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Focused Detection via Multiresolution Analysis

Chuang He Member, IEEE and Joé M. F. Moura,Fellow, IEEE

Abstract—in many applications, there are strong discrepancies ple paths from sender to receiver often beset the quality of a
between the signal models assumed in the design phase andjigital communication system due to energy spreading and the
the actual signals encountered in the field. These dlscrepanmespattem of interference between the direct line of sight path and

penalize significantly the performance of the matched filter that .
is fine tuned to the preassumed conditions. secondary paths. The multipath effect may be very complex

We propose a geometric framework that designs, via wavelet as a result of the reflecting obstacles in a wireless digital
multiresolution-based techniques, a receiver whose performance communications urban environment or of the bottom/surface
is to a large degree insensitive to these mismatches. We sayinteractions in shallow water. The propagation channel is spe-

that the receiver is a focused detector. The approach defines _... . h . » . .
a signal setS that identifies the class of diverse conditions cific to the relative configuration of each sender—receiver pair

that are expected to arise. We illustrate the method in the @nd may vary if this configuration changes due, for example,
context of multipath problems. The matched filter, which is a to the mobility of the sender or the receiver. In this paper, we

simple receiver, assumes thatS is a singleton. When this is present our approach in the context of multipath problems.

not the case, the matched filter experiences strong degradation.
On the other hand, the optimal receiver for the signal set
S is practically infeasible since it requires a multidimensional
nonlinear optimization.

When multipath is present, the filter matched to the single
transmitted waveform is no longer optimal, and its perfor-
mance deteriorates appreciably. We say that this matched

The paper designs the focused receiver as a good compromisefilter is defocused. In contrast, the optimal receiver estimates

between these two extremes. We replace the signal s8tby a
linear subspaceG—the representation subspace—that minimizes
a measure of similarity with S. We choosej to be a multiresolu-
tion subspace. This choice resolves to satisfaction several issues:

the channel distorted signal, i.e., the multipath signal, and
correlates this estimate with the received signal. We refer to
this receiver as the channel matched detector (CMD). The

The subspace design is reduced to the design of a single shiftablsCMD is practically infeasible since the channel estimation step

scaling function, the similarity betweenS and G can be computed

requires a costly multidimensional nonlinear optimization. To

explicitly, and the focused receiver that computes the energy of fgcus the receiver without incurring the costs of the CMD,

the orthogonal projection on G is implemented by a bank of
correlators matched to scaled/delayed versions of the reshaped
scaling function followed by an energy detector.

we design a good compromise between these two extremes:
i) a simple but unreliable defocused matched filter and ii) a

We assume that the transmitted signal is a sample of a random complex infeasible albeit high performance CMD.

process. The signal seS becomes an ensemble of linear spaces.
We introduce the modified deflection as the appropriate similarity
measure. The paper details our algorithm, describes how to
compute the modified deflection, and illustrates the performance
results that can be obtained.

1)

Index Terms— Deflection, focused detection, gap metric,
maximum likelihood, mutiresolution, robust detection, shiftable
wavelet.

I. INTRODUCTION

N MOST applications,optimally designed receivers run
under conditions that are at considerable variance with
the assumptions underlying their design. These discrepancies
between model and field conditions penalize significantly the

performance ofoptimal receivers. In this paper, we design
robustreceivers, i.e., receivers that are resilient to conspicuous
departures from their nominal working conditions.

Our strategy is to identify the type of diverse conditions
that are expected to occur in actual operation. As an example,
consider a communications propagation channel where multi-
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The following are the basic tenets of our design:

Signal setS: The setS describes the class of signals
that are expected to be received after being distorted
by the channel. The complexity of the s8tdepends

on the nature of the transmitted signdt). If s(¢) is

a known deterministic waveform, thefi is a linear
subspace. This problem was considered in [1] and [2].
The optimal CMD constructs the orthogonal projection
of the actually received signat(t) on & and uses
the energy of this orthogonal projection @ as the
test statistic. Finding the orthogonal projection df)

on S is equivalent to the multidimensional nonlinear
optimization problem referred to above. In [1] and [2],
we developed an approach that avoided the multidimen-
sional nonlinear optimization by approximatiggwith a
representation subspaewhose orthogonal projection

is easily computed. We then used the energy of the
orthogonal projection of the received signdt) on G

as the test statistic. In this paper, we assume ¢fatis

a sample function of a random process. In this case, the
signal setS is more complex. As we will see in the next
section, it is essentially an ensemble of linear subspaces.
Representation subspage We design a linear subspace
G—the representation subspace—that is close to the
signal setS and whose orthogonal projection is easily
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computed. Our receiver projects the received siggl hypothesis testing problem

on G and uses the energy of the orthogonal projection Hy:r(t) = sim(t) + n(t) 0<t<T @
of r(t) on G as the test statistic. K -7

3) Similarity measured,;,oq betweenS and G: To measure _ Z ans(t — 1) + n(t) )
how closeg is to S, we introduce in Section Il a sim- P
ilarity measure: the modified deflection. Our approach Ho:r(t) =n(t) 3)

designsG by optimizing this similarity measuré&,,.q. . _ . . )
4) Multiresolution design of: There are three hurdles thatV"€resm(t) is the multipath noise free signal, afidis the
need to be resolved: observation interval. Throughout the paper, we assume that the

i) subspace design is in general difficult: number of pathd(, the attenuation coefficientsy; }, and the
.. pac gnising e . delays{r;} are all deterministic unknown. For simplicity, we
i) - calculating and optimizing the modified deflection Iso assume that the additive noigg) is white and Gaussian
dmoa raises conceptual as well as computation%] . . . - S
difficulties: he detection goal is to decide, from a single realization of
i Complexity’ of the receiver implementation. the received signal(¢), which hypothesisi; or Hy) is true.
We resolve satisfactorily these issues by resorting In [1] and [2], we dealt with the case where the transmitted
a multiresolution analysis [3], [4]. The multiresolution (?g_ngl 5(t) is known. In this Papet, We assume t.hﬁt) S
subspaces{G;} are enerate'd frbm a sinale scalin a finite energy random process with autocorrelation function
funct?on ) ;o that ?he subspace desian ig reduced O(t, u). The autocorrelation functiof (¢, u) is either known
9 L SP >S19 "~ or can be estimated from training samples of the received
the design of this single scaling function. By choosing 2anal

multiresolution subspace as the representation subspac . . . .
we are able to compute analytically (see Theorem IIl.1 f 5(t) is known as in [1] and [2], the generalized likelihood

in Section Ill) the modified deflectionq. Finally ratio test (GLRT) statistic is the norm square of the orthogonal
shifted replicas of the scaling functig;(t.) (or its’ projection of the received signal on the signal subspace, i.e.,
scaled versions) provide a straightforward basis for the L =|Ps[]|l3 (4)

representation subspageso that the focused receiver isyhere
reduced to a bank of correlators followed by an energy

K
detector. S = {sm(tﬁ) = Zaks(t —7), K €7t op, 71 € IR}
There is a further subtlety with the modified deflection k=1
that arises because the modified deflection is a one-sided (5)

measure; see Section Il. Because of this, we need to dediyihe signal subspace, adds is the orthogonal projection
the “smallest” subspace that minimizes the modified deflectiopperator onsS. The GLRT detector is the channel matched
This makes it natural to choose a multiresolution subspacedgtector (CMD) mentioned in the Introduction. The parameter
the representation subspagewith multiresolution subspaces,f = {K, {ax}, {7 }} is the collection of all the channel pa-
our goal becomes finding the lowest scale multiresolutioameters. The orthogonal projecti6Rs[r])(¢) of the received
subspace that minimizes the modified deflection. We presaignal ~(¢) on the signal subspacg is also the maximum

a multiresolution subspace design algorithm that achievig&lihood (ML) estimates™™(¢) of the multipath noise-free
this goal. Once we have found the desired representatiggnal sm(t), which is written explicitly as

subspace, the receiver is as simple as computing the energy ML

of the orthogonal projection of the received signal on the S (&) = (Ps[r])(t) = sm(t:67)

representation subspace and comparing it with a threshold. Oy = 0% = arg min ||7(-) = s, (-: )3 (6)
The presentation of this paper is organized as follows. In feo

Section II, we give the formulation of the detection problerwhere® is the set of all possible values of the paraméter

and introduce the modified deflection. In Section Ill, we déSolving (6) requires a multidimensional nonlinear optimization

scribe in detail the multiresolution subspace design algorithisecauses,, (- : ¢) is a nonlinear function of the channel

In Section IV, we provide an example that illustrates the gaintelays{r;} and the number of path&’. In general, the CMD

in performance afforded by the focused receiver with respastnot feasible for practical applications. Instead, in [1] and

to alternative receivers. Finally, in Section V, we summariZ2], we developed an algorithm where we approximate the

the results. signal subspace& by a representation subspagesuch that

the orthogonal projection off is easily computed. To obtain

good performance, we required thatbe close taS in some
This section formulates the focused detection problem &ense. We used the gap metric [5] to measure the similarity

the context of multipath, describes our geometric approadigtween the subspacé&sand G. The representation subspace

and introduces the modified deflection. Finally, a brief revie@ was designed to minimize the gap betwetandG. Once

of multiresolution analysis theory is given. we have designed the representation subspasee used the

energy of the orthogonal projection @h

L' = ||Ps[rll3 (7)

Il. FOCUSED DETECTION AND MODIFIED DEFLECTION

A. Geometric Interpretation of Focused Detection

The focused detection problem is presented in the context
of multipath. The problem we consider is the standard binaag the test statistic.
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When the transmitted signalt) is a random process, theS is “included” in G but not vice versa. Specifically, if the
signal setS of interest is no longer a subspacelin(IR) (the modified deflection ofS from G is zero, then the modified
space of all finite energy functions). By noting that, for eactleflection of S from any subspace that includés is also
sample realization of the signalt), the signal setS is a zero. An important example is the modified deflection of any
linear subspace ih2(IR), we conclude that the signal s8tis setS (with finite energy random elements) fram(IR). This
now an ensemble of subspaces. Therefore, we need to desigmodified deflection is zero. In this case, the design problem
representation subspagethat approximates in an ensemble is trivial since Ly(IR) is the space minimizing the modified
average sense. BecauSds no longer a subspace in(IR), deflection. However[L,(IR) is not a desirable representation
the gap metric cannot be used. In this paper, we introduce gpace because it is too large. In fact, what is needed is the
novel concept of thenodified deflectioto adjust to the special “smallest subspace; that minimizes the modified deflection
structure of the new signal sét. In the next subsection, weof S from G. The “smaller” the representation subspace, the

introduce the definition of the modified deflection. smaller the number of coefficients needed to represent the
orthogonal projection on the representation subspace. The
B. Modified Deflection smaller the number of coefficients, the smaller the number

eoI)]oIegrees of freedom for the test statistic and, thus, the better
me detection performance.
Minimizing the modified deflection alone does not guarantee

The modified deflection is an ensemble average measur
the deviation of a set with finite energy random elements fro
a linear subspace if,(IR). It generalizes the deflection [6], ; o .
[7]. The deflection measures the deviation odetin L»(IR) :Eat we fmcti _the Smde}lles’it sut()jsgjzace.r]Tr;]|§ IS Itn Coﬁérajt W'tth
from alinear subspacen Ly(IR). The deflection itself is a e gap metric used in [1] and [2], which is a two-sided metric.

generalization of one side of the gap metric used in [1] a#é]inimizing the gap leads to the desired smallest subspace.

[2]. In this subsection, we recall the definition of the deflectio ere, with the S|gnal sef, we need to make explicit the
and introduce the modified deflection. additional constraint that the representation subspace is the

1) Deflection [6], [7]: Let S be a set inLa(RR), Ss = “smallest subspace minimizing the modified deflection.

{u €S, |[uls = 1}, andG a linear subspace iio(IR). The We are left with the issue of designing the “smallest”
deflectfon ofS fro}n G is subspace. This is where the role of a multiresolution analysis

comes naturally into play. With multiresolution subspaces (see

S(S, G) = sup dist(u, G) (8) next subsection), our problem is reduced to finding the lowest
u€Ss scale multiresolution subspace that minimizes the modified
where deflection ofS from G.
dist(u, G) = iuf [lu— vl (©)

C. Multiresolution Subspaces
is the distance from the vecterto the subspac§. : . . . . _
o . g In this section, we give a brief introduction to multiresolu-
2) Modified Deflection:When the setS has finite energy .. . . . .
. . tion analysis theory. An orthonormal multiresolution analysis

random elements, we modify the deflection measure.d et . . .

e . is an increasing sequence of closed linear subspaces [4]
be a set with finite energy random elements gha linear

subspace iLo(IR). The modified deflection of from G is i C G CG1CG CGLCGyC - on

~

bmod(S, G) = \/Sup E{dist(u, G)} (10) that satisfy the following properties.
. . . 1) U; 9 = L2(IR) and(), G; = {0}.
where E{-} is the expectation operator taken with respect to 2) g(2t) € G; if and only if g(21+1t) € Gy, i € Z.
u, and the supreme is subject to 3) g(2t) € G; implies g(2't — k) € G;, i, k € .

E{|Ju)?) = 1. (11) 4) {9t — k), k € 7} is an orthonormal basis for the

subspacej, and g(t) is called the scaling function.

The modified deflection takes values between 0 and 1. ThRe scaling functiony(t) satisfies the two-scale equation
major difference between (8) and (10) is that (10) involves the
expectation operator. This definition is a natural generalization gt) = eng(2t — k) (13)
of the deflection. It is essentially a worst-case mean square k

error measure. If the modified Qeflectionﬁﬁrom Gisequal \yhere {c1} are the scaling coefficients that satisfy given
to zero, then all the elements & are well represented by conditions [3], [8]. Daubechies [3] provides a complete char-
in the mean square sense. Another possible measure woulty8yization of the power spectrum of the sequences of scaling
supE{dist(u, G)}. (12 coefficients t.hat lead to compactly supporteq orthonor_mal
scaling functions and wavelets. Zou and Tewfik [9] provide
Equation (10) has the advantage over (12) in that it leads toarfurther parameterization of these coefficients. They show
analytical treatment of the modified deflection; see Theoretmat for a given suppor2P — 1, there is an infinite number
l11.1 in Section II-C. This is similar to using the mean squaredf scaling functions and mother wavelets. They also show
error E{|| - ||3} rather thanE{| - ||2}- that all the scaling functions and wavelets of supgit —
Both the deflection and the modified deflection are oné- are parameterizable by choosing juBt— 1 parameters
sided measures, i.e., they address only the question of h@w, (a, ---, (p—1) over [0, 2771
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The structure of the subspacs;} is given by orthogonal, for practical reasons, we truncate the expansion in
+oo (16) to a finite sum
G = { > 228,9(2' —n), B € ]R}. (14) M
—— s() & D> Ymbm(t). (20)
These multiresolution subspacég;} are the candidates for m=1

our representation subspace. Specifically, we look for thie choice of A/ depends on the energy distribution rep-
subspacg; that minimizes the modified deflection sffrom  resented by the eigenvaluds?,, m > 1} and the desired

m?

G; with the smallest scale indek approximation accuracy.
With the truncated K—L expansion, the signal setan be
Ill. M ULTIRESOLUTION SUBSPACE DESIGN written as
In this section, we describe the multiresolution subspace K
design in detail. In Section III-A, we rewrite the signal st S = {Sm(t 10) = ars(t— ), K € 7%y, i € IR}
in a more explicit form using the truncated Karhunenei® k=1

(K-L) expansion, which we will use to compute the modified (21)
deflection. In Section IlI-B, we present the design algorithm. L M
In Section IlI-C, we provide an explicit formula for the = {Zak Z Ymhin(t =), K € TF, ap, i € IR}-
modified deflection. Finally, in Section 1lI-D, we discuss how k=1 m=l

to minimize the modified deflection. (22)

ional In most applications, we can only estimate the autocorrelation
A. Signal Sets function K (¢, v). The training data set used to estimate the
When the transmitted signal¢) is a random process, theautocorrelation functiork (¢, «) is often corrupted by noise.

signal set In these situations, the truncated K—L expansion is preferred
K because of its noise reduction property.

S= {sm(t :0) = Zaks(t -7), K€ Zt, ay, m € IR}
k=1 B. Subspace Design Algorithm

(15) Our goal is to design the lowest scale multiresolution

is a set of random processes. We assume that all the elemengifpsPace that minimizes the modified deflection of the signal
S have finite energy:; in addition, the autocorrelation functioptS given by (22) from the representation subspace. In other
K(¢, ) of the transmitted signad(¢) is either known or is words, we want to find the multiresolution subspace with the

estimated from the available data. With knowledge of thEmallest scale index

autocorrelation functionk' (¢, »), we express the signal set too )
S in a more explicit form. G = Z 2723, 9(2't —n), B, € R (23)
From the K-L expansion, we decomposi) as [10] n=-—00
+00 that minimizes the modified deflection. With the structure
s(t) = Z Ymhm(t) (16) of the multiresolution subspaces given in (23), the subspace
m=1 design problem is reduced to the design of the single function
where the functions{/,,,(t),m > 1} are the orthonormal 9(t). We call g(¢) the generating function. This will be a
eigenfunctions ofK (¢, u) satisfying the eigenequation reshaped scaling function. . o -
, Solving this design problem directly is still a difficult task.
/ K(t, whm (u)du = 02 hn(t), m =1--- 17) Just galculat_lng thg modlflgq deflgctlonﬁﬁrqm G;is a com-
0 putationally intensive multidimensional nonlinear optimization

2 > . : oblem, let alone minimizing it. Like we did in [1] and [2],
where{sZ,, m > 1} are the corresponding eigenvalues, an@\ilre attack the problem in two major steps.

" is the ti i | within which the K-L ion i . i .
T Is the time Interval within which the expansion 15 1) Integer Shift Signal Se¥;,,;: In the first step, we design

performed. It can be equal to the observation inter¥abr tati bspaGe that matches in th dified
smaller than the observation interval if the transmitted sign%]e representation subspage that matches in the moditie
eflection sense the integer shift signal set

s(t) is a transient. In our simulation; is estimated from the
training data. The coefficientsy,,, m > 1} are statistically +o0
orthogonal random variables [11]. They are given by Sint = Z ans(t—n), an € R

i =) hn()) m 21 (18) e
and z{ Z o, Z Ymhm(t —n), ap € IR}. (24)
n=—oo m=1
E{vm}t=0m m2L (19)

The design goal of the first step is to design the generating
Without loss of generality, we assume thegt > 03 > --- > function g(¢) such that the modified deflection &, from
o2 > ... Since the coefficient§y,,, m > 1} are statistically G; is minimized with the smallest scale indéxWe denote
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the resulting optimal generating function a$ (¢) and the TABLE |
smallest scale index a<. SUBSPACE DESIGN ALGORITHM
By restricting the channel delays to an integer lattice, we
are able to compute explicitly the modified deflectionSpf; 1. Parameterize the scaling function g({} using the parameteriza-
from G; because it is no longer a nonlinear optimizatiofj®® &ver in [9]-

o . 8 ) . For a fixed scale index ¢, find the scaling function g; (¢} such that
problem. This is achieved in the theorem presented in the ngxt (s,... ;) is minimized. The modified deflection 62,,(Sis,Gi) is

fitvr}
i computed by Theorem III.1 in subsection III-C.
subsection. L. . i . 3. Find the smallest scale index i* such that, for a given error
To perform the minimization, we restrict the generatingureshold ¢ > 0, 52, ,(Si, G3) < ¢ and 62, (Sue, Gi_,) > ¢. The sub-

function g(¢) to be a compactly supported orthonormal scalin ac;{gi}l is giv*ent!bbé (25)-k o v shiftable using B 4
function so that we can use the parameterization given in [, uroo ;‘{’;Ogiglﬁgl aiven i (12 Shable s Berno an
This reduces the functional optimization to a finite parameter

optimization. In addition, compactly supported orthonormal
scaling functions provide an advantage when dealing with

practical detection problems. In practice, only signals of finiie small, say¥r € [0, 1), E(r) is below a thresholdy [12],
duration are of interest. The focused detector we develop[itB]. The authors of [12] and [13] developed an iterative
this paper is implemented by a bank of correlators, each afjorithm to reshape a nonshiftable function to make it nearly
which are matched to an integer time-shifted replica of trahiftable.

generating function (or its scaled version), which is a reshapedHopefully, by making the optimal scaling functigy: (¢)
compactly supported orthonormal scaling function; see Sectioearly shiftable, the subspace generated by the reslgiges

IV. Due to the compact support of the received sigr{a) and i.e.,

of the generating functiog(t), there is a maximum integer

shift of a scaled version of(¢), beyond whichr(¢) and the {

shifted replica of the scaled version gfft) have zero overlap.  G;. . =
This is not the case i§(¢) is not compactly supported. If the
generating function is not of compact support, more correlators

will, in general, be needed at the receiver than when thgpresents well linear combinations of arbitrary real shifts of

generating function is of compact support. This increases i transmitted signal, wheig. ,.(t) is the reshaped optimal
number of degrees of freedom of the detection test statisgigaling function.

+oo
> 278k (27t —n), By € IR} (29)

n=—o0

and degrades the detection performance accordingly. The subspace design algorithm is summarized in Table I.
Once the minimization is accomplished, the resulting sultems 1-3 together form the first step. Item 4 is the second step.
space We do not have analytical proof that the modified deflection is
+oo necessarily reduced after the reshaping. Our simulation results
g = { > 2280527 t—n), B, € IR} (25) presented in the next section show that the performance is
n=—oo improved by reshaping.

3) Convergence oft and Choice of: In the subspace de-
sign algorithm, one may ask if, for a given functigf¥) and
a given error threshold > 0, there in fact exists a smallest
scalei*. In other words, is item 3 in the algorithm of Table

is a good approximation t6;,:. However,S;,,; is notS. The
original signal setS is much richer tharb;,; since it contains
linear combinations oérbitrary real shifts of the transmitted
signal. We address this with the second step. | well defined?
2) Reshaping and Shiftabilityln the second step of our The modified deflection of any set with finite energy random
approach, we deal with arbitrary real shifts of the transmitteeqement S from La(IR) is zero 'therefore from the gr)i/nci les
signal. We reshape the optimal scaling functigr(t) obtained L2 . s ’ € p P
from the first step to make it nearly shiftable [12]—[14]. Aof mathematical analysis, by letting the scale indego to

functiong(t) is shiftable if there exists a set of real coefficientg]f'sn'ty’ tr:ﬁ mod||1;|_ed d:ef:gctlon E‘S from_gi ?Qetf to zlerg. d
{Bu(), n € Z} such that [15] ince the multiresolution subspa¢g is strictly include

ip the subspaAcegiJrl, it is not difficult to show that
glt—1) = Z Br(T)g(t —n) V7 elo,1). (26)  Omod(S, Gi) < bmod(S, Gi+1). Thus, the modified deflection
n of § from G; is nondecreasing when is ipcreased. Then,

; ; - - givene > 0, there is a minimuni* such that? (S, G;) < ¢
Equation (26) still holds when the functiof(t) is scaled. R . . ) mod ™y =
Specifically so that indeed, item 3 is well defined.

Although on the surface this may seem counterintuitive,
g2t —71) = Z B (T)g(2t — n) V7 e[0,27%). (27) choosing smallek’s may not necessarily lead to better de-
n tection performance. A smallermay increase the optimat.

In practice, shiftability is too strong a requirement. Instead, WIS increases the number of degrees of freedom of the test

work with nearly shiftable functions. A functiog(#) is nearly Statistic. Increasing the number of degrees of freedom may
shiftable if the mean square error deteriorate the detection performance. A tradeoff needs to be

achieved between the representation error and the complexity
E(r)= inf |g(t—7)- Zﬁn(f)g(t—n)ng (28) of the representation subspace. This has to be done on a
Bn(m)} n signal-by-signal basis.
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C. Modified Deflection Computation intuitively argue that this is not the case. The sigs@) is a

Basic to the design algorithm of Table | is the computali-”ear combination of its eigenfunctions, wheregs) is only

tion of the modified deflectioﬁmod(smt, G,). The following a single function. To be able to approximate multiple integer
theorem computes it analytically. shifted replicas o&(¢), which involve multiple integer shifted

Theorem III.1: Let S;,; be the set given by (24) and replicas of several eigenfunctions eft) by multiple integer
N shifted replicas of a single function, we should expect that we
X 4 need to work with a higher scaled version git).
G = { > 22B,g9(2t —n), B € IR} 20 (30) ) 0

D. Minimization of the Modified Deflection
where g(¢) is an orthonormal scaling function. Then, the

modified deflection ofS,, from G; is To minimize the modified deflection given in (31), we

restrict the scaling functiop(¢) to be a compactly supported

bmoa(Simt> Gi) = [1— inf C(f) i>0 (31) orthonormal scaling function so that we may use the param-
fefo,1) - eterization proposed in [9]. With this constraint, the modified
. deflection ofS;,.; from G; given in (31) is a function of the
where C(f) is parameter vectot = [(1, - -, {p—1] that parameterizes the
M scaling functiong(t) (see Section II-C), i.e.,
2 rym
Om hg(f) .
= m=1 61110 inty Yi) — 1— inf ; . 37
C(f) = — . (32) A(Sint; Gi) \/ saut c(f. © 37)
> oD 1 Fn, (D
l

Minimizing the modified deflection is equivalent to maximiz-
ing the quantity

m=1

The functions{C?(f), m =1, ---, M} are given by

hg
; inf C . 38
yo1 - e Jnl O, 0) (38)
S Fn F+2k+DF27 f+k+27°0 (39) o _
= | % The actual maximization is done by an exhaustive search of

the parameter space df i.e.,
where{h,,(t), m =1, ..., M}, and{c2,, m =1, .-, M}
are the eigenfunctions and eigenvalues of the autocorrelation . .
function K (¢, v). Fy, (f) and F,(f) are the Fourier trans- ¢ =arg rex {feu[gl) CUf O}' (39)
form of h,,,(t) and g(t), respectively.F,(f) is the complex ) ) . .
conjugate ofF,(f). The infimum is taken over the regionsThe optimal scaling function; (¢) at scale; is reconstructed

where the functiorC(f) is continuous. We assume that ~ from ¢* using an algorithm described in [8].
Even though the modified deflection minimization is a

multidimensional nonlinear optimization problem, we stress
that it is done off line. Once we have the representation
"= subspace, the focused detector is easily implemented by a
The proof of the theorem is shown in the Appendix. bank of correlators followed by an energy detector. There is
Despite its formidable appearance, (32) is very easy to COAb multidimensional nonlinear optimization involved in the
pute. The terms on the numeratg®}; (f), m =1, ---, M} focused detector implementation.
are essentially the discrete time Fourier transform (DTFT) of

the downsampled autocorrelation sequences

M
o2 Y N Fn (f+DP>0  ae. (34)
1 {

IV. SIMULATION RESULTS
+ oo

Rall= Y culkle,[21+k  m=1- M (35 A whale Sounds Database

k=—oc

: In this section, we test the performance of our new receiver
The sequencecy,[k], m =1, ---, M} are given by using a small database of whale sounds and compare it
k] = (o), 20/2(2° - —k)) m=1,---, M. (36) with_ other alternative receivers. The database consists qf. 50
realizations of whale sounds sampled at 32 kHz/s. We patrtition
These are the orthogonal projection coefficients dfie database into two sets: a training set (25 realizations) and a
{hm(t), m =1, .-, M} on the subspacg;. testing set (25 realizations). The training set is used to estimate
In our simulations, we deal with discrete time signals. Thiie autocorrelation function of the signal, and the testing set is
inner product in (36) is implemented as a vector inner producised to test the performance. The whale sounds in the database
The DTFT is implemented by the fast Fourier transform (FFTare not actual multipath signals. In our study, we simulate
Note that Theorem IIl.1 provides only the modified dethe multipath channel. The multipath channel parameters are
flection of & from G; for « > 0. It is very difficult, if generated in the following way. The number of patss set
not impossible, to come up with an explicit formula for théo 8, and in our simulation, we set all attenuation factasg }
modified deflection ifi < 0. Theoretically, this may limit the to be equal to 1. The set of delays, k = 1, ---, 8} are
performance of the algorithm. However, in general, we cayenerated by a random number generator.
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Fig. 1. (a) One realization of the whale sounds in our testing data set. (b) Multipath noise free whale sound (eight paths). (c) Multipath noisynethale so
(eight paths). (d) Optimal scaling function and reshaped optimal scaling funclor { = 2).

B. Sample Autocorrelation case and the three-parametét £ 1 = 3) case. In the two-
Since we do not know the autocorrelation functiitt, «) parameter case, the optimization in item 2 of the algorithm of

we first estimate it from the training data set. Because tH@Ple ! is done by computing the modified deflection for the
whale sounds are sampled data, we deal with discrete SHPSPacesy;} generated by each of the scaling functigis)

quences instead of continuous functions. We stack these Rarameterized by the values on the uniform two-dimensional

quences in vectors. Denote Hy;, i = 1, ---, L} the set of 9"d
training vectors (column vectors). The estimated autocorrela- ol
tion matrix is Q) =¢&0) = :(r) 1=0,---,49 (41)
L J
1
R=—"— ist. 40 .
L-1 ; S (40) and finding the parameter vectgt = [¢F, (3] that leads to

: . ) the minimum value of the modified deflection &f,; from
We perform the eigenvalue decompositionfofand pick the ¢ \ith the smallest scale index. For the three-parameter
most significant eigenvectors. For our training data set, gse, the optimization process is similar but with an extra
significant eigenvectors are kept to represent the transmit{ﬁﬂwension to minimize over. We chooséo be equal t.40
signal. The time intervall” [see (17)] within which the A gmajier ¢ will lead to largeri*, which will increase the

decomposition is performed is 8 ms. number of degrees of freedom for the detection test statistic.
) ) ) As mentioned before, increasing the number of degrees of
C. Generating Function Design freedom has a negative effect on the detection performance.

With these eigenvectors and the corresponding eigenvalu€Be optimal scaling function?. (¢) is reconstructed frong*
we use the algorithm described in Section IlI-B to design thesing an algorithm described in [8]. Then, we reshahét)
generating function of the representation subspace. We dedignrmake it nearly shiftable. The reshaped scaling function is
the generating function for both the two-paramefé1 = 2)  g;. ,.(¢).
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(. \‘
* o 120 t-1
i r orth\ /

is the correlator receiver (CR); see [2] and [16] for detalils.
With the correlator receiver, since the transmitted signal is ran-
dom, we correlate the received signal with the most significant

-\ eigenfunction of K (¢, u) and use the peaks in the correlator
Sy orth (zf -2 output to detect the signal. Second, we compare our receiver

) S - with a “matche_d filter with integer shifts” (MFIS) receiver;
I see [2] for details. The MFIS receiver has the same structure

as our focused receiver. The difference is that it uses the most
significant eigenfunction oK (¢, ) as the generating function
rather than the one we have designed. Finally, we compare
our receiver with the ED [17].

Fig. 3 shows the average detection probabilities as a
function of the SNR. The average is taken over all the testing

i o . data and over all the delay patterns. The false alarm probability
Fig. 1(a) shows one realization of the whale sounds in OE‘HF is fixed at 0.01. There are seven curves in the figure. The

testing dgta _set. Fig. 1(b,) ShOWS_ a multipath noise-free Wh@GIid line is obtained by assuming perfect knowledge about
spund W_'th elght.paths._ Fig. 1() is aplot of.the same m““'Pa{He transmitted signad(¢), the number of pathg(, and the
signal V_V'th addlt!ve Wh'te_ and Gaussian noise. F'g'_ 1(d) Sho,"&%lays{fk}. Since, in practice, these parameters are in general
the optimal scaling function and the reshaped optimal Scal'ﬂﬂknown, it is an overly optimistic performance bound. The

function. dashed line is our focused receiver using the reshaped optimal
scaling function forP — 1 = 2. The “«” curve represents our
focused receiver using the reshaped optimal scaling function
The focused receiver uses for P—1 = 3. The “0” curve is the receiver using the optimal
i— P [T]II% (42) scaling _function without reshaping fa? — 1 = 2. The dash-
dotted line and the dotted line represent the performance of
as the test statistic. Sincg’. ,.(t) is the reshaped scalingthe correlator receiver and of the MFIS receiver, respectively.
function,{22‘*/29;77,(21‘}_71)7 n € 7} are not necessarily or- The “+” curve represents the performance of the energy

thogonal to each other. We orthonormalize it without changirigtector.

Fig. 2. Structure of the focused receiver.

D. Focused Detector

its span by Fig. 3 shows that, in this study, the correlator receiver
Fp (f) (the right-most curve) is outperformed by all others. This is

Fye. (f) = ixyr 43) not surprising since we chose the delay patterns so that the

emorth \/21 |Fgr. (fF+D? delayed replicas of the transmitted signal have considerable

_ overlap. Under these conditions, we expect the correlator
where g () andF,-  (-) are the Fourier transforms receiver to perform poorly. The potential maximum gain over
of g . omn(-) @nd gi. .(-), respectively [8]. With the or- the correlator receiver is given by the distance between the

thonormality of {27 /2g¥. | .. (2°t—n),n € Z}, Pz~ [r] two extreme curves in Fig. 3, namely, the left most curve
is easily computed by taking the inner product of the receivegrresponding to the optimistic upper bound and the right-
signal with {27 /2g%, (2"t —n), n € Z}. The structure most curve corresponding to the correlator receiver. This

of the focused receiver is shown in Fig. 2. It is essentially potential gain is about 4.7 dB. We see from Fig. 3 that the
bank of correlators followed by an energy detector (ED). focused receiver using the reshaped optimal scaling function

Since the signals we deal with are of finite duration, wg” — 1 = 3) recovers about 2.7 dB of these potential 4.7 dB.
treat the boundary problem by making the signals periodic. lhalso outperforms the MFIS receiver by about 1.3 dB and
addition, we need only a finite humber of correlators. outperforms the energy detector by about 2.3 dB.

In general, since we do not know the higher order statisticsThe performance of the receiver using the optimal scaling
of s(t¢), the distribution of the test statistic given in (42function without reshaping/{—1 = 2) (“0” curve in Fig. 3) is
under H; is unknown, which precludes a complete analyticalorse than that of the one using the reshaped optimal scaling
performance analysis. However, we realize that for a fixddnction (P — 1 = 2) (dashed line in Fig. 3). Note that the
realization ofs(¢) and a fixed set of channel parameters, thgerformance of our focused receiver 8r— 1 = 3 (*+” curve
test statistic in (42) is chi-square distributed undé&s and in Fig. 3) is just slightly better than that of the receiver for
noncentral chi-square distributed undér. Thus, for a fixed P — 1 = 2 (dashed line in Fig. 3). Increasing the number of
sm(t), we can compute the probability of detectio) parameters used in the parameterization does not significantly
as a function of the signal-to-noise ratio (SNR) for a fixednprove the detection performance.
false alarm probability £#). In our simulation results shown Fig. 3(b) is a plot of the detection probabilities at SNR=16.5
below, we take the average &%, over all the realizations of dB for all 100 trials. In this case, the robustness of our new
the transmitted signad(¢) in the testing set and over all thedetector (for both? — 1 = 2 and P — 1 = 3) is better than
different channel delay patterns. that of the MFIS receiver and much better than that of the

We compare the performance of our focused receiver witlorrelator receiver. The energy detector is the most robust
three other receivers. The first receiver with which we compareceiver. However, its average performance is poor.
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Fig. 3. (a) Average detection probabilitiés = 8, P = 0.01. (b) Detection probabilities at SNR 16.5 dB of the 100 trials. The solid line is a performance

bound. “——"is our focused receiver witt? — 1 = 2. “0” is the receiver using the optimal scaling function without reshapingifor 1 = 2. “*" is our
focused receiver witlP — 1 = 3. “—" is the correlator receiver.-“-” is the MFIS receiver. 4" is the energy detector.
V. SUMMARY We showed how a multiresolution analysis (MRA) avoids

We presented a signal analysis design technique using sédl-these difficulties and provides a successful approach, as
ing functions that are robust to translations. We are motivatBifasured by the good detection results in Section IV. The
by detection in multipath environments. Translation-invaria RA des!gnsg by _the deS|gn of aingle function, namely,
scaling functions are useful in a number of other applicationﬁge associated scaling functig(¥). Second, because the MRA

and have been the subject of extensive literature. Our approéFCﬁ. nelsted sequence fo f ﬁ ubs_pacehs, i:hoosmg tr; f‘mﬁg lest
should be useful in many of these other areas as well. IS simply a question of choosing the lowest scakich that

Multipath is an example of distortion that degrades th e modified-deflection to the signal set is below a certain
detection performance but is difficult to compensate for. In tﬁ reshold. The MRA approach also has practical implications,

geometric setting we described, the optimal detector usesg cheml?:éet:]ies} zgtguzgytgf;::?n:zCilrvt?;r(lzlgtincl)(fs(t);;lefirsn\iavlr)]ere
test statistic the energy of the projection of the received signaef g 9

on the multipath signal s&f. Computation of this orthogonal makes _|ts hardyvare .|mple-mentat|on simple and economical
o - . L E{{essentlally design aingle filter).

projection is, however, a multidimensional optimization th We illustrated the design of the scaling functigft) by re-

is equivalent to the maximume-likelihood estimation of the 9 9 y

multipath itself. In the approach taken, we replagewith stricting(#) to be compact. Thls_lead to additional advant_ages
. . . that were not readily available with arbitrary sets of functions.

a representation subspaéethat is designed such that the . o
1) Using parametrizations for compactly supported scal-

projectionll; on G is close to the projection 08, whereas, , i s me=
N ing functions, the (off-line) subspace design is further

at the same timell; is simple to compute. imolified f he desi ¢ mingle f >
In general, the design af presents major difficulties. We simplitied from the design of aingle function to an
(off-line) optimization of a finite number of parametérs.

highlight two of them. First, becaus& is an ensemble of N | dd . ¢ . bal b
subspaces, the similarity betweéhand G is measured by ) Increase gtectlon periormance requires a balance be-
tween the signal energy and the noise energy in the

the modified deflection. The modified deflection is a one- test_ statistic. This bal lates to th b ¢
sided measure. Therefore, while designiéigo be close to des N aISfICf. dIS aa;n(_:e dre_a ?ﬁ % i et”“m ertr?
S, we needg to be as small as possible; see Section IlI-B. egrges cf)ﬂtree pn:href?;neb mk 'I?h (Iav'eRcAor, "e.a’ €
A second difficulty is the subspace design itself. Subspaces gusTmelreoso:ugcr)snte:alJ s{grre alincaites ?he strug'[g;/(la gfs
are designed by specifying a basis for the subspace. For pe - P . .

oon . the multipath signal sef and the scaling function has
separable subspaces, bases are countable. While it is possible )

compact support, the number of filters follows from the

in principle to use an arbitrary set of linearly independent ; ) . )
. . . ; : maximum expected interarrival delay between paths; see
functions (e.g., orthogonal functions) as basis functions, this . : . X
the discussions in Sections IlI-B and IV.

is not a viable strategy. For one thing, the design would now i i .
mean designing multiple functions (the subspace basis). On {Hie experimental results in Section IV show that the MRA de-

other hand, the “size” of the subspace becomes coupled wiagtor provides significant performance gains over alternative

the design of the basis functions, and in general, choosiﬁ‘gce'vers and is robust to the multipath delay pattern.

the “smallest” suchG that is closest taS in the modified-

deflection sense leads possibly to a coupled iterative schem
P y P ?Although we worked with the parametrizations for compact supported

Whe.re each iteration requires de5|gn|ng all the Correspond'&gling functions [9], other finite parametrizations that provide other tradeoffs
basis functions. (e.g., prespecified degree of smoothness; see [3]) can also be used.
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APPENDIX /27'

In this Appendix, we prove Theorem Ill.1.
From the definition of the modified deflection, we need first

to compute Z |J”-" “if 40
dist[sine(-), Gil = lIsint ()13 = [1Pg. [sinelll3 120 (44) 2
where Fo(27'f+ k)| df (55)
+oo
$int(+) = Z ans(- —n) (45) _ /
n=—oo 0
+oo M 2
iy ’anhrn r—n) € Szn (46) z —1
2 Ay Tl € S AU FZRFCT ) & (56)
and Py, [sin¢] is the orthogonal projection of;,,:(-) on G;.
Since{2/2¢(2* . —k), k€ Z} is an orthonormal basis of  _ / Z an
G;, the orthogonal projectio®s, [s;,:] is obtained by taking -
the inner product ofs;,,.(-) with {2¢/2g(2" . —k), k € 7}, 9i_1 2
i.e., DDA+ PR+ DF,27f + k27| df.
(P [sina])(®) = D {sine (), 277927 - =) =0k -
e (57)
L 202g(2% — k). (47) Now, we expands(#) using the truncated K-L expansion

and take the expectation. Since the coefficiefits,, m =

Taking the Fourier transform of (47) and using Poissonf , M} are statistically orthogonal random variables, we
summation formula, we have

. . o0

FlPg lsiml)() =27 Fo(27) 3 /
k‘ -

f‘Smt (fl)?g(2_zf1)

have

E{|Po.[sinell} = /

e {=2mk2”(f = f}dn (48 Z o2, O (f (58)
=27 F,27 ) [ R ()F (2 ) " 2
ST exp{—j2rk27(f - A} (49) - / { ; o exp{=j2mnf} 2::1
=F,27'f)- For (F1)Fg(27" 1) o D | Fun (f DI - C()df (59)
o l
S8~ f -2k dfy (50) where
K 211 2
— @) {zan exp{—jsz}} Cig1)= 3 [P (f+2 b F 27 k27
Z F(f+2R)F,27 f+k).  (51) (60)
and
Taking the norm square of (51) and using the fact that for 2 o
orthonormal scaling functions, the following is true [8] Z O Chg
i C(f) = m=1 . (61)
| 7,27 f +l a.e. (52) M
Z YR D | Fu (F+DI?
we have m=1 t
1P, [sintl |2 = | F[Po [somc]2 (53 Once we haveE {|| Py, [sin¢]? }, the square of the modified

deflection&nod(sm, G) is obtained by taking the supremum,

{Z ay, exp{— J27rnf}} L(27HF) i.e.,

2

-/

82 0a(Sint, G) = sup  E{disC[s;n(-), Gi]} (62)

sint()ESint
Z Ff 2 F,@ 0| dr (54) =1— b B{|IP[sml} (63)
Sint(*)CSint
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subject to
BllsnN} = [ B{sutl?} i (64
1 Y
- / S an exp{-j2mnf}| Y
0 n m=1
o2 > N Fn, (f D df (65)
{
=1. (66)
Since we assume that
M
o Y P (F+DP ae. (67
m=1 {

using a limiting argument, we can choose

Z mZ|fhmf+l>| (68)

m=1

S an exp{—jsz}

to be the Dirac delta function located at the frequency whe
C(f) has its minimum and is continuous. Then, the quantit

2 M

E{|Pe,sind] 3} = / S o exp{—j2enf}| 3

m=1
02 Y | Fn (FHDP-CHdf (69)
{

is minimized. The minimum is

§ :O—rn hg

m=1

Z D P (f+ D)2
{

m=1

70
fe[o 1) (70)

Therefore, the modified deflectmﬁnod( int, i) IS given
by

inf  C(f).

71
felo,1) (71)

This proves Theorem Il1.1.
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