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ABSTRACT

In this paper we derive the generalized likelihood ratio test
(GLRT) for time reversal detection. We consider a multi-
static array configuration with two antenna arrays, one for
transmitting and one for receiving. We examine the time re-
versal GLRT performance with experimental measurements
in the electromagnetic domain in a highly cluttered labora-
tory environment. The experiments show that time reversal
provides significant performance gain over the conventional
energy detector.

1. BACKGROUND

Time reversal (TR) is an emerging technique for detecting
weak targets buried in a large number of clutters. Time
reversal has received considerable attentions in the ultra-
sound [1] and the acoustics domains [2]. Recently, we de-
veloped in [3] the generalized likelihood ratio (GLR) de-
tector for a pair of transmit-receive sensors. We consider
in this paper the general case of transmit-receive array A
and array B. The array A has P antennas [A0, · · · , AP−1].
The array B has N antennas [B0, · · · , BN−1]. Motivated
by signal theory rather than electromagnetic scattering the-
ory, we use the following two channel frequency response
matrices to represent the scattering characteristics of the
radar target and clutter in a multi-static configuration. The
N × P clutter channel frequency response matrix Hc(fq),
q = 0, · · · , Q − 1, is the response of the channel when
no target is present. The (n, p)-th entry of Hc(fq) is the
channel response between antenna Ap and antenna Bn at
frequency fq , i.e.,

[Hc(fq)]n,p = Hc(fq; Bn ← Ap), ∀p, n. (1)

Similarly, we consider the N × P target channel frequency
response Ht(fq), q = 0, · · · , Q − 1, which is the differ-
ence between the channel response when a target is present
and the channel response when no target is present. Again,
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the (n, p)-th entry of Ht(fq) is the target channel response
between antennas Ap and Bn, i.e.,

[Ht(fq)]n,p = Ht(fq;Bn ← Ap), ∀p, n. (2)

As such, Ht(fq) represents all the changes to Hc(fq) in-
duced by the presence of the target, and, in particular, it
includes secondary backscatter, i.e., backscatter from the
clutter to the target that is then radiated back to the receiving
antenna. Throughout the paper, it is assumed that the clut-
ter channel frequency response Hc(fq),∀q, can be learned
and can be subtracted out (see [3] for details). It suffices to
consider Ht(fq) for detector development.

The general transmission strategy using time reversal
can be described by the following three steps. First, we
learn the scattering channel response. Second, we monitor
the target channel, while the clutter channel response is sub-
tracted from the measurements. Finally, we re-transmit the
power-normalized time-reversed signal back into the scat-
tering environment. In general, the target response is un-
known. We adopt the generalized likelihood ratio (GLR)
principle to derive the time reversal GLRT (TR-GLRT) de-
tector. We test the TR-GLRT with electromagnetic data col-
lected in a highly cluttered laboratory environment.

2. TIME REVERSAL DATA MODEL

We denote by Ym,p,n(fq) the received m-th snapshot sig-
nal at antenna Bn transmitted from antenna Ap at fq where
m = 1, · · · ,M . Grouping all the measurements collected
from the receiving antennas B1, · · · , BN yields an N di-
mensional signal vector

ym,p(fq) = [Ym,p,0(fq), · · · , Ym,p,N−1(fq)]T , ∀p,m.

Using the target frequency response Ht(fq), the received
signal vector at the array of antennas B transmitted from
antenna Ap is

ym,p(fq) = Ht(fq)S(fq)ep + vm,p(fq), ∀p, m, (3)

where ep is a column vector of zero entries except that its
pth element is 1; S(fq) is the transmitted signal at frequency
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fq; and vm,p(fq) is an additive noise vector. The total re-
ceived signal for the m-th snapshot at array B, transmitted
from array A, is

ym(fq) =
P−1∑
p=0

ym,p(fq) = Ht(fq)sA(fq) + vm(fq), (4)

where the signal vector sA(fq) and the noise vector vm(fq)
are

sA(fq) = [S1(fq), · · · , SP (fq)]T , (5)

vm(fq) = [Vm,0(fq), · · · , Vm,N−1(fq)]T . (6)

We assume that S1(fq) = · · · = SP (fq). For snapshot m,
collecting the frequency response ym(fq), q = 0, · · · , Q −
1, in a NQ-dimensional vector ym yields

ym = [yT
m(f0), · · · ,yT

m(fQ−1)]T . (7)

The signal vector ym received at the array of antennas B are
now time reversed, power normalized, and transmitted back
into the scattering medium after subtracting out the clutter
response. The P × 1 received signal vector at antenna array
A is

xm(fq) = kmHT
t (fq)[ym(fq)]∗ + wm(fq), (8)

= kmHT
t (fq)[H∗

t (fq)s∗A(fq)
+v∗

m(fq)] + wm(fq), (9)

where wm is the complex Gaussian noise vector

wm(fq) = [Wm,0(fq), · · · ,Wm,P−1(fq)]T , ∀p,m.

Due to reciprocity of the channel, the target response from
B back to A is HT

t (fq). The gain km is the power normal-
ization factor for each antenna Bn

km =

√√√√ ∑Q−1
q=0 ‖sA(fq)‖2∑Q−1
q=0 ‖ym(fq)‖2

. (10)

We define data vectors xm(fq), vm(fq), and wm(fq)

xm = [xT
m(ω0), · · · ,xT

m(ωQ−1)]T , (11)

vm = [vT
m(ω0), · · · ,vT

m(ωQ−1)]T ,

wm = [wT
m(ω0), · · · ,wT

m(ωQ−1)]T .

The detection problem using time reversal can now be for-
mulated as a binary hypothesis test obtained by concatenat-
ing the measurements (ym,xm),∀m. We also consider a
second detection problem—the conventional detection. This
will use concatenated data measurements (ym, rm), where
ym is given in (7) and

rm(fq) = HT (fq)sB(fq) + wm(fq), (12)

rm = [rm(ω0), · · · , rm(ωQ−1)]T , (13)

sB(fq) = [S1(fq), · · · , SN (fq)]T . (14)

Time reversal detection uses (ym,xm) and conventional de-
tection uses (ym, rm). This ensures that, for benchmarking
purposes, the SNR will be the same in both problems.

3. TIME REVERSAL GLRT

We collect the data in the following Q(P +N) dimensional

vector zm =
[
(y∗

m)T xT
m

]T
. The time reversal binary hy-

pothesis test is then given by

H1 : zm =
[

y∗
t

xt

]
+

[
v∗

m

wm

]
H0 : zm =

[
v∗

m

wm

]
,

(15)

where the target signal components yt = Ht(fq)sA(fq)
and xt = kmHT

t (fq)H∗
t (fq)s∗A(fq). The conventional de-

tection problem is similarly defined with proper modifica-
tions. For the hypothesis test (15), the m-th snapshot under
the alternative hypothesis is a complex Gaussian vector

zm ∼ CN
([

H∗(fq)s∗A(fq)
kmHT

t (fq)H∗
t (fq)s∗A

]
,Ω(q)

)
,

Ω(q)=
[

σ2
vIN kmH∗

t (fq)σ2
v

kmHT
t (fq)σ2

v k2
mHT

t (fq)H∗
t (fq)σ2

v + σ2
wIP

]
.

Using the matrix inversion lemma, [4], and the block matrix
inversion lemma, [4], we obtain

Ω−1(q) =

[
1

σ2
v
IN + k2

m

σ2
w
H∗

t (fq)HT
t (fq) −km

σ2
w
H∗

t (fq)
−km

σ2
w
HT

t (fq) 1
σ2

w
IP

]
.

Applying the matrix determinant identity, [4],

det
([

A B
C D

])
= det(A)det(D − CA−1B) (16)

to Ω(q) yields

|Ω(q)| = |σ2
vIN ||σ2

wIP | = (σ2
v)N (σ2

w)P . (17)

For snapshot m = 1, · · · ,M , we define

ym(fq) = y∗
m(fq) − H∗

t (fq)s∗(fq),
xm(fq) = xm(fq) − kmHT

t (fq)H∗
t (fq)s∗(fq).

To derive the TR-GLRT, we need the probability density
functions (pdfs) p1(z) under H1 and p0(z) under H0. We
condition the pdfs on the power normalization factors km.
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We then obtain

p1(z) =
M∏

m=1

Q−1∏
q=0

1
π|Ω(q)| exp

{
−

[
ym(fq)
xm(fq)

]H

Ω−1(q)
[

y∗
m(fq)

xm(fq)

]}
(18)

=
M∏

m=1

Q−1∏
q=0

1
π(σ2

w)P (σ2
v)N

exp
{−yH

m(fq)[
1
σ2

v

IN +
k2

m

σ2
w

H∗
t (fq)HT

t (fq)
]
y∗

m(fq)

+2R{km

σ2
w

xH
m(fq)HT

t (fq)y∗
m(fq)} 1

σ2
w

‖xm(fq)‖2

}

=
M∏

m=1

Q−1∏
q=0

1
π(σ2

w)P (σ2
v)N

exp
{
−‖xm(fq)‖2

σ2
w

− ‖ym(fq)‖2

σ2
v

+ 2R{km

σ2
w

yT
m(fq)H∗

t (fq)xm(fq)

+
1
σ2

v

yT
m(fq)H∗

t (fq)s∗(fq)}

− 1
σ2

v

‖H∗
t (fq)s∗(fq)‖2 − k2

m

σ2
w

‖HT
t (fq)y∗

m(fq)‖2

}
(19)

p0(z) =
M∏

m=1

Q−1∏
q=0

1
π(σ2

w)P (σ2
v)N

exp
{
−‖xm(fq)‖2

σ2
w

}

exp
{
−‖ym(fq)‖2

σ2
v

}
. (20)

We now derive the TR-GLRT. Taking the logarithm of the
ratio of the two pdfs (19) and (20) evaluated at the maximum
likelihood estimate of Ht yields the test statistic

�TR-GLRT(z) = lnp1(z) − lnp0(z)

=
M∑

m=1

Q−1∑
q=0

{
2R{km

σ2
w

yT
m(fq)Ĥ∗

t (fq)xm(fq)}

+ 2R{ 1
σ2

v

yT
m(fq)Ĥ∗

t (fq)s∗(fq)}

− 1
σ2

v

‖Ĥ∗
t (fq)s∗(fq)‖2 − k2

m

σ2
w

‖ĤT
t (fq)y∗

m(fq)‖2

}

=
1

σ2
wσ2

v

Q−1∑
q=0

{
2R{Tr[Ĥ∗

t (fq)A(fq)]}

−2R{Tr[ĤT
t (fq)Ĥ∗

t (fq)C(fq)]

−Tr[Ĥ∗
t (fq)ĤT

t (fq)D(fq)]
}

, (21)

where

A(fq) =
M∑

m=1

[
kmσ2

vxm(fq)yT
m(fq) + σ2

ws∗(fq)yT
m(fq)

]
,

(22)

C(fq) = Mσ2
ws∗(fq)sT (fq), (23)

D(fq) =
M∑

m=1

k2
mσ2

vy
∗
m(fq)yT

m(fq), (24)

and Ĥt(fq) is the maximum likelihood estimate of Ht(fq)
under H1 to be determined below. This is not a linear test
statistic, which is to be expected given that the channel is
unknown.

Next, we derive the maximum likelihood estimate of Ht

under H1. Our derivation neglects the dependency of the
power normalization factors km on the target channel re-
sponse and so is only an approximation to the true ML es-
timate. Taking the partial derivative of lnp1(z) with respect
to H∗

t (fq), and ignoring the constant terms, yields

∂[lnp1(z)]
∂H∗

t (fq)
=

∂

∂H∗
t (fq)

Q−1∑
q=0

{
−

M∑
m=1

‖xm(fq)‖2

σ2
w

−
M∑

m=1

‖ym(fq)‖2

σ2
v

+ 2R{Tr[H∗
t (fq)A(fq)]}

−Tr[HT
t (fq)H∗

t (fq)C(fq)]
−Tr[H∗

t (fq)HT
t (fq)D(fq)]

}
. (25)

Recalling the rule of treating the complex variable v and its

conjugate v∗ as two distinct quantities, i.e., ∂|v|2
∂v∗ = v, [5],

we obtain the following expression that involves taking the
derivative of a trace with respect to complex numbers,

∂ [lnp1(z)]
∂H∗

t (fq)
= −C(fq)HT

t (fq) − HT
t (fq)D(fq) + A(fq).

Or equivalently the following well known Lyapunov equa-
tion (or Sylvester matrix equation), [6],

Ht(fq)CT (fq) + DT (fq)Ht(fq) = AT (fq). (26)

A straightforward numerical approach to the above equation
forms the single vector equation using Kronecker products
as follows

vec {AT (fq)} = G(fq) vec {Ht(fq)},
G(fq) = C(fq) ⊗ IN + IP ⊗ DT (fq),

which leads to

vec {Ht(fq)} = [G(fq)]−1 vec {AT (fq)}. (27)

The approximate ML estimate Ĥt(fq) is obtained by un-
doing the vectorization of vec {Ht(fq)} given in Eqn. (27).
Caution should be taken when completing this ML estimate
from (27) since it is often slow and ill-conditioned. Other
standard solution methods for (26) are the Bartels-Stewart
method, [7], and the Hessenberg-Schur method, [8].
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4. EXPERIMENTS AND SIMULATIONS

We measured the electromagnetic channel response with 30
scatterers in a laboratory environment. The experiments
were repeated with the same 30 scatterers plus one addi-
tional target. The signal S(fq) is a rectangular frequency
pulse in the 4 − 6 GHz range. We choose Q = 51 equally
spaced frequencies. Two horn antennas are used to synthe-
size two uniform linear arrays, each with P = N = 10
antenna elements. There are a total of Bn ← Ap 10 × 10
channels recorded. The different array configurations can
be set by choosing among 10 antenna positions from each
transmit/receive array. The scattering environment is cre-
ated by placing a mix of copper rods and dielectric pipes in
a wood platform in front of an absorber wall. An Agilent
89610 vector signal analyzer is used to capture the in-phase
(I channel) and quadrature (Q channel) streams of the re-
sponse. After the channel responses with and without target
are recorded, artificial noise is inserted in the measurements
with SNR =

∑Q−1
q=0 ‖Ht(ωq)sA(ωq)‖2/(NQσ2

v). Fig. 2
depicts the ROC curves of the TR-GLRT versus conven-
tional energy detection. As an example, the array configu-
ration is A = [1, 3, 7] and B = [3, 6]. The number of data
snapshots used for detection is M = 2. The false alarm rate
Pfa = 0.01. For probability of detection PD = 0.8, the
TR-GLRT has a detection gain of 1.8 dB over the conven-
tional energy detector (ED).

5. CONCLUSION

We derived the time reversal GLRT detector using antenna
arrays and compared its performance with the conventional
energy detector. We developed a closed form expression
for the approximate ML estimate of the target channel re-
sponse. The detector is tested using electromagnetic data
collected in a rich scattering laboratory environment with
30 scatterers. The ROC curves demonstrate the superiority
of the TR-GLRT over the conventional detectors.
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