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ABSTRACT

It is well-known that the discrete Fourier transform (DFT)
can be characterized as decomposition matrix for the poly-
ncmial algebra Cz]}/(z™ — 1). This property gives deep
insight into the DFT and can be used to explain and de-
rive its fast algorithms. In this paper we present the polyno-
mial algebras associated to the 16 discrete cosine and sine
transforms. Then we derive important algorithms by ma-
nipulating algebras rather than matrix entries. This makes
the derivation more transparent and explains their structure.
Our results show that the relationship between signal pro-
cessing and algebra is stronger than previously understood.

1. INTRODUCTION

There is a large number (several hundred, e.g., 1, 2]) of
publications on fast algorithms for the family of 16 discrete
trigonometric transforms (DTTs), comprising 8 cosine and
8 sine transforms (DCTs and DSTs). With very few excep-
tions {including [3, 4, 5]) each of these algorithms has been
found by insightful manipulation of the transform matrix
entries. We address in this paper two important theoretical
questions: (1) Why do these algorithms exist? and (2) How
to explain the struciure of these algorithms?

To answer these questions, we asseciate to each DTT a
polynomial algebra of the form A = C{z]/p{z), with some
polynomial p, for which the DTT is a decomposition ma-
trix, i.e., an instantiation of the Chinese remainder theorem
(CRT).-Then we derive fast algorithms for the DTT by ma-
nipulating A, e.g., by a stepwise decomposition or a base
change.

In Section 2 we introduce polynomial algebras and asso-
ciated polynomial transforms and present two general meth-
ods for deriving their fast algorithms. Section 3 presents
the 16 DTTs and their defining diagonalization properties,
which are used in Section 4 to show that the DTTs are poly-
nomial transforms (up to scaling). In Section 5 we then
derive important fast DTT algorithms by manipulating their
associated algebras.
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2. MATHEMATICAL BACKGROUND

Polynomial Algebras and Transforms. We denote by Clz]
the algebra of polynomials with complex coefficients. An
algebra is a vector space that is also a ring, i.e., permits
a multiplication that satisfies the distributive law. If p is a
polynomial of degree n then we call A = Clx]/p(x) a poly-
nomial algebra, which is the set of polynomials of degree
less than 72 with multiplication modulo p. If p has pairwise
distinct zeros a = {(ag,...,n—1), then, by the Chinese
remainder theorem, A decomposes as

Clz])/p(z) 2 Cl2]/(z—a0) ... @Clz]/ (& —an-1)}. (1)

If we choose bases b = (po,...,Pn—1) in A, and 2% in
Clz)/(z — ag), respectively, then the decomposition in (1)
is given by the polynomial transform

Poa = [Pelor)o<h t<n- 93]

If, more general, we choose bases a;z? in Clz]/(z — o),
respectively, then we obtain the scaled polynomial trans-
form )

diag(1/as, .-, 1/@n-1) - Poa- 3)

Representations. If ¢ € A, then, because of the dis-
tributivity law, the mapping

A—}A) T q-T (4)

is linear, and thus represented, w.r.t. the basis b, by a matrix
M. The mapping

¢: ATV, g M, (5)

is the {regular) representation of A with basis b (and a ho-
momorphism of algebras). As a consequence of (1), for
g€ A,

Pia - $lg) - Ppo = diag(g(ao), ..., glan1)). (6

From (3) it is clear that any corresponding scaled polyno-

mial transform has the same diagonalization property (6).
Fast Algorithms, We present two general methods for

deriving fast algorithms for polynomial transforms Py .



Both methods are based on a decomposition of the algebra
Ain (1) in steps. We represent the fast algorithms as sparse
structured matrix factorizations. In particular, we use the
tensor ot Kronecker product of matrices, defined by

A® B =[ape- B)], where A = [ay¢],
and the direct sum of matrices, defined by
Ao B=[4;].

An immediate idea for a stepwise decomposition of .4
in (1) is to use a factorizationp = g -7 of p. If 8 and v
denote the lists.of zeros of g and r, respectively, then

Uzl /p(z) Clal/q(z) ® Clz]/r(z) 7
: P Cizl/ (= - 8:) & P Clzl/(z — ;)
P Cizl/ (= — o). 8)

If we choose ¢ and d as basis of C[z]/¢(x) and Clz]/r(z),
respectively, we get as corresponding factorization

14

1%

IR

Poo = P(P.5® Py )B. )}

In particular, B corresponds to (7) and P is the permutation
of zeros in step (8).

A more interesting factorization of Py , can be derived
if p(x) decomposes into two polynomials, p{z) = g(r(z)),
where deg(g) = k,deg(r) = £, 1e.,n = kL. Let § =
(Bos...,Bk—1) bethe zeros of gand a} = (i, ..., @i ¢—1)
be the zeros of r{z)™— B, i.e, each oy ; is a zero oy, of p.
Then A = Clz]/p(x) decomposes in steps as

Clel/p(z) = PCel/(rx)-8) 10
> PPde)/@-aiz) AD
= (PCal/ (= - ax). (12)

To obtain the corresponding factorization of Py, o, we first
choose a different basis in A. Let ¢ = (go,...,qr—1) and
d = (rp,...,7¢—1) be bases for C[z]/q(x) and for each
Tz]/(r(z) — ;) in (10), respectively. Then

Vo=

( 7"0(_]0(7‘), “- ,7‘{_1@](7‘),
(13)
rodr—1(r), ..., Te_1qp—1(r) )

is a basis of Cla:]/p(=). Next, we compute the base change
matrix M for step (10) with respect to b’ in A and d in each
summand on the right hand side. Because of

TJ'Q'm(T) = 'er'm(ﬁz‘) mod (r — ),
we get

M =q;(8:) - Lilogij<k = Pes ® 1,

closed form ZLros symmetry
k+ 1
T, | cos(né) cos £—+n2£ Ton=T,
Un sms;;-;lgﬂ cos !ki:ll!w U—n =—U,_,
1 1
7 cos{nt3)0 (k+3)m -1
Vo cos o cos 4 Vo=V,
. sin(n+1)8 (k+1)m _
W, Sl cos ntl W_,=-W,

Table 1. Four series of Chebyshev polynomials. The range
for the zeros1s 0 < k < n, and cos@ = z.

where I, is the £ x £ identity matrix. Step (11) decom-
poses the summands by polynomial transforms P4 4;, re-
spectively, and step (12) reorders the one-dimensional sum-
mands with a permutation P. In sammary,

k-1
Pra =P (@ Pd,az.) (P.s®1)B,  (14)
=0

where B is the base change matrix mapping b to b’

It is important to note that the factorizations (9) and (14)
are useful as fast algorithms only if the matrix B is sparse
or can be multiplied with efficiently.

Chebyshev Polynomials. Let (C,)nez be a sequence
of polynomials that satisfy the three-term recurrence

Cp=22C,_1+Chos. (15)

We call C,, Chebyshev polynomials, and consider the four
specific cases C' = T, U, V, W arising from the initial con-
ditions Cp = 1 and Cy = x, 2z, 22— 1, 22 + 1, respectively
{6]. Each of these polynomials can be written in closed
form, has zeros of the form cosrm, r € @, and has a sym-
metry property, see Table 1.

We will need the following properties

Tn(Th) = Ton, (16)
U2n—1 = 2Un—1Tns (17)
UZn - Van - (1 8)

3. DISCRETE TRIGONOMETRIC TRANSFORMS

There are 16 discrete trigonometric transforms (DTTs), 8
types of discrete cosine transforms (DCTs) and 8 types of
discrete sine transforms (DSTs} [7]. Each of the transforms

- is given by an (n x n)-mauix M, n > 1, which multiplies
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to a signal vector s from the left, s = M - 5. As examples,
we will use the symbol DCT-2 to refer to a DCT of type 2,
DST-7,, to refer to a DST of type 7 and size n.

Table 2 gives the definitions of the 16 DTTs, by stating
the respective entry at position (k, £), 0 < k,£ < n, where
k is the row index. The definitions given in Table 2 are the
unscaled versions of the DCTs and DSTs, which will be



DCTs DSTs leftbe. | 1 Ba rightbe. |8 B
typel |coskéZs sin(k + 1){£ + l)n— a1 =a 0 2 Uy = Gp-2 2 0
type2 | cosk(£ + 3)Z sin(k + 1)(£+ 3)= a_1=0 0 1 ap =0 1 0
type 3 | cos(k + §)€% sin(k + 3)(£+ l)Tr a_1 = ag 1 an=ap—1 | 1 1
typed | cos(k + 3)(€+ 3)Z sin(k + $)(€+ 3)Z a1 =—ae | -1 1 p=—Gn_1 | 1 -1
e 3 | cos ki—= sin(k + 1)(£+1
R n—} ( X ) Table 3. The values 31, 52, 53, A4 from (19) for the 4 re-
type6 | cosk(f + )T I sin(k + 1)(€ + 3) 7 Hl' spective choices of left b.c. and right b.c.
type 7 | cos(k + g)g—r sin(k + 3)(£ + 1)—,—
type 8 | cos(k + £)({ + 3 )n+— sin(k + £)(£ + 2)—1- ‘ An=0ap 2 =0 =an1 =—ap_1
a_1 =@ DCT-1 DCT-3 DCT-5 DCT-7
Table 2. 8 types of DCTs and DSTs {unscaled) of size n. =0 DST-3 DST-1 DST-7 DST-5
The entry at row k and column £ is given for 0 < k,£ < n. = ag DCT-6 DCT-8 DCT-2 DCT-4
= gy DST-8 DST-6 DST-4 DST-2

considered in this paper. The scaled versions of the DCTs
and DSTs are orthonormal and arise from the unscaled ver-
sions by multiplying in some cases the first and/or last row
and/or column by 1/+/2, which makes the matrix orthogo-
nal. In addition, the entire matrix is multiplied by a factor
to achieve orthonormality. Since we are intergsted in fast
algorithms, it is sufficient to consider the unscaled DTTs.

All 16 DTTs arise as (left) eigenmatrices of certain tridi-
agonal matrices [8, 9] of size (n % n), which can be chosen
of the form

A1
G 0 1
1
B(ﬁlsﬁ2aﬁ3aﬁ4):§' o1 ? 1 (19
1 3

The internal structure of B(81, 82, 83, 81) corresponds to
the equation
1

8k = §(Sk—1 +sk41), 1<k<n~-2.  (20)
The entries 31, 32 are determined by a choice of left bound-
ary conditions (b.c.) that determine how s _; is chosen in
(20) for ¥ = 0. The 4 left b.c, considered are 5 _; = 57,
s_31 =0,5_1 = sp, s_1 = —8p. For example, the choice
§_1 = s leads to ) = 0,4 = 2. Similarly, the entries
3, B4 are determined by right b.c. arising from the choice

© of 8, in 20) for &k = n — 1. The right b.c. are the mirrored

versions of the left b.c.; 8, = 8p-2, 8, = 0, 8, = $5_1,
8p = —8p—1. The complete set of values 31, 52, 83, 84 for
all 16 possible combinations of h.c. is given in Table 3. The
DTT associated to each combination of left and right b.c. is
given in Table 4. If left and right b.c. are chosen, DTT is the
associated transform (from Table 4) and B(84, 82, B3, B4)
the associated tridiagonal matrix (from Table 3), then

DTT -B(Bi, Pa, B3, B4) - DTT™! @n
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Table 4. The left and right boundary conditions associated
with the DCTs and DSTs.

is diagonal. As an example, choosing the left b.c. s _; = s¢
and therightb.c. s, = s, yields that DCT-2-B{1,1,1, 1}-
DCT-27! is diagonal.

4. ALGEBRAS ASSOCIATED TO DTTS

In this section we show that the DTTs are scaled polynomial
transforms D - Py ., (see (3)) by connecting the diagonal-
ization properties of the DTTs in (21) and the diagonaliza-
tion properties of the (scaled) polynomial transforms in (6).
Thus, we construct an algebra .4 = C[x]/p(x) and a basis
b, such that for the associated representation ¢ (see (5))

é(z) = B(By, B2, B3, B1).

In other words, the operation of x (via multiplication) on
A with basis b is reflected by the matrix B(84, 82, 83, 54).
The construction is done in the following three steps.

Internal Structure. All matrices B( ) in (19) have the
same internal structure, namely rows ...,0, £,0,1,0,.
Rewriting (15) as

z-Cp = %(Ckfl +Ck+1) 22)
shows that this structure is afforded by any algebra 4 =
Clz]/p(x), if we choose abasis b = (Cy,...,Cn—1) (n =
deg(p)} of Chebyshev polynomials. In other words, the im-
age of z under the representation ¢ afforded by A with basis
b will have an internal structure similar to the matrices B(-).

Left Boundary Conditions. The 4 left b.c. associated
with the DTTs are (see Table 4)

5.1 =51, 5.1 =0, 5.1 = 89, -1 = —30. (23)



They apply in the boundary case & = 0 in (20). An equiv-
alent behavior is obtained in (22) if we choose the 4 spe-
cial sequences of Chebyshev polynomials, T, Uy, Vi, Wy
introduced in Table 1. The symmetry properties of these
polynomiais (¢f. Table 1) correspond to the left b.c. in {23),

T—l = Tl: U~1 = 0: V—l = %7 W—-l = _WO: (24)

respectively. As an example, every algebra Clz]/p{x) with
basis (7o, ..., Tn_1) carries the left b.c. s_; = s;.

Right Boundary Conditions. The 4 right b.c. associ-
ated with the DTTs mirror the left b.c. (see Table 4)

(25

Sp = 8n—2, 6n = 0, 84 = Sn_1, 8n = —8p_1.

The right b.c. are determined by the choice of p in Cz]/p(z).

As an example, to introduce the right b.c. 8, = $,_o, we
choose p = Cy, — C—p where P € {T, U, V, W }. Thus the
choices of p corresponding to (25) are

Crn = Cn2,Cn,Cn — Cre1, Cp + Ciy,s (26)

respectively,

Example. As an example, we choose DST-3, which
has left b.c. bc. 5.1 = 0 and right bc. 5, = 5,9 (see
Table 4). We derive the associated algebra. The left b.c.
lead to the basis b = {Up,...,Un_1) (see (23) and (24)),
and the right b.c. lead to p = U, — U,_2 (see (25) and
{26)). Further, I/,, — U, _5 = 2T, (using the closed form
of Uy, and T}, and trigonometric identities) which has zeros
oy = cos{(k+1/2)n/n),0 < k < n. Thus,

Poo = Ue(ak)logk,ecn = Dy - DST-3,,

with D,, = diagh 7, (1/(sin(k + 1/2)7/n)). Equivalently,
DST-3, = D;! - P4 is a scaled polynomial transform, as
desired,

Summary. The polynomial algebras associated to the
16 DTTs are given in Table 5. Consider a given DTT,,,
let p(z) be the polynomial underneath it, and denote with
o, . .., p—1 the zeros of p (obtained from Table 1). Fur-
ther, let f be the associated scaling function (second col-
umn) and C the associated type of Chebyshev polynomials
(third column). Then

DTT,, = diagh_g (f(e)) - [Celc)lo<h,e<n

is a scaled polynomial transform for 4 = C[z]/p(z). Ta-
ble 5 aiso displays the connection with the left and right b.c.
(first column and row) identical to Table 4. Further, Table 5
evaluates the sums/differences in (26), which allows to read
off the zeros of the polynomial p. It is intriguing that, in a
sense, the polynomials C € {T, U, V, W} are closed under
the operations in (26).

In a different context, [10] recognizes the DTTs of type
14 as scaled polynomial transforms without establishing
the connection to the b.c.
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5. DERIVATION OF FAST ALGORITHMS

Using the algebraic characterization of the DTTs we derive
fast algorithms by manipulating the associated polynomial
algebra A rather than the matrix entries of the DTTs. Thus,
we show the general principles that account for these algo-
rithms and give insight into their structure. We will repeat-
edly use Table 5. i

Translation of DTTs: Duality. The construction of the
algebra Clz]/p for a given DTT (see Section 4) deals seem-
ingly different with the left b.c. (choice of the base sequence
() and the right b.c. {(choice of p). This constructior can be
reversed and leads to sparse relationships between pairs of
DTTs, which we call dual.

Definition I (Duality) Let DTT and DT'T’ be at mirrored
positions in Table 5, i.e., at positions (i, j), (7,1), 1 < 4,5 <
4, respectively. We call DTT and DTT’ dual to each other.
The DTTs on the main-diagonal are called self-dual. Dual
DTTs have the same associated algebra Clz]/p(z).

We use the dual pair DCT-3, DST-3 as an example.
The algebra Clz}/p(x) associated to DCT-3,, carries the
leftbc. sy = 51, reflected by the basis b = (T, ..., Th—1),
and the right b.c. 8, = 0, reflected by the equation p =
Ty = 0. The same b.c. are realized by the reversed basis
b = (Up-1,...,Uy) (which implies the right be. U_; =
0) and introducing the left b.c. by the equation I/, = U,,_4,
orp = Uy ~U,_q = 2T, The correspondence between the
base polynomials can be displayed as follows; the vertical
lines indicate the boundaries.

Ta=T | T
Uy =Up_2 | Un-1

Tn—ll Tn:(]
Up U1 =0

In other words, the bases b and b yield identical repre-
sentations of 4 = C[z]/T,, and any polynomial trans-
form for A with basis b is one for A with basis &', and
vice-versa. The algebra .4 with basis b is decomposed by
DCT-3,,, the algebra .4 with basis & by DST-3,, - J,, (], is
the identity matrix with the columns in reversed order), thus,
these matrices are scaled version of each other, And indeed,
using trigonometric identities, we find diag_} ((—1)*) -
DCT-3, = DST-3, - J,,. Analogous computations verify
the same identity for all pairs DTT,,, DTT}, of dual DTTs:
diagiZy((-1)*)-DTT, = DTT,-J,. @D
Translation of DTTs: Base Change. Let Clz]/p(z)

be the algebra associated to a given DTT (see Table 5). We
observe that the 16 DTTs can be divided into 4 groups of 4
each depending on p being (almost, i.e, up to a linear or
quadratic factor) equal to one of T,U7, V, W. For exam-
ple, all DTTs on the main diagonal in Table 5 are in the

U-group. We observe that in each row or column there is



f C Sp — 8n-2 | Sn Sn — 8n—1 Sn + 8n—1
DCT-1 |DCT-3| DCT-5 DCT-7
S1=8& 1 T
2z = Woz | T | (z—1)Wnoy | (&+1)Vass
, DST-3 DST-1 | DST-7 DST-5
51 =0 sinf | U oT, U, V. W,
) DCTI-6 |DCT-8| DCT-2 DCT-4
sae=so (s IV W | Ve |20 - DU 27,
. DST-8 DST-6 | DST4 DST-2
s-1=so | sinz6 W o | w 9, 2z + 1)Up

Table 5. Overview of the 16 DTTs and the associated polynomial algebras Clz]/p(z). The left b.c. (rows) determines a
scaling function f (cosf = z) and the basis of Chebyshev polynomials C € {T, U, V,W}. The right b.c. (columns) then

determines the DTT and p{z) (given below the DTT).

exactly one DTT of each group. All 4 DTTs in one group
share (almost) the same associated algebra, but with differ-
ent base sequences C € {T,U,V,W}. This connection
can be used to translate, by a base change, any two DTTs
in the same group into each other using O(n) operations,
or, more specifically, using two sparse matrices with O(n)
entries each.

As an example, we consider DCT-3,, and DCT-4,,, both
in the T-group, i.e., they have the same associated alge-
bra 4 = {[z]/T,, but different bases b = {Tg,...,Th-1)
and ¥’ = (14,..., V1), respectively. Using Ty = (Vi +
Ve—1}/2 (follows also from Table 5) and V_; = V}, the
corresponding base change matrix S, is given by

21
011
Sn

1
5 . (28)
11

1
adjusting the scaling factors yields the diagonal matrix D, =
diag05k<n (COS(2k + 1)/471) aﬂd

D, -DCT-4, =DCT-3, - 5,, 29
Transposition or inversion of (29) establishes a sparse re-
lation between DCT-4 and DCT-2. For the special case of
dual DTTs, this method leads to relationships different from
(27).

Decompeosition by Polynomial Factorization. We use
(9) 1o derive a complete set of recursive algorithms in the /-
group, i.e., on1 the main diagonal in Table 5. As an example,
we consider the DCT-2,,, n = 2m, with associated algebra
A=Cz]/(z — 1)Uy..1(z) and basis b = (Vo,..., V1),
Using (17), (¢ — 1)Uy -1 = (£ — 1)U, T'n.-and thus (com-
pare with (7))

C[:B]/(:B— 1)Uﬂ.—l

o~

[z]/(z — )Um-1 &Clz] /T (30)

We choose b = (V},...,Vas—1) as basis in both smaller
modules in (30) and determine the base change matrix B,,.
From (z — D)Um—1 = (Vin — Vin—1}/2 and Ty = (Vi +
Vin—1)/2 we derive by induction Vi = Vip——1 mod (z—
NUptrand Vipyp = Voo mod Ty, 0 < & < m, and

get

The two summands in (30) are decomposed recursively by
DCT-2,, and a DCT-4,,, respectively. Reordering the one-
dimensional summands with a permutation P, yields (see

8n

I

I

Im

- (31)

B = |

DCT-2, = P,(DCT-2,, ® DCT-4,,)B,.

Analogous derivations yield the full set of recursive algo-
rithms due to (17} and (18). To state the corresponding for-
mulas, we need the following building blocks. The base
change matrices By, in (31) and

I, 0O Jm
Bopmar = ¢ 1 01,
I, 0 —Jn

and the permutation matrices

Pyt iy mi mod (2m — 1),
2m -1~ 2m -1,
Porny1 14+ i{m + 1) mod (2m + 1),

0<i<2m—1,

0<i<2m.
Based on Ugyp—1 = 2Un—1 T, we get (e.g., [2, 11])

DCT-13m41 = P2m+1’(DCT—1m+1 & DCT—3m)BQm+1.

DST-1om-1 = Pgm_l(DST—?!m (&) DST-lmWﬂBQm_l.
DCT-23,, = Popp{DCT-2,, & DCT-4,,)Bop,.
DST-2y,, = Pory(DST-4,,, ® DST-2,,) Bory,.
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Based on Uz, = V,,, W,,, we get

DCT-lom = Pop (DCT-5,, ® DCT-7,,.)Bom.

DST-1om = Py (DST-7,, @ DST-5,,,) Bomm.-
DCT-22m+1 = Pomy1(DCT-6 11 & DCT-8:)Boms1-
DST-22m+1 = P2m+1 (DST-8m+1 D DST-ﬁm)B2m+1.

We did not find these in the literature.

Decomposition by Polynomial Decomposition. We
use (14} to derive algorithms for all transforms in the T-
group, As an example we consider DCT-3,,, n = 2m. The

associated algebra is Cz] /Ty, withbasisb = (Tp,...,Th_1).

The zeros of T, are a, = cos{k + 1/2)w/n, 0 < k < n.
From (16), T, = T;,,(T3), and we follow the derivation of
(14) to obtain a fast algorithm. Itis ¢ = T, r = T5 and we
choose ¢ = (Ty, ..., Tm_y) and d = (T, T}). Thus, &' in
(13)is givenby (To, 7, T3, (T1 +T3)/2, veryTpoz, (Tnig'l"
Tw—1)/2). The base change from b’ to b has the structure
Py (Trn &5,,) Py} using S, from (28) and Pay, from the
previous paragraph. Thus, the base change from & to b’ is
given by

B, = Py (Ln ®S1)Ps k. (32)

Further, in (14), &} = (cos(i+1/2)w/n, — cos(i+1/2)w /n),
and thus

o _ 1 cos(i+1/2)=/n
M =Paa; = [ 1 —cos(i+1/2)n/n
= DFT;- diag(l,cos(i + 1/2)7/n).
We get
m—1
DCT-3,, = Q, ( &P M,;) (DCT-3,, ® I2)B,,.
=0

with a suitable permutation @,,. Using P{T,i (A® )Py, =
I, R A for any m x m matrix A, we obtain the known fac-
torization

DCT-3, = @, (DFT: @ L) (1 ®D)

(I: @DCT-3,,) (L ©5,,1) @,
with permutations @7,, Q% and a diagonal matrix D,,. In-
version or transposition yields an algorithms for DCT-2.
The same derivation can be used for each DTT in the T-
group if the Chebyshev polynomials in b and ¢ in each case

are chosen of the same type C € {T, U, V,W}.
Thus, based on Tap, == 17, {T3), we get

DTT,, = Q;(DFTQ & 1)1 ®Dy,)
(I ® DTTy,){(Im ©S1)Q0,

for each DTT in the T-group.
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6. CONCLUSIONS

We showed that the 16 DTTs can be characterized in the
framework of algebras and their representations and used
this connection to derive and explain several known DTT
algorithms by manipulating algebras rather than DTT ma-
trix entries. We will extend our approach to provide a com-
plete overview of the origin and the derivation of DTT al-
gorithms.
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