1) · · · wi(T )], i = 1, · · · , q. The task is to identify
which of these q finite time series should be regarded as in-
puts. Let w̃(t) = [w1(t) · · · wq(t)]T and w̃ = [w̃(1) · · ·
w̃(T )]. Assume that the AR model of the q time series is:
R0w̃(t) + R1w̃(t + 1) + · · · + RLw̃(t + L) = 0, where
R0, R1, · · · , RL ∈ R

g×q , g is the number of system laws, and
L is the memory length of the system. We consider a moving
window, with window width ∆ > L, in order to identify the
driving components of w̃, i.e., the inputs. Our method exam-
ines the following q(∆+1)×(T−∆) block-Hankel structured
matrix H(w̃) from the data:2
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Willems developed an algorithm in [6] to identify a set of
input signals in the AR model from a given set of noiseless
time series by considering the linear dependence of each row
of H(w̃) with respect to the preceding rows, starting from the
top row. This results in a dependency column vector d, com-
posed of ∗’s and •’s. A ∗ or a • in the ith component shows
that the ith row of H(w̃) is linearly independent of, or de-
pendent on, the preceding rows, respectively. In the case con-
sidered in [6] where T = ∞, the Hankel structure of H(w̃)
implies that if d has a • in its ith row, it will have a • in its
(i+nq) row for all possible n’s satisfying (i+nq) < q(∆+1).
Let j be the index of a given time series, i.e., 1 ≤ j ≤ q. If
there is a ∗ in the (j + nq)th row of d for all 1 ≤ n ≤ ∆,
then the jth time series in w̃ should be regarded as an input.
This approach proposed in [6] is valid only for noiseless time
series, rather than noisy time series such as the signals from
a WSN. When the data is corrupted by noise, even very weak
noise, Willems’ algorithm gives the meaningless result that
all time series are inputs. In the next section, we propose a
generalization of this method to distinguish inputs from a set
of noisy time series.

3. INPUT IDENTIFICATION WITHIN A SET OF
NOISY TIME SERIES

Willems’ method in [6] makes “hard” decisions, represented
by ∗ or •, on the independence of each row of the Hankel
matrix H(w̃). We explore now replacing the hard decisions
by soft decisions with the hope that soft decisions on the inde-
pendence of each row of the Hankel matrix H(w̃) will lead to

an identification of the inner sources when the measurements
are noisy. Such soft decisions can be realized by evaluating
the angle θ between the vector h corresponding to the current
row of the Hankel matrix H(w̃) and the subspace S spanned
by the preceding rows. Let

θ(h,S) = cos−1

(∣∣∣∣ 〈h, ΠSh〉
|h||ΠSh|

∣∣∣∣
)

, (2)

where ΠS(•) is the projection operator on S and 〈·, ·〉 is the
inner product between the two vectors.

If a row h of H(w̃) is independent from the preceding
rows, the angle θ between this row h and the subspace S spec-
ified by the preceding rows should be nonzero; if this row is
dependent on the preceding rows, the angle θ should be 0.
Larger values of the angle θ represent stronger independence
of the corresponding row of H(w̃).

We calculate the angle θ for each row of the Hankel matrix
H(w̃). Let θi be the average of these angles θ corresponding
to delayed rows of the same time series. We collect these av-
erage angles into the average angle vector va = [θ1 · · · θq].

Let T0 be the total length of these time series; we only
need to work with the first T samples of each time series in
w̃, where T < T0. Let ∆ be the width of the moving window.
Since the row length of the Hankel matrix H(w̃) is T −∆, T
must be larger than ∆.

Algorithm 1 (Input Identification)
1. Initialization Given ∆, let T = ∆ + c, where c is

a small integer constant whose value chosen empirically.
Build the Hankel matrix H(w̃) from the data set w̃ for
the T and ∆, as in (1).

2. For (q+1) ≤ i ≤ q(∆+1), compute θi = θ(hi,Si−1)
by Equation (2), where hi is the ith row of H(w̃), and
Si−1 is the subspace spanned by the first (i − 1) rows of
H(w̃).

3. For 1 ≤ i ≤ q, let

vi =
1
∆

∆+1∑
n=1

θi+nq. (3)

4. For 1 ≤ j ≤ q, if vj > 0, then declare the time
series wj an inner source.

5. End.

In Step 2, we do not compute the angle θ for the first q
rows of H(w̃) because these rows are the first segments of
the q time series and they do not provide reliable information
on the dependence relationship among these time series.

4. INNER SOURCE IDENTIFICATION IN
WIRELESS SENSOR NETWORKS

We proposed in [4] an approach to estimate the real-time val-
ues of a physical field at specific locations of interest R =
{r1, . . . , rn} based on measurements at sensor locations S =
{s1, . . . , sm}, where R is not necessarily contained in S. To
solve this real-time estimation problem in WSNs, we defined
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the concept of cut point sets, and derived reduced-order mod-
els based on the cut point sets to implement the real-time field
estimation. The cut point set can be regarded as the “bound-
ary” of the field region of interest where the field values are
measured by wireless sensors. For the reduced-order model
derived from a cut point set Xc, its input usually includes
all the sensors in Xc, and its output usually includes all the
sensors inside Xc, i.e., encompassed by the sensors in Xc.
However, if one or more sensors inside Xc represent sources
of the studied field, called inner sources, these sensors should
be regarded inputs, rathern than outputs, of the reduced-order
model. Therefore, it is an important problem to identify inner
sources from the sensors inside the cut point set Xc. Readers
can refer to [4] for details.

We modify Algorithm 1 to identify inner sources in WSNs.
In our application for field estimation with a WSN, the q time
series include measurements of the sensors that belong to the
cut point set Xc and of the q′ sensors inside Xc, i.e., the mea-
surable vertices inside the extended state vertex set X ′

s. We
compute the average angle vector va based on all these time
series, but we only track its components corresponding to the
q′ inner sensors, since our task is to identify the inner sources;
the sensors on the boundary, i.e., in the cut point set Xc, are
already identified as inputs to the dynamic model. Let v′

a be
the average angle vector corresponding to the concerned q′

components of va.

Algorithm 2 (Inner Source Identification in WSNs)
1. Same as Algorithm 1.
2. Same as Algorithm 1.
3. Same as Algorithm 1.
4. Let v′ = [vn1 · · · vnq′ ], where vnj

, j = 1, · · · , q′,
correspond to the q′ time series in w̃′.

5. For 1 ≤ j ≤ q′, if vnj > 0, then declare the time
series wnj

an inner source.
6. End.

5. EXPERIMENTAL RESULTS
We collected temperature data using 18 wireless sensor nodes
in a laboratory at Carnegie Mellon University with two con-
trollable electrical heaters. Figure 1 shows the layout of the
experiment. The locations of the heaters are indicated by
small rectangles labeled 1 and 2 and the sensor locations are
indicated by circles labeled 1 to 18. Figure 2 shows the exper-
imental set-up. Both heaters are controlled by remote power
control devices [9]. We can set an on-off power sequence for
each heater to generate a desired temperature variation pattern
in the room.

The total duration of the experiment we carried out is 15
hours, and the power on-off sequences for the two control-
lable heaters are shown in Figure 3. The sampling rate for
each sensor is 0.5 Hz, but the samples for different sensors
are not synchronized. We use linear interpolation to obtain
synchronized sensor measurements for all 18 sensors with a
sampling rate of 1 Hz. We show the 18 time series in Figure 4,
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Fig. 1. Experimental layout of sensors.

Fig. 2. Experimental set-up.

where the top curve shown in red (if color is available) is the
first inner source S7, the second top curve, in purple, is the
second inner source S9, and the remaining curves, all drawn
in blue, are the measurements for the other 16 sensors.
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Fig. 3. Power on-off sequence for the heaters.

Each time series in our experimental data has about 54,000
samples. Because we only need a short segment of these time
series to identify the inputs, we use the following two sets of
time series:

w̃a — includes 18 time series of 1000 samples each, start-
ing at the 10,000 s sample and ending at the 10,999 s sample.
In this segment, there is only one inner source S7.

w̃b — includes 18 time series of 1000 samples each, start-
ing at the 30,000 s sample and ending at the 30,999 s sample.
In this segment, there are two inner sources S7 and S9.

For both w̃a and w̃b, we apply Algorithm 2 for different
values of T , i.e., different values of c = T −∆. As explained
in the last section, we compute the average angle vector va

based on the measurement of all the 18 sensors, but we only
track its components corresponding to the 6 inner sensors, i.e.,
{S7, S8, S9, S12, S13, S14}, to identify the inner sources. The
results for w̃a and w̃b are shown in Figure 5 and Figure 6,
respectively.
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Fig. 4. Experimental data for 18 sensors.

Figure 5 shows that, when 0 < c < 46, there is only one
inner source, the inner source S7 represented by the line plot
with circle marks, in red, that is successfully and correctly
identified as an inner source, since the value of its correspond-
ing component in va is the only nonzero component of va.

Figure 5 shows the results when 0 < c < 150. In this
case, both heaters are turned on, and so there are two inner
sources collocated with sensors S7 and S9. The two line plots
in Figure 5, the red one with circle marks and the blue one
with star marks, successfully identify both sensors S7 and S9

as the correct inner sources.
Figure 5 and Figure 6 show that Algorithm 2 successfully

identified the inner sources within the group of real data noisy
time series; the constant c is chosen to have a small positive
value.
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Fig. 5. Result for experimental data w̃a: one inner source S7.

6. CONCLUSION

This paper considers the problem in wireless sensor networks
of identifying which sensor signals should be considered as
input signals in models used to estimate a correlated field at
locations where there are no available sensors. These signals
are called inner sources. We present an algorithm to identify
the inner sources when the time series are noisy, making it
possible to relax the assumption in [6] that all inputs signals
are on the boundary. Experimental results with real data col-
lected by a sensor network with 18 sensors and two heaters
verify the validity of the proposed algorithm.
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