CLUTTER ADAPTIVE TRACKING OF MULTIASPECT TARGETS IN IRAR IMAGERY
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ABSTRACT

We present in this paper a clutter adaptive, multiframe Baye-
sian algorithm for joint detection and tracking of a multi-
aspect target in cluttered image sequences. The target tem-
plate is randomly translated, rotated, scaled and sheared
from frame to frame. Tracking performance studies with
a sequence generated from real data infrared airbone radar
(IRAR) imagery show a reduction in the steady-state posi-
tion estimation error and in the target acquisition time when
the Bayes detector/tracker is compared to the association of
a bank of matched filter detectors and a linearized Kalman-
Bucy tracker.

1. INTRODUCTION

We introduced in [1] an optimal Bayesian algorithm for in-
tegrated, multiframe detection and tracking of moving tar-
gets in sequences of two-dimensional (2D) digital images
generated by remote imaging sensors. In this paper, we gen-
eralize the algorithm in [1] to include multiaspect targets.
Random changes over time in the aspect of the target of in-
terest may result from rotational motion and/or from varia-
tions in the conditions of observation of the target, e.g. due
to changes in the relative target-sensor orientation. Previ-
ous work [2, 3] considered the problem of classification and
identification of multiaspect targets using hidden Markov
models (HMMs) to represent the aspect-dependent electro-
magnetic {2] or acoustical [3] scattering characteristics of
the targets. In our work, we consider instead the prob-
lem of detecting and tracking multiaspect targets using a
finite resolution imaging sensor, e.g. an infrared airbone
radar (IRAR) [4]. Instead of processing the target’s scat-
tered waveforms, we have as data a preprocessed sequence
of digital images in which we use the HMM formalism to
model the target’s translation and the rotation and/or de-
formation (scaling or shearing) of the target template from
frame to frame. Rather than classification of stationary ob-
jects, our goal is to detect man-made moving targets that are
distinct from the background, and to sequentially estimate
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the spatial location of those targets in the surveillance re-
gion. Our algorithm fully incorporates in a optimal way the
statistical models for target motion, target aspect, and for the
background clutter, and enables multiframe detection and
tracking decisions using all the information available from
the observed image sequence. The generalized algorithm
is also clutter adaptive, allowing for on-line learing of the
background clutter model parameters from the available test
data.

This paper is divided into 5 sections. Section 1 is this
introduction. In section 2, we review briefly the models for
target aspect, target motion, and clutter that underly our uni-
fied approach to detection and tracking. We derive in sec-
tion 3 the multiframe Bayes detector/tracker for multiaspect
targets and discuss clutter parameter estimation. In section
4, we compare the tracking performance of the proposed al-
gorithm to the performance of the suboptimal association of
a bank of image correlation detectors (matched to the var-
ious aspects of the target) and a linearized Kalman-Bucy
filter used for tracking. Finally, section 5 summarizes the
contributions of the paper.

2. OBSERVATION MODEL

Due to the finite resolution of the sensor, each frame in the
image sequence is represented by an L x M finite lattice
where a pixel corresponds to one sensor resolution cell. At
frame n, the observations consist of an L x M matrix, Y,
such that

Yn=F(z,,8,) + V, 1

where F is the clutter-free target model, which is a function
of two unknown hidden variables: (a) the target’s centroid
position at frame n, z,, and (b) the target aspect at frame n,
Sn. The matrix V,, collects the background clutter returns
due to the presence of spurious scatterers in the region of
surveillance. We assume that the sequence {V,.},n > 0, is
independent, identically distributed (i.i.d.).

Target Motion Let Z be an equivalent 1D representation of
all possible pixel locations in the L x M sensor grid and
neighboring border regions, see [1]. To build an integrated

HI - 2873



framework for detection and tracking, we augment the set £
with an additional dummy state that represents the absence
of a target. We denote this absent target state by z = Ly.
We extend the observation model in (1) to include the absent
target case by making F(z,,s,) = 0 if 2z, = L. Denoting
by L the union of the set Z and the absent target state Lo, the
translational motion of the target between two consecutive
frames (including the probability of the target appearing in
or disapppearing from the sensor image) is described on £
by a first-order discrete Markov chain specified by the ma-
trix of transition probabilities

(k,r) € LxL.
@

Target Aspect We assume that there is a finite number of

Ti(k,7) =Prob(z, =k | zp-1=7)

possible target aspects defined onthe setZ = {0, 1, ... , M},

M > 1. We model the changes in target aspect over time by
a first-order discrete Markov sequence {s,}, n > 1, speci-
fied by the transition probability matrix

To(pl) =Prob(s, =p| sp—1=10) (p,1)€IxI. (3)
Clutter Mode] To capture the 2D spatial correlation of the
background clutter, we use a noncausal, spatially homoge-
neous Gauss-Markov random field (GMrf) model [5]. The
GMrf model is based on the principle of locality, i.e., the as-
sumption that the clutter intensity in a given pixel location
is related to the clutter intensities in the neighboring pix-
els. For a first-order model, the clutter returns at frame n,
Vnl(i, 3),1 <i < L,1 £ j £ M, are described by the 2D
finite difference equation

Vn(i7 ]) = /33 [Vn(i -1, .7) + Vn(i +1, J)]
+ BrlVa(i, i =1+ Vali, i+ 1)] +Un(s, ) @)

where E (V,.(4, 7) Un(p, v)] = 62 6(i—p, j—r), with & de-
noting the 2D Kronecker delta function. The assumption of
zero-mean clutter implies a pre-processing of the data that
subtracts the mean of the background. A nonzero clutter
mean could be accounted for trivially.

The advantages of the GMrf clutter model are twofold.
First, by changing the model parameters, we are able to rep-
resent a wide variety of both heavily and weakly correlated
2D textures. Second, the inverse of the covariance matrix
of a GMrf is highly sparse, see [5], with a well-defined
Toeplitz-block-Toeplitz structure. This structure can be ex-
plored to design efficient algorithms that avoid costly oper-
ations of matrix inversion and multiplication.

3. DETECTION AND TRACKING ALGORITHMS

Let y, be an equivalent long vector representation of the

nth sensor frame, Y, and let Y§ = [yZ ... yZ| T be the
collection of all observed frames from instants 0 to n. We

derive next an algorithm for the recursive computation of
Pz, =l,sn, =k |Y}),l € L,k € 1. We assume as a first
approximation that the random sequences {z} and {s,},
n > 0, are statistically independent, and that both sequences
are also independent of the clutter frame sequence {V,},
n > 0. The algorithm consists of three steps.

Filtering Step From Bayes’ law and using the assumption
that the sequence of clutter frames {V,} is i.i.d, we write

P(zn, 80 | Y§) = Cnp(¥n | 2n, 8n)P(2n, $n | Yg_l)
%)
where C,, is a normalization factor that is independent of z,,
and s,,.
Template State Prediction Under the assumption that s, is
independent of {2,}, and {V,}, n > 0, and modeling
{sn} as a first-order discrete Markov chain, we conclude
that, conditioned on s, _1, s, is independent of Yo_l, and
therefore we write

P(zn, sn | Y57 = Z [P(sn | sn-1)

© 8n-1

X Plan, sno1 | Y5TU)] . (6)

Translation Prediction Using a similar reasoning as in the
previous step, we get

P(zn, sn-1 IYo—l) = Z [P(zn | 2n-1)

Zn-1

X  P(zp-1, sn1 | Y3U)] .

The recursion is initialized by making P(z9,s0 | Y5?) =
P(zy) P(sg). The marginal posterior probability of the cen-
troid position z, conditioned on the observations is given by

P(zn|Y3)=ZP(stn|Y3)- )

8,€T

Minimum Probability of Error Detector Let Hy denote the
hypothesis that the target is absent at frame n and H; de-
note the hypothesis that the target is present during the nth
sensor scan. The minimum probability of error Bayes de-
tector follows the decision rule

Ho
P(zn=Lo| Y}) 21~ Plza=Lo| Y§) (8
H

where Ly is the dummy absent target state, see section 2.
MAP Tracker If hypothesis H; is declared true, we compute
the conditional probability vector

Qf [n] = P(zn=1| targetis present, Y3)

— P(anllY(’)L)
= T- Pl =Lo] YD ®)

lel
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The MAP estimate of target’s centroid position is

Zpin = arg max Qf [n] . 10)
lel

Clutter Adaptation As a first approximation, since the target
is very small compared to the background, we simply ignore
the presence of the target and estimate the GMrf clutter pa-
rameters directly from each available sensor frame Y, us-
ing a variation of approximate maximum likelihood (AML)
parameter estimation algorithm introduced in [5]. Table 1
summarizes the AML parameter estimation algorithm given
the L x M nth sensor frame Y ,,, see [5] for further details.
Note that the algorithm described in Table 1 is a fast, sin-
gle frame, on-line estimator that is applied directly to each
frame of the test data. No training data or previous learning
are required.

a) Unnormalized sample correlations:
oXh_Zz_Z LYo (i, 5)Yn (i +1) .
’Xv—z E] 1Y(@ NYa(i+1, 7).

b) Unnormallzed sample power

Zz 1}:] 1 n(z -7

c) Make §=10"3, comput:e e=05-6

L-1)M
and o= %(7%)
d) Correlation coefficients estimates:
26—
* Ph = et )+a|Xh|cos(n9

cC —
* B = gt e
e) Clutter power est:.mate
LM(S ﬂh*Xh—ﬁc*X)

002

Table 1. Summary of the AML parameter estimation algo-
rithm for an L x M Gauss-Markov random field.

Remark: In real scenarios, the parameters of the target as-
pect model are also unknown to the tracker. If the motion
model parameters are known and training data is available,
the parameters of the HMM that describes the changes in
target aspect may be learned from the data using the Baum-

Welch reestimation (or Expectation-Maximization) algorithm,

see [6, 7]. We omit this discussion here for lack of space.

4. TRACKING PERFORMANCE

We study in the sequel the tracking performance of the pro-
posed clutter adaptive, multiframe detector/tracker with a
multiaspect target observed in a simulated image sequence
that was generated from real-world infrared airbone radar
(IRAR) intensity imagery. The IRAR data is from the MIT
Lincoln Laboratory’s Portage database and was obtained via
the Center for Imaging Science at Johns Hopkins Univer-
sity. Figure 1 shows an imaged scene where we see two dif-
ferent stretches of terrain next to a body of water (the dark

Fig. 1. IRAR intensity data (Portage database).

region on the top right corner of the image). Brighter areas
indicate stronger laser returns. In order to simulate a mov-
ing target sequence, we extracted the spatially-variant local
mean along the image and fitted a first-order GMrf model to
the background by estimating the clutter parameters 35, 55
and o2, using the AML estimator. The background clutter
movie is then generated by adding to the matrix of previ-
ously stored local means a sequence of synthetized random
GMrf samples generated using the estimated background
clutter parameters. To simulate the target, we took an artifi-
cial template representing a military vehicle and generated a
library of linear transformations of that template using com-
posite operations of rotation, scaling and shearing. We then
added the artificial target to the background sequence with
the target centroid position changing from frame to frame
according to a near-constant velocity translation model. The
near-constant velocity model consists of time-invariant hor-
izontal and vertical drifts equal to 2 pixels/frame, perturbed
by a 2D first-order random walk where the probability of
fluctuation of one pixel in both dimensions was set at 20
%. The template state was randomly initialized with an un-
known aspect from the template library and then changed
over time according to a first-order Markov chain. At any
given frame, the true aspect of the target and the clutter
parameters are unknown to the detector/tracker. The tar-
get pixel intensity is on the other hand time-invariant and
known, and was set according to a desired low level of con-
trast between the template and the background. Figures 2
(a) and (b) show two simulated frames, respectively at in-
stantsn =0 and n = 6.

To have a quantitative assessment of the performance of
the Bayes tracker, we ran a Monte Carlo simulation with a
total of 60 runs. At each Monte Carlo run, the simulated
target departs from a unknown location in the land portion
of the background and is subsequently tracked over 18 con-
secutive frames using the clutter adaptive, multiframe Bayes
detector/tracker. A library of seven different target aspects
was used for the 18-frame simulations. For performance
comparison purposes, we also tracked the target using the
suboptimal association of a bank of 2D matched filters (each
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Fig. 2. Cluttered target sequence: (a) first frame, (b) seventh
frame with random target translation, rotation, scaling, and
shearing,.
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Fig. 3. Standard deviation in number of pixels of the po-
sition estimate error: (a) vertical coordinate, (b) horizontal
coordinate.

one matched to one of the possible target aspects) and a lin-
earized Kalman-Bucy filter (KBf). The preliminary position
estimate generated by the matched filter bank is treated by
the KBf as a noisy observation of the true target position.

The Bayes tracker and the matched filter/KBf associa-
tion were initialized with the same initial position estima-
tion error so that we could compare both the steady-state
error and the target acquisition time (i.e., the number of
frames that are necessary for the tracker to reach a steady-
state) for the two algorithms. The standard deviation ( in
number of pixels) of the localization error in the vertical co-
ordinate is shown in Figure 3(a). The corresponding curves
for the horizontal coordinate are shown in Figure 3(b). The
performance curves for the Bayes tracker are shown in solid
line, while the curves for the KBf are shown in dashed line.
The plots in Figure 3 show that the Bayes tracker has a lower
steady-state position estimation error than the matched fil-
ter/KBf association. The curves for the horizontal dimen-
sion in Figure 3(b) also highlight that the KBf has a longer
target acquisition time than the proposed Bayes tracker.

5. SUMMARY

We introduced in this paper a clutter adaptive, multiframe
Bayesian algorithm for joint detection and tracking of mov-
ing targets in 2D cluttered image sequences. The algorithm
is designed for tracking multiaspect targets whose templates
are randomly translated, rotated, scaled and/or sheared from
frame to frame. The clutter adaptive multiframe detector/tra-
cker was tested on a simulated image sequence generated
from real data infrared airborne radar (IRAR) imagery. The
corresponding tracking performance with a multiaspect tar-
get .was compared to the performance of the suboptimal
association of a bank of matched filters and a linearized
Kalman-Bucy filter. The performance curves show an im-
provement in the steady-state accuracy of the 2D target po-
sition estimate and in the target acquisition time when the
Bayes detector/tracker is used.
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