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Focused Detection via Multiresolution Analysis
Chuang He,Member, IEEE, and Jośe M. F. Moura,Fellow, IEEE

Abstract—In many applications, there are strong discrepancies
between the signal models assumed in the design phase and
the actual signals encountered in the field. These discrepancies
penalize significantly the performance of the matched filter that
is fine tuned to the preassumed conditions.

We propose a geometric framework that designs, via wavelet
multiresolution-based techniques, a receiver whose performance
is to a large degree insensitive to these mismatches. We say
that the receiver is a focused detector. The approach defines
a signal set S that identifies the class of diverse conditions
that are expected to arise. We illustrate the method in the
context of multipath problems. The matched filter, which is a
simple receiver, assumes thatS is a singleton. When this is
not the case, the matched filter experiences strong degradation.
On the other hand, the optimal receiver for the signal set
S is practically infeasible since it requires a multidimensional
nonlinear optimization.

The paper designs the focused receiver as a good compromise
between these two extremes. We replace the signal setS by a
linear subspaceG—the representation subspace—that minimizes
a measure of similarity with S. We chooseG to be a multiresolu-
tion subspace. This choice resolves to satisfaction several issues:
The subspace design is reduced to the design of a single shiftable
scaling function, the similarity betweenS and G can be computed
explicitly, and the focused receiver that computes the energy of
the orthogonal projection on G is implemented by a bank of
correlators matched to scaled/delayed versions of the reshaped
scaling function followed by an energy detector.

We assume that the transmitted signal is a sample of a random
process. The signal setS becomes an ensemble of linear spaces.
We introduce the modified deflection as the appropriate similarity
measure. The paper details our algorithm, describes how to
compute the modified deflection, and illustrates the performance
results that can be obtained.

Index Terms— Deflection, focused detection, gap metric,
maximum likelihood, mutiresolution, robust detection, shiftable
wavelet.

I. INTRODUCTION

I N MOST applications,optimally designed receivers run
under conditions that are at considerable variance with

the assumptions underlying their design. These discrepancies
between model and field conditions penalize significantly the
performance ofoptimal receivers. In this paper, we design
robustreceivers, i.e., receivers that are resilient to conspicuous
departures from their nominal working conditions.

Our strategy is to identify the type of diverse conditions
that are expected to occur in actual operation. As an example,
consider a communications propagation channel where multi-
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ple paths from sender to receiver often beset the quality of a
digital communication system due to energy spreading and the
pattern of interference between the direct line of sight path and
secondary paths. The multipath effect may be very complex
as a result of the reflecting obstacles in a wireless digital
communications urban environment or of the bottom/surface
interactions in shallow water. The propagation channel is spe-
cific to the relative configuration of each sender–receiver pair
and may vary if this configuration changes due, for example,
to the mobility of the sender or the receiver. In this paper, we
present our approach in the context of multipath problems.

When multipath is present, the filter matched to the single
transmitted waveform is no longer optimal, and its perfor-
mance deteriorates appreciably. We say that this matched
filter is defocused. In contrast, the optimal receiver estimates
the channel distorted signal, i.e., the multipath signal, and
correlates this estimate with the received signal. We refer to
this receiver as the channel matched detector (CMD). The
CMD is practically infeasible since the channel estimation step
requires a costly multidimensional nonlinear optimization. To
focus the receiver without incurring the costs of the CMD,
we design a good compromise between these two extremes:
i) a simple but unreliable defocused matched filter and ii) a
complex infeasible albeit high performance CMD.

The following are the basic tenets of our design:

1) Signal set : The set describes the class of signals
that are expected to be received after being distorted
by the channel. The complexity of the set depends
on the nature of the transmitted signal . If is
a known deterministic waveform, then is a linear
subspace. This problem was considered in [1] and [2].
The optimal CMD constructs the orthogonal projection
of the actually received signal on and uses
the energy of this orthogonal projection on as the
test statistic. Finding the orthogonal projection of
on is equivalent to the multidimensional nonlinear
optimization problem referred to above. In [1] and [2],
we developed an approach that avoided the multidimen-
sional nonlinear optimization by approximatingwith a
representation subspacewhose orthogonal projection
is easily computed. We then used the energy of the
orthogonal projection of the received signal on
as the test statistic. In this paper, we assume thatis
a sample function of a random process. In this case, the
signal set is more complex. As we will see in the next
section, it is essentially an ensemble of linear subspaces.

2) Representation subspace: We design a linear subspace
—the representation subspace—that is close to the

signal set and whose orthogonal projection is easily
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computed. Our receiver projects the received signal
on and uses the energy of the orthogonal projection
of on as the test statistic.

3) Similarity measure between and : To measure
how close is to , we introduce in Section II a sim-
ilarity measure: the modified deflection. Our approach
designs by optimizing this similarity measure .

4) Multiresolution design of : There are three hurdles that
need to be resolved:

i) subspace design is in general difficult;
ii) calculating and optimizing the modified deflection

raises conceptual as well as computational
difficulties;

iii) complexity of the receiver implementation.

We resolve satisfactorily these issues by resorting to
a multiresolution analysis [3], [4]. The multiresolution
subspaces are generated from a single scaling
function so that the subspace design is reduced to
the design of this single scaling function. By choosing a
multiresolution subspace as the representation subspace,
we are able to compute analytically (see Theorem III.1
in Section III) the modified deflection . Finally,
shifted replicas of the scaling function (or its
scaled versions) provide a straightforward basis for the
representation subspaceso that the focused receiver is
reduced to a bank of correlators followed by an energy
detector.

There is a further subtlety with the modified deflection
that arises because the modified deflection is a one-sided
measure; see Section II. Because of this, we need to design
the “smallest” subspace that minimizes the modified deflection.
This makes it natural to choose a multiresolution subspace as
the representation subspace. With multiresolution subspaces,
our goal becomes finding the lowest scale multiresolution
subspace that minimizes the modified deflection. We present
a multiresolution subspace design algorithm that achieves
this goal. Once we have found the desired representation
subspace, the receiver is as simple as computing the energy
of the orthogonal projection of the received signal on the
representation subspace and comparing it with a threshold.

The presentation of this paper is organized as follows. In
Section II, we give the formulation of the detection problem
and introduce the modified deflection. In Section III, we de-
scribe in detail the multiresolution subspace design algorithm.
In Section IV, we provide an example that illustrates the gains
in performance afforded by the focused receiver with respect
to alternative receivers. Finally, in Section V, we summarize
the results.

II. FOCUSED DETECTION AND MODIFIED DEFLECTION

This section formulates the focused detection problem in
the context of multipath, describes our geometric approach,
and introduces the modified deflection. Finally, a brief review
of multiresolution analysis theory is given.

A. Geometric Interpretation of Focused Detection

The focused detection problem is presented in the context
of multipath. The problem we consider is the standard binary

hypothesis testing problem

(1)

(2)

(3)

where is the multipath noise free signal, and is the
observation interval. Throughout the paper, we assume that the
number of paths , the attenuation coefficients , and the
delays are all deterministic unknown. For simplicity, we
also assume that the additive noise is white and Gaussian.
The detection goal is to decide, from a single realization of
the received signal , which hypothesis ( or ) is true.

In [1] and [2], we dealt with the case where the transmitted
signal is known. In this paper, we assume that is
a finite energy random process with autocorrelation function

. The autocorrelation function is either known
or can be estimated from training samples of the received
signal.

If is known as in [1] and [2], the generalized likelihood
ratio test (GLRT) statistic is the norm square of the orthogonal
projection of the received signal on the signal subspace, i.e.,

(4)

where

(5)
is the signal subspace, and is the orthogonal projection
operator on . The GLRT detector is the channel matched
detector (CMD) mentioned in the Introduction. The parameter

is the collection of all the channel pa-
rameters. The orthogonal projection of the received
signal on the signal subspace is also the maximum
likelihood (ML) estimate of the multipath noise-free
signal , which is written explicitly as

(6)

where is the set of all possible values of the parameter.
Solving (6) requires a multidimensional nonlinear optimization
because is a nonlinear function of the channel
delays and the number of paths . In general, the CMD
is not feasible for practical applications. Instead, in [1] and
[2], we developed an algorithm where we approximate the
signal subspace by a representation subspacesuch that
the orthogonal projection on is easily computed. To obtain
good performance, we required thatbe close to in some
sense. We used the gap metric [5] to measure the similarity
between the subspacesand . The representation subspace

was designed to minimize the gap betweenand . Once
we have designed the representation subspace, we used the
energy of the orthogonal projection on

(7)

as the test statistic.
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When the transmitted signal is a random process, the
signal set of interest is no longer a subspace in (the
space of all finite energy functions). By noting that, for each
sample realization of the signal , the signal set is a
linear subspace in , we conclude that the signal setis
now an ensemble of subspaces. Therefore, we need to design a
representation subspacethat approximates in an ensemble
average sense. Becauseis no longer a subspace in ,
the gap metric cannot be used. In this paper, we introduce the
novel concept of themodified deflectionto adjust to the special
structure of the new signal set. In the next subsection, we
introduce the definition of the modified deflection.

B. Modified Deflection

The modified deflection is an ensemble average measure of
the deviation of a set with finite energy random elements from
a linear subspace in . It generalizes the deflection [6],
[7]. The deflection measures the deviation of aset in
from a linear subspacein . The deflection itself is a
generalization of one side of the gap metric used in [1] and
[2]. In this subsection, we recall the definition of the deflection
and introduce the modified deflection.

1) Deflection [6], [7]: Let be a set in ,
, and a linear subspace in . The

deflection of from is

dist (8)

where

dist (9)

is the distance from the vector to the subspace.
2) Modified Deflection:When the set has finite energy

random elements, we modify the deflection measure. Let
be a set with finite energy random elements anda linear
subspace in . The modified deflection of from is

dist (10)

where is the expectation operator taken with respect to
, and the supreme is subject to

(11)

The modified deflection takes values between 0 and 1. The
major difference between (8) and (10) is that (10) involves the
expectation operator. This definition is a natural generalization
of the deflection. It is essentially a worst-case mean square
error measure. If the modified deflection offrom is equal
to zero, then all the elements in are well represented by
in the mean square sense. Another possible measure would be

sup dist (12)

Equation (10) has the advantage over (12) in that it leads to an
analytical treatment of the modified deflection; see Theorem
III.1 in Section II-C. This is similar to using the mean squared
error rather than .

Both the deflection and the modified deflection are one-
sided measures, i.e., they address only the question of how

is “included” in but not vice versa. Specifically, if the
modified deflection of from is zero, then the modified
deflection of from any subspace that includes is also
zero. An important example is the modified deflection of any
set (with finite energy random elements) from . This
modified deflection is zero. In this case, the design problem
is trivial since is the space minimizing the modified
deflection. However, is not a desirable representation
space because it is too large. In fact, what is needed is the
“smallest” subspace that minimizes the modified deflection
of from . The “smaller” the representation subspace, the
smaller the number of coefficients needed to represent the
orthogonal projection on the representation subspace. The
smaller the number of coefficients, the smaller the number
of degrees of freedom for the test statistic and, thus, the better
the detection performance.

Minimizing the modified deflection alone does not guarantee
that we find the “smallest” subspace. This is in contrast with
the gap metric used in [1] and [2], which is a two-sided metric.
Minimizing the gap leads to the desired smallest subspace.
Here, with the signal set , we need to make explicit the
additional constraint that the representation subspace is the
“smallest” subspace minimizing the modified deflection.

We are left with the issue of designing the “smallest”
subspace. This is where the role of a multiresolution analysis
comes naturally into play. With multiresolution subspaces (see
next subsection), our problem is reduced to finding the lowest
scale multiresolution subspace that minimizes the modified
deflection of from .

C. Multiresolution Subspaces

In this section, we give a brief introduction to multiresolu-
tion analysis theory. An orthonormal multiresolution analysis
is an increasing sequence of closed linear subspaces [4]

that satisfy the following properties.

1) and .
2) if and only if , .
3) implies , .
4) is an orthonormal basis for the

subspace and is called the scaling function.

The scaling function satisfies the two-scale equation

(13)

where are the scaling coefficients that satisfy given
conditions [3], [8]. Daubechies [3] provides a complete char-
acterization of the power spectrum of the sequences of scaling
coefficients that lead to compactly supported orthonormal
scaling functions and wavelets. Zou and Tewfik [9] provide
a further parameterization of these coefficients. They show
that for a given support , there is an infinite number
of scaling functions and mother wavelets. They also show
that all the scaling functions and wavelets of support

are parameterizable by choosing just parameters
over .
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The structure of the subspaces is given by

(14)

These multiresolution subspaces are the candidates for
our representation subspace. Specifically, we look for the
subspace that minimizes the modified deflection of from

with the smallest scale index.

III. M ULTIRESOLUTION SUBSPACE DESIGN

In this section, we describe the multiresolution subspace
design in detail. In Section III-A, we rewrite the signal set
in a more explicit form using the truncated Karhunen–Loève
(K–L) expansion, which we will use to compute the modified
deflection. In Section III-B, we present the design algorithm.
In Section III-C, we provide an explicit formula for the
modified deflection. Finally, in Section III-D, we discuss how
to minimize the modified deflection.

A. Signal Set

When the transmitted signal is a random process, the
signal set

(15)

is a set of random processes. We assume that all the elements in
have finite energy; in addition, the autocorrelation function

of the transmitted signal is either known or is
estimated from the available data. With knowledge of the
autocorrelation function , we express the signal set

in a more explicit form.
From the K–L expansion, we decompose as [10]

(16)

where the functions are the orthonormal
eigenfunctions of satisfying the eigenequation

(17)

where are the corresponding eigenvalues, and
is the time interval within which the K–L expansion is

performed. It can be equal to the observation intervalor
smaller than the observation interval if the transmitted signal

is a transient. In our simulations, is estimated from the
training data. The coefficients are statistically
orthogonal random variables [11]. They are given by

(18)

and

(19)

Without loss of generality, we assume that
. Since the coefficients are statistically

orthogonal, for practical reasons, we truncate the expansion in
(16) to a finite sum

(20)

The choice of depends on the energy distribution rep-
resented by the eigenvalues and the desired
approximation accuracy.

With the truncated K–L expansion, the signal setcan be
written as

(21)

(22)

In most applications, we can only estimate the autocorrelation
function . The training data set used to estimate the
autocorrelation function is often corrupted by noise.
In these situations, the truncated K–L expansion is preferred
because of its noise reduction property.

B. Subspace Design Algorithm

Our goal is to design the lowest scale multiresolution
subspace that minimizes the modified deflection of the signal
set given by (22) from the representation subspace. In other
words, we want to find the multiresolution subspace with the
smallest scale index

(23)

that minimizes the modified deflection. With the structure
of the multiresolution subspaces given in (23), the subspace
design problem is reduced to the design of the single function

. We call the generating function. This will be a
reshaped scaling function.

Solving this design problem directly is still a difficult task.
Just calculating the modified deflection offrom is a com-
putationally intensive multidimensional nonlinear optimization
problem, let alone minimizing it. Like we did in [1] and [2],
we attack the problem in two major steps.

1) Integer Shift Signal Set : In the first step, we design
the representation subspace that matches in the modified
deflection sense the integer shift signal set

(24)

The design goal of the first step is to design the generating
function such that the modified deflection of from

is minimized with the smallest scale index. We denote
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the resulting optimal generating function as and the
smallest scale index as.

By restricting the channel delays to an integer lattice, we
are able to compute explicitly the modified deflection of
from because it is no longer a nonlinear optimization
problem. This is achieved in the theorem presented in the next
subsection.

To perform the minimization, we restrict the generating
function to be a compactly supported orthonormal scaling
function so that we can use the parameterization given in [9].
This reduces the functional optimization to a finite parameter
optimization. In addition, compactly supported orthonormal
scaling functions provide an advantage when dealing with
practical detection problems. In practice, only signals of finite
duration are of interest. The focused detector we develop in
this paper is implemented by a bank of correlators, each of
which are matched to an integer time-shifted replica of the
generating function (or its scaled version), which is a reshaped
compactly supported orthonormal scaling function; see Section
IV. Due to the compact support of the received signal and
of the generating function , there is a maximum integer
shift of a scaled version of , beyond which and the
shifted replica of the scaled version of have zero overlap.
This is not the case if is not compactly supported. If the
generating function is not of compact support, more correlators
will, in general, be needed at the receiver than when the
generating function is of compact support. This increases the
number of degrees of freedom of the detection test statistic
and degrades the detection performance accordingly.

Once the minimization is accomplished, the resulting sub-
space

(25)

is a good approximation to . However, is not . The
original signal set is much richer than since it contains
linear combinations ofarbitrary real shifts of the transmitted
signal. We address this with the second step.

2) Reshaping and Shiftability:In the second step of our
approach, we deal with arbitrary real shifts of the transmitted
signal. We reshape the optimal scaling function obtained
from the first step to make it nearly shiftable [12]–[14]. A
function is shiftable if there exists a set of real coefficients

such that [15]

(26)

Equation (26) still holds when the function is scaled.
Specifically

(27)

In practice, shiftability is too strong a requirement. Instead, we
work with nearly shiftable functions. A function is nearly
shiftable if the mean square error

(28)

TABLE I
SUBSPACE DESIGN ALGORITHM

is small, say, , is below a threshold [12],
[13]. The authors of [12] and [13] developed an iterative
algorithm to reshape a nonshiftable function to make it nearly
shiftable.

Hopefully, by making the optimal scaling function
nearly shiftable, the subspace generated by the reshaped,
i.e.,

(29)

represents well linear combinations of arbitrary real shifts of
the transmitted signal, where is the reshaped optimal
scaling function.

The subspace design algorithm is summarized in Table I.
Items 1–3 together form the first step. Item 4 is the second step.
We do not have analytical proof that the modified deflection is
necessarily reduced after the reshaping. Our simulation results
presented in the next section show that the performance is
improved by reshaping.

3) Convergence on and Choice of : In the subspace de-
sign algorithm, one may ask if, for a given function and
a given error threshold , there in fact exists a smallest
scale . In other words, is item 3 in the algorithm of Table
I well defined?

The modified deflection of any set with finite energy random
elements from is zero. Therefore, from the principles
of mathematical analysis, by letting the scale indexgo to
infinity, the modified deflection of from goes to zero.

Since the multiresolution subspace is strictly included
in the subspace , it is not difficult to show that

. Thus, the modified deflection
of from is nondecreasing when is increased. Then,
given , there is a minimum such that
so that indeed, item 3 is well defined.

Although on the surface this may seem counterintuitive,
choosing smaller ’s may not necessarily lead to better de-
tection performance. A smallermay increase the optimal .
This increases the number of degrees of freedom of the test
statistic. Increasing the number of degrees of freedom may
deteriorate the detection performance. A tradeoff needs to be
achieved between the representation error and the complexity
of the representation subspace. This has to be done on a
signal-by-signal basis.
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C. Modified Deflection Computation

Basic to the design algorithm of Table I is the computa-
tion of the modified deflection . The following
theorem computes it analytically.

Theorem III.1: Let be the set given by (24) and

(30)

where is an orthonormal scaling function. Then, the
modified deflection of from is

(31)

where is

(32)

The functions are given by

(33)

where , and
are the eigenfunctions and eigenvalues of the autocorrelation
function . and are the Fourier trans-
form of and , respectively. is the complex
conjugate of . The infimum is taken over the regions
where the function is continuous. We assume that

a.e. (34)

The proof of the theorem is shown in the Appendix.
Despite its formidable appearance, (32) is very easy to com-

pute. The terms on the numerator
are essentially the discrete time Fourier transform (DTFT) of
the downsampled autocorrelation sequences

(35)

The sequences are given by

(36)

These are the orthogonal projection coefficients of
on the subspace .

In our simulations, we deal with discrete time signals. The
inner product in (36) is implemented as a vector inner product.
The DTFT is implemented by the fast Fourier transform (FFT).

Note that Theorem III.1 provides only the modified de-
flection of from for . It is very difficult, if
not impossible, to come up with an explicit formula for the
modified deflection if . Theoretically, this may limit the
performance of the algorithm. However, in general, we can

intuitively argue that this is not the case. The signal is a
linear combination of its eigenfunctions, whereas is only
a single function. To be able to approximate multiple integer
shifted replicas of , which involve multiple integer shifted
replicas of several eigenfunctions of by multiple integer
shifted replicas of a single function, we should expect that we
need to work with a higher scaled version of .

D. Minimization of the Modified Deflection

To minimize the modified deflection given in (31), we
restrict the scaling function to be a compactly supported
orthonormal scaling function so that we may use the param-
eterization proposed in [9]. With this constraint, the modified
deflection of from given in (31) is a function of the
parameter vector that parameterizes the
scaling function (see Section II-C), i.e.,

(37)

Minimizing the modified deflection is equivalent to maximiz-
ing the quantity

(38)

The actual maximization is done by an exhaustive search of
the parameter space of, i.e.,

(39)

The optimal scaling function at scale is reconstructed
from using an algorithm described in [8].

Even though the modified deflection minimization is a
multidimensional nonlinear optimization problem, we stress
that it is done off line. Once we have the representation
subspace, the focused detector is easily implemented by a
bank of correlators followed by an energy detector. There is
no multidimensional nonlinear optimization involved in the
focused detector implementation.

IV. SIMULATION RESULTS

A. Whale Sounds Database

In this section, we test the performance of our new receiver
using a small database of whale sounds and compare it
with other alternative receivers. The database consists of 50
realizations of whale sounds sampled at 32 kHz/s. We partition
the database into two sets: a training set (25 realizations) and a
testing set (25 realizations). The training set is used to estimate
the autocorrelation function of the signal, and the testing set is
used to test the performance. The whale sounds in the database
are not actual multipath signals. In our study, we simulate
the multipath channel. The multipath channel parameters are
generated in the following way. The number of pathsis set
to 8, and in our simulation, we set all attenuation factors
to be equal to 1. The set of delays are
generated by a random number generator.
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(a) (b)

(c) (d)

Fig. 1. (a) One realization of the whale sounds in our testing data set. (b) Multipath noise free whale sound (eight paths). (c) Multipath noisy whale sound
(eight paths). (d) Optimal scaling function and reshaped optimal scaling function (P � 1 = 2).

B. Sample Autocorrelation

Since we do not know the autocorrelation function ,
we first estimate it from the training data set. Because the
whale sounds are sampled data, we deal with discrete se-
quences instead of continuous functions. We stack these se-
quences in vectors. Denote by the set of
training vectors (column vectors). The estimated autocorrela-
tion matrix is

(40)

We perform the eigenvalue decomposition ofand pick the
most significant eigenvectors. For our training data set, 10
significant eigenvectors are kept to represent the transmitted
signal. The time interval [see (17)] within which the
decomposition is performed is 8 ms.

C. Generating Function Design

With these eigenvectors and the corresponding eigenvalues,
we use the algorithm described in Section III-B to design the
generating function of the representation subspace. We design
the generating function for both the two-parameter ( )

case and the three-parameter ( ) case. In the two-
parameter case, the optimization in item 2 of the algorithm of
Table I is done by computing the modified deflection for the
subspaces generated by each of the scaling functions
parameterized by the values on the uniform two-dimensional
grid

(41)

and finding the parameter vector that leads to
the minimum value of the modified deflection of from

with the smallest scale index . For the three-parameter
case, the optimization process is similar but with an extra
dimension to minimize over. We chooseto be equal to .
A smaller will lead to larger , which will increase the
number of degrees of freedom for the detection test statistic.
As mentioned before, increasing the number of degrees of
freedom has a negative effect on the detection performance.
The optimal scaling function is reconstructed from
using an algorithm described in [8]. Then, we reshape
to make it nearly shiftable. The reshaped scaling function is

.
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Fig. 2. Structure of the focused receiver.

Fig. 1(a) shows one realization of the whale sounds in our
testing data set. Fig. 1(b) shows a multipath noise-free whale
sound with eight paths. Fig. 1(c) is a plot of the same multipath
signal with additive white and Gaussian noise. Fig. 1(d) shows
the optimal scaling function and the reshaped optimal scaling
function.

D. Focused Detector

The focused receiver uses

(42)

as the test statistic. Since is the reshaped scaling
function, are not necessarily or-
thogonal to each other. We orthonormalize it without changing
its span by

(43)

where and are the Fourier transforms
of and , respectively [8]. With the or-
thonormality of ,
is easily computed by taking the inner product of the received
signal with . The structure
of the focused receiver is shown in Fig. 2. It is essentially a
bank of correlators followed by an energy detector (ED).

Since the signals we deal with are of finite duration, we
treat the boundary problem by making the signals periodic. In
addition, we need only a finite number of correlators.

In general, since we do not know the higher order statistics
of , the distribution of the test statistic given in (42)
under is unknown, which precludes a complete analytical
performance analysis. However, we realize that for a fixed
realization of and a fixed set of channel parameters, the
test statistic in (42) is chi-square distributed under and
noncentral chi-square distributed under. Thus, for a fixed

, we can compute the probability of detection ()
as a function of the signal-to-noise ratio (SNR) for a fixed
false alarm probability ( ). In our simulation results shown
below, we take the average of over all the realizations of
the transmitted signal in the testing set and over all the
different channel delay patterns.

We compare the performance of our focused receiver with
three other receivers. The first receiver with which we compare

is the correlator receiver (CR); see [2] and [16] for details.
With the correlator receiver, since the transmitted signal is ran-
dom, we correlate the received signal with the most significant
eigenfunction of and use the peaks in the correlator
output to detect the signal. Second, we compare our receiver
with a “matched filter with integer shifts” (MFIS) receiver;
see [2] for details. The MFIS receiver has the same structure
as our focused receiver. The difference is that it uses the most
significant eigenfunction of as the generating function
rather than the one we have designed. Finally, we compare
our receiver with the ED [17].

Fig. 3 shows the average detection probabilities as a
function of the SNR. The average is taken over all the testing
data and over all the delay patterns. The false alarm probability

is fixed at 0.01. There are seven curves in the figure. The
solid line is obtained by assuming perfect knowledge about
the transmitted signal , the number of paths , and the
delays . Since, in practice, these parameters are in general
unknown, it is an overly optimistic performance bound. The
dashed line is our focused receiver using the reshaped optimal
scaling function for . The “ ” curve represents our
focused receiver using the reshaped optimal scaling function
for . The “o” curve is the receiver using the optimal
scaling function without reshaping for . The dash-
dotted line and the dotted line represent the performance of
the correlator receiver and of the MFIS receiver, respectively.
The “+” curve represents the performance of the energy
detector.

Fig. 3 shows that, in this study, the correlator receiver
(the right-most curve) is outperformed by all others. This is
not surprising since we chose the delay patterns so that the
delayed replicas of the transmitted signal have considerable
overlap. Under these conditions, we expect the correlator
receiver to perform poorly. The potential maximum gain over
the correlator receiver is given by the distance between the
two extreme curves in Fig. 3, namely, the left most curve
corresponding to the optimistic upper bound and the right-
most curve corresponding to the correlator receiver. This
potential gain is about 4.7 dB. We see from Fig. 3 that the
focused receiver using the reshaped optimal scaling function
( ) recovers about 2.7 dB of these potential 4.7 dB.
It also outperforms the MFIS receiver by about 1.3 dB and
outperforms the energy detector by about 2.3 dB.

The performance of the receiver using the optimal scaling
function without reshaping ( ) (“o” curve in Fig. 3) is
worse than that of the one using the reshaped optimal scaling
function ( ) (dashed line in Fig. 3). Note that the
performance of our focused receiver for (“ ” curve
in Fig. 3) is just slightly better than that of the receiver for

(dashed line in Fig. 3). Increasing the number of
parameters used in the parameterization does not significantly
improve the detection performance.

Fig. 3(b) is a plot of the detection probabilities at SNR=16.5
dB for all 100 trials. In this case, the robustness of our new
detector (for both and ) is better than
that of the MFIS receiver and much better than that of the
correlator receiver. The energy detector is the most robust
receiver. However, its average performance is poor.
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(a) (b)

Fig. 3. (a) Average detection probabilitiesK = 8, PF = 0:01. (b) Detection probabilities at SNR= 16:5 dB of the 100 trials. The solid line is a performance
bound. “��” is our focused receiver withP � 1 = 2. “o” is the receiver using the optimal scaling function without reshaping forP � 1 = 2. “*” is our
focused receiver withP � 1 = 3. “�” is the correlator receiver. “� � �” is the MFIS receiver. “+” is the energy detector.

V. SUMMARY

We presented a signal analysis design technique using scal-
ing functions that are robust to translations. We are motivated
by detection in multipath environments. Translation-invariant
scaling functions are useful in a number of other applications
and have been the subject of extensive literature. Our approach
should be useful in many of these other areas as well.

Multipath is an example of distortion that degrades the
detection performance but is difficult to compensate for. In the
geometric setting we described, the optimal detector uses as
test statistic the energy of the projection of the received signal
on the multipath signal set. Computation of this orthogonal
projection is, however, a multidimensional optimization that
is equivalent to the maximum-likelihood estimation of the
multipath itself. In the approach taken, we replacewith
a representation subspace that is designed such that the
projection on is close to the projection on, whereas,
at the same time, is simple to compute.

In general, the design of presents major difficulties. We
highlight two of them. First, because is an ensemble of
subspaces, the similarity between and is measured by
the modified deflection. The modified deflection is a one-
sided measure. Therefore, while designingto be close to

, we need to be as small as possible; see Section III-B.
A second difficulty is the subspace design itself. Subspaces
are designed by specifying a basis for the subspace. For
separable subspaces, bases are countable. While it is possible
in principle to use an arbitrary set of linearly independent
functions (e.g., orthogonal functions) as basis functions, this
is not a viable strategy. For one thing, the design would now
mean designing multiple functions (the subspace basis). On the
other hand, the “size” of the subspace becomes coupled with
the design of the basis functions, and in general, choosing
the “smallest” such that is closest to in the modified-
deflection sense leads possibly to a coupled iterative scheme,
where each iteration requires designing all the corresponding
basis functions.

We showed how a multiresolution analysis (MRA) avoids
all these difficulties and provides a successful approach, as
measured by the good detection results in Section IV. The
MRA designs by the design of asingle function, namely,
the associated scaling function . Second, because the MRA
is a nested sequence of subspaces, choosing the “smallest”
is simply a question of choosing the lowest scalesuch that
the modified-deflection to the signal set is below a certain
threshold. The MRA approach also has practical implications,
namely, the simplicity of the receiver (a bank of filters where
each filter is matched to an integer translate of thesamesignal)
makes its hardware implementation simple and economical
(essentially design asingle filter).

We illustrated the design of the scaling function by re-
stricting to be compact. This lead to additional advantages
that were not readily available with arbitrary sets of functions.

1) Using parametrizations for compactly supported scal-
ing functions, the (off-line) subspace design is further
simplified from the design of asingle function to an
(off-line) optimization of a finite number of parameters.1

2) Increased detection performance requires a balance be-
tween the signal energy and the noise energy in the
test statistic. This balance relates to the number of
degrees of freedom retained in the detector, i.e., the
number of filters in the filter bank. The MRA provides
a simple solution. Because replicates the structure of
the multipath signal set and the scaling function has
compact support, the number of filters follows from the
maximum expected interarrival delay between paths; see
the discussions in Sections III-B and IV.

The experimental results in Section IV show that the MRA de-
tector provides significant performance gains over alternative
receivers and is robust to the multipath delay pattern.

1Although we worked with the parametrizations for compact supported
scaling functions [9], other finite parametrizations that provide other tradeoffs
(e.g., prespecified degree of smoothness; see [3]) can also be used.
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APPENDIX

In this Appendix, we prove Theorem III.1.
From the definition of the modified deflection, we need first

to compute

dist (44)

where

(45)

(46)

and is the orthogonal projection of on .
Since is an orthonormal basis of
, the orthogonal projection is obtained by taking

the inner product of with ,
i.e.,

(47)

Taking the Fourier transform of (47) and using Poisson’s
summation formula, we have

(48)

(49)

(50)

(51)

Taking the norm square of (51) and using the fact that for
orthonormal scaling functions, the following is true [8]

a.e. (52)

we have

(53)

(54)

(55)

(56)

(57)

Now, we expand using the truncated K–L expansion
and take the expectation. Since the coefficients

are statistically orthogonal random variables, we
have

(58)

(59)

where

(60)

and

(61)

Once we have , the square of the modified
deflection is obtained by taking the supremum,
i.e.,

dist (62)

(63)
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subject to

(64)

(65)

(66)

Since we assume that

a.e. (67)

using a limiting argument, we can choose

(68)

to be the Dirac delta function located at the frequency where
has its minimum and is continuous. Then, the quantity

(69)

is minimized. The minimum is

(70)

Therefore, the modified deflection is given
by

(71)

This proves Theorem III.1.

REFERENCES

[1] C. He, J. M. F. Moura, and S. A. Benno, “Gap detector for multipath,”
in Proc. ICASSP,May 1996, pp. V-2650–V-2653.

[2] C. He and J. M. F. Moura, “Robust detection with the gap metric,”IEEE
Trans. Signal Processing,vol. 45, pp. 1591–1604, June 1997.

[3] I. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Commun. Pure Appl. Math.,vol. 41, pp. 909–996, Nov. 1988.

[4] S. Mallat, “A theory for multiresolution signal decomposition,”IEEE
Trans. Pattern Anal. Machine Intell.,vol. 11, pp. 674–693, July 1989.

[5] T. Kato, Perturbation Theory for Linear Operators,2nd ed. New York:
Springer-Verlag, 1976.

[6] A. Kolmogoroff, Ann. Math.,vol. 37, 1936.
[7] J. Liang and T. W. Parks, “Kolmogorovn-widths and wavelet repre-

sentations for signal classes,”IEEE Trans. Signal Processing,vol. 44,
pp. 1693–1703, July 1996.

[8] C. K. Chui, An Introduction to Wavelets.New York: Academic, 1992.
[9] H. Zou and A. H. Tewfik, “Parameterization of compactly supported

orthonormal wavelets,”IEEE Trans. Signal Processing,vol. 41, pp.
1428–1431, Mar. 1993.

[10] H. L. V. Trees,Detection, Estimation, and Modulation Theory.New
York: Wiley, 1968.

[11] C. W. Therrien,Discrete Random Signals and Statistical Signal Process-
ing. Englewood Cliffs, NJ: Prentice-Hall, 1992.

[12] S. A. Benno and J. M. F. Moura, “Nearly shiftable scaling functions,”
in Proc. ICASSP,May 1995, pp. II-1097–II-1100.

[13] , “On translation invariant subspaces and critically sampled
wavelet transforms,”Multidimensional Syst. Signal Process.,vol. 8, pp.
89–110, Jan. 1997.

[14] , “Scaling functions optimally robust to translations,” submitted
for publication.

[15] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multiscale transforms,”IEEE Trans. Inform. Theory,vol. 38,
pp. 587–607, Mar. 1992.

[16] G. L. Turin, “Introduction to spread-spectrum antimultipath techniques
and their application to urban digital radio,”Proc. IEEE, vol. 68, pp.
328–353, Mar. 1980.

[17] A. D. Whalen,Detection of Signals in Noise.New York: Academic,
1971.

Chuang He (S’93–M’98) received the B.S. degree
from Tsinghua University, Beijing, China, in 1991,
the M.S. degree from Tulane University, New Or-
leans, LA, in 1993, and the Ph.D. degree in electrical
and computer engineering from Carnegie Mellon
University, Pittsburgh, PA, in 1997.

Since September 1997, he has been with Los
Alamos National Laboratory, Albuquerque, NM,
working on speech processing. His research interests
are digital signal processing, speech processing,
wavelet and time–frequency transforms, and com-

munications.
Dr. He is a member of Eta Kappa Nu.
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