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Blind Array Channel Division Multiple Access
(AChDMA) for Mobile Communications
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Abstract—The paper introduces array channel division multi- As described in the literature, SDMA improves system
ple access (AChDMA), which is a new blind algorithm for ad- capacity, in particular, when combined with TDMA [11], [16],
vanced SDMA in mobile communications systems. As an SDMA 1551 There are basically two classical approaches in SDMA:
technique, AChDMA increases the system capacity by improving multibeam antenna based SDMA and pure SDMA based on
its time and frequency reuse. Being a blind algorithm, it requires g i .p )
no training sequences, previously known directions of arrival, or adaptive beamforming capable of tracking the mobile sources.
user codes. _ _ ~In this case, to acquire the channels, previous estimates of the

AChDMA separates the moving sources by tracking their directions of arrival (DOA’s) are used (DOA-based SDMA)
multipath configuration and resolving their distinct generalized or known training sequences are transmitted. More recently

steering vectors. It maximizes a finite mixture log-likelihood | blind thods h b d to imol i
function, combining an efficient initialization procedure with an ~ SEVeral blind methods have Deen proposed 1o impiemen

EM-based algorithm that provides fast convergence to the global advanced SDMA systems [1], [17], [18], [26], [30].
maximum. AChDMA reconstructs the mobile data sequences Rather than combating multipath as an hindrance, in this
using only internal variables of the EM algorithm. These char- paper, we develop a new blind algorithm for multiple access
acteristics and its parallel structure make AChDMA suitable gy qiams that exploits the distinct multipath configuration of
for real-time mobile communications. We test AChDMA with - . A .
synthetic data in a number of different scenarios, illustrating the each mobile user. We call it array channel division m“'t'P'e
ability of the blind algorithm to separate and track in time the ~access (AChDMA). AChDMA makes full use of the spatial
moving sources, and showing its good performance in a variety diversity (array) available to the receiver (as SDMA systems
of practical situations. do) and of the temporal diversity (multipath) present in the
channel. We will show that AChDMA performs well with

|. INTRODUCTION nonstationary channels of mobile users, outperforming other

T HE RAPID evolution of DSP technology has enlarged th%llgdcr?[?'\:/l: melth.(;)dst.h fact that h bil .
application of software radio architectures to advanced EXploits ne Tact thal each mobile recever ge-

communication systems [12], namely, in the design of adapti\(?@ef_try glt\_/es rse tot a c(;ljlsélnc:{thmultlpath conf_|gurat|on. Tlr_usd
base station arrays. Array processing techniques have 'gura |ont IS claptl;rel :’ d € sdource r_ec_<|a|ver_f|ert1_era 'rzle
ability to cancel undesirable interferences, thus reducing t tgermg vector. In he fast decade, a similar situation has

frequency reuse distance and improving the spectral e een explored in underwater acoustics localization, where

ciency [31] and system capacity [5], [25] of cellular radiocom_biqi_ng cohe_renFIy the ene.rgy.in thg _multiple paths Iga_ds
t 141, [24], [29]. A - leviate th significant gains in the Iocahza_tlon ability o_f sonars. This is
systems [14], [24], [29]. Array processing can alleviate sually referred to as matched field processing, see [2], [20],

impact of multipath that typically affects both radio and’ :
Impact of mutipa a ypicaly afiec’s Dot radio an nd [23] and references therein. Likewise, by resolving the

underwater acoustic communications [3], [6], [7]. Severd"® . T . ;
ultipath configuration, i.e., the generalized steering vectors,

references have addressed this problem in code division mmIChDMA bl biles 1o it with th d
tiple access (CDMA) and space division multiple acce enaples moblies 1o transmit wi € same code

(SDMA) systems, [4], [8], [13], [21]. These CDMA scheme imultaneously in time and using the same frequency carrier.

use the prior knowledge of the users’s codes as refere Jée array receiver that we develop controls, at the physical
signals. In addition, CDMA is robust to multipath effects Ver: distinct nonstationary virtual channels defined on the

exhibiting higher capacity than existing frequency divisioname ce!l. This is done by blind separation OT the different
multiple access (FDMA) and time division multiple accesRropagation channels that result from the multipath structure

(TDMA) systems. This is achieved at the cost of highe‘?OrreSponding to each mobile.

receiver complexity, e.g., requiring code synchronization. The MO ma!or t‘_""SkS and algor!thms in AChDMA are
1) blind estimation of the multiuser array/channel transfer
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convergence properties of AChDMA compare favorably witfact that the transmitted signal is narrowband and assuming a
those of the ILSP/ILSE method proposed in [26]. Moreovemicrocell-based system where the largest propagation delay is
our algorithm has the ability to track in real time the arragmall when compared witli’, we write

channels. M,
The optimal reconstruction of the data stream is cast as a Sp (1) = Z Vg (Bmp)5p(t)
multiple hypotheses test. We interpret the resulting solution as me1
a multichannel beamforming operation based on the minimqﬂherean(eml,) — e=i(n—DwoAmy aNdy,y = Oppei*0 e

noise power distortionless response criterion. _We represent by(6,,,,) the array steering vector for the angle
The paper is organized as follows. Section Il establishg$ /rival 8,p With nth elementa,, (6,,,).
the array data model, focusing on the particular structuregqm ) pthe array/channel trans?er function for thid

of the array/channel transfer function and pointing out thg,rce, i.e., the transfer function between the soprard the
cluster structure of the array data. Section Ill addresses vé%eiving array ofV sensors, is given by th&/-dimensional
problem of data reconstruction based on the ML estimates&{mmex vector

the array channels: Section IlI-A presents the EM algorithm

that computes the ML estimates of the array channels. Section M
l1-B develops the initialization procedure. Section III-C re- by =" Ympa(Bip)- 3)
constructs the multiple sources data symbols and interprets m=l1

this as a beamforming operation. Section llI-D discuss@gsuming ideal matched filtering and ideal sampling of the
system implementation issues for AChDMA. In Section IVarray data and using (1)—(3), we can write the output of the
we evaluate the performance of the AChDMA scheme. Wgray with V sensors as th&/-dimensional complex vector
illustrate with synthetic data that AChDMA tracks properly

the time varying array channels, and we compute the average z(k) = Hs(k) + w(k) 4)
probability of error for several scenarios, comparing the

average values with their theoretical values. Finally, Section

V summarizes the results and concludes the paper. H=1hy, -, hy] (5)

is an(V x P) complex matrix representing the channel transfer

function for the multisource  sources)/array N sensors)
Consider P independent binary sources, where each omenfiguration, and

generates the baseband signal

Il. ARRAY DATA MODEL

oo s(k) = [bi(k), -, bp(k)] (6)
sp(t) = Z bp(k)u(t - K1) (1) is the P-dimensional vector collecting the binary symbols
he=—co transmitted by each source and that are to be reconstructed.
where In (6), ()7 denotes vector or matrix transpose. The noise
w(-) unit energy pulse; vector w(k) is modeled as a complex zero mean white

T baud period,; Gaussian process with covariance matrd 5, Iy being the
{bp(k)}2° ., binary sequence of independent and equally-dimensional identity matrix.
like £1 symbols generated by the source In the following subsection, we emphasize the specific
This signal modulates a radio carrier of frequengy. The structure of the array data.
resulting binary phase shift keying (BPSK) waveform is re-
ceived by a uniform linear array @¥ identical omnidirectional A. Geometric Structure of the Data Space
sensors. At the array sensar the received source signgl

From (6), we conclude that the source vec$dk) takes
has the complex envelope

values on a finite alphabet with cardinality C4 = 2. All

M , the symbolss; € .4 occur with equal probabilityC;*. Each
Sp, (1) = Z Qpe” 7 *0TP s; is a vertex of an hypercube in @4-dimensional space.
m=l ' Adjacent vertices differ in a single componegntl) and are
$p(t = Tonp — (0 = 1) Ay )i (=De0dme(2) 3 distance of two apart. For each snapshos(k) = s; for a
where particulars; € A, and (4) takes the form
M, number of propagation paths; 2(k) = Hs; +w(k), s; € A )
amp COrresponding attenuations;
Tmp corresponding travel time path delays; For low noise, the vectoe(k) is close toHs;. With K
A,,, intersensor propagation delay snapshots, the array daga(k)} x is grouped in clusters with
centers

Ay = —sin(fpnp).
Pooe r & = Hs;,, s €A (8)

Here,#,,, is the angle of arrival of rayn for sourcep, disthe Inarray data space, the centgof each of these clusters is one
sensor separation, ards the propagation velocity. Using theof the C 4 vertices of a hyperparallelipiped as represented in
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Fig. 1. (a) Array data geometry. (b) Signal space geometry.

Fig. 1(a). This hyperparallelipiped results from the geometric We are now ready to determine the transformation we are
transformation performed by the channel transfer functidaoking for. Clearly, in the noiseless case, the matrix

H on the P-dimensional hypercube corresponding to the H o —VA (11)
alphabetA of the sources. As observed before, this hypercube 0
in symbol space also ha§', vertices, where the distanceequalsH up to a(P x P) unitary matrixQ:

between any two adjacent vertices is equal to 2. However, the H = H,0 (12)
transformationH is not isometric; therefore, the centers of - 0k
adjacent clusters in array data space are no longer equidistavitile H, can be computed from the array data using the
Because we do not have any prior knowledge about tsample covariance matrix as an estimate Ryrthe matrix@
parameters that determine the geometry of this parallelipipgdunknown. We transform the array data according to

in array data space, from the point of view of channel .+

identification, it is important to preprocess the array data and x(k) = H z(k) (13)
map it into a different data set whose geometry reflects bet{grere (-)* computes the pseudo-inverse of a matrix. Using
the geometry of the symbol space. We find this transformati% in (13) and evaluating the pseudo—inveﬁé from (12),

now. it is easy to verify that, for the noiseless case, the centers of

S_We tfr|]rstb_compute tthe covariancé of t_he(:j arra;(; d?ta. Hw clusters given by (8) in array data space are mapped in the
ince the binary vectors; are zero mean, independent, angl, \to w04 ot space to

identically distributed, from (6) and (7), it follows that

R— HH" 4 oIy ©) ¢ = Qs s; € A (14)
From (13) and (14), we deduce important properties for our
where (-)" denotes transpose conjugate. model. SinceQ is a unitary matrix, the centekg given by
We next find the spectral decomposition Bf For N> P  (14) in the transformed data space are, again, the vertices
and assuming thall has rankpP of a hypercube. This hypercube is a rotation @yof the
A2+ o2 p 0 vH original hypercube defined by the alphabet of the sources [see
R=[VU] 0 0211\,_13} {UH} (10)  Fig. 1(b)]. It follows that, in the transformed data space, the

distance between any two adjacent centgrsquals 2. As we
whereA? is a P-dimensional diagonal matrix whose elementwill show later, this is important because to identé and,
are the nonzero eigenvalues HtH and[VU] is a unitary thus, H through (12), we just need to estimate the orientation
matrix formed by the eigenvectors d®. The columns of of the hypercube in Fig. 1(b). Besides this, the transformation
V and U span the signal subspace and the noise subspgd®) eliminates the noise components in the orthogonal space
respectively. Under the above conditions, it readily followsf H. This means that the transformed dat&) has a higher
from (10), as is well known in the array processing literatur&GNR when compared with that of the original datg).
that N = P + 1 is the smallest value ofV for which it These properties of the data play a critical role in the
is possible to estimate the noise variance Increasing the derivation of the algorithm that estimaték;, see Section Ill.
numberN of array elements with respect to the numbbepf Beyond that, the clustered structure of the array data shows that
independent sources results in improved estimates of the najseen H, the reconstruction of(k) is formulated as & 4-ary
variance. Other side effects of this increase will be discussédetection problem oknown symbols in white Gaussian noise
later. We address this problem first in the next section.
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. AChDMA: M ULTICHANNEL BLIND ESTIMATION over the parameter space, which is infeasible from a practical

To reconstruct the symbol sequence, AChDMA has to det?@int Of view. To overcome these difficulties, we develop an
the symbols{s(k)} transmitted ink snapshots of the arrayexpectatlon-m.smmlzatlon (EM) [27] based algorithm to obtain

data{z(k)}. The vector sequencgs(k)} is reconstructed by the e_stimateH _of the channelH. This results in an itera_tive
solving the multiple hypotheses test [28] algorithm that is known to converge to the true ML estimate.

1) EM Algorithm: We apply the EM algorithm to the esti-
H;:z(k)=Hs;, +w(k), s, €A k=1,---,K. (15) mation of the array/channel matrix transfer functi This
) ) is a blind procedure in the sense that it does not assume any
The vectorz(k) represents the array data at time instant prior knowledge about the channel parameters.
given thats; € A was transmitted. Using the array data model described in Section I, it is

The channel transfer functioH is unknown in the mobile ghqyn in Appendix A that the EM approach yields the iteration
radio communication environments of interest. We adopt a

generalized maximum-likelihood (GML) approach, whereby Ca
we first estimate the channel transfer functigh and then K Z Gauss(H, z(k))sf!
solve the multiple hypotheses test problem. The conditional g, , = Zz(k) i=é
probability density function (pdf) of the array datdk) at b1 4
time instantk parameterized by the channel transfer function Z Gauss(H, z(k))
H and given thai(k) = s; € A was transmitted is B =t .
A
2
p(z(k)|H, sz) _ (7r0_2)—N exp <_ ||Z(k') _QHSZH ) (16) K ; GaUSyS(Hl,Z(/{}))SiSf{
_ _ d & _ Y T . (20)

Assuming that the trans_mltted symbo_ls are _statlstl_c_ally inde- k=1 Z Gauss(H, z(k))
pendent, the pdf of the single observation at timeonditioned =

on the channel transfer function is o ) )
To run this iterative algorithm, we must be aware of two

Cy .
important aspects.
> p(2(k)|H  5:)P(s(k) = 5:) (ar) "MP pees.
= ¢ In general, this algorithm has a very slow convergence
rate.

where P(s(k) = s;) is the probability of occurrence of . pye 1o strong nonlinearities, it can easily get trapped into
symbol s;. This is a mixture model. With white Gaussian a local maximum.

noise measurements, the joint log-likelihood function (LLF‘}hese two aspects reflect the high sensitivity of the EM

IS thg[_(th-o:ggr ErLoquct of tTIe pdfs-éllé;). Tr:je GI\I/JL d?}\?Ctoélgorithm with respect to the initial estimate. Hence, special
maxqglze_S d ![S.I. S 0\:.er am;fs&d i Batrr]1 i:ﬁ )}t" (ta' care has to be taken to determine a suitable initial estiHate
consider in detail in Sections 71i-A and 1Hi-b the estimation,, yhe next subsection, we develop our initialization procedure

of , and then, in Section llI-C, we consider the reconStrUCtIcWith which the EM algorithm converges in just a few iterations

of th_e symbol sequences. _In Section 1Il-D, we make SOME the global maximurd? defined in (18) of the log-likelihood
additional comments regarding system aspect |mplementat|?un|,§,c,[ion

of the AChDMA.

B. Initialization of the EM Algorithm

K)CWe now develop the initialization procedure of the
. hDMA algorithm. This specifies the initial condition for
32?;'\/ IL%mI\/EI%‘SE)zs?i?rc:a(tgz)gl?; giveli snapshots of the aTaY the EM algorithm of Section IlI-A. As it will be clarified
' in Section IlI-D, there are two modes for the operation of
) K Ca AChDMA, each corresponding to a different initialization.
H=arg max ) In <Z Gauss(H, Z(’@)) (18)  The first mode is the global initialization mode. This is the

H 5 i=1 mode that AChDMA enters at startup and when there are

major changes in the propagation environment (e.g., mobiles
||z(k) — Hs;]|? 19 entering or leaving). After the global initialization mode,
_—>' (19 AChDMA switches to the tracking mode. In the tracking

mode, the EM algorithm is restarted with the last available

The log-likelihood function to be maximized in (18) is &gtimate of the channel transfer function; see Section I1I-D.
finite mixture probabilistic model. This mixture model is dpe now explain the global initialization procedure.
consequence Of_ the clustered_ structure of the déta. The . 1) Global Initialization: We use the geometric properties of
strong nonlinearity of the log-likelihood precludes the analytine transformed data set defined in Section I1-A. We compute

cal solution of the optimization in (18). Rather than performing,q initial condition H, in the global initialization mode by
the optimization overH directly, we could parameterizH using (12), which is herein repeated:

in terms of the channel parameters, e.g., the path angles of R
arrival. However, this would lead to a multidimensional search Ho=HoQ (21)

A. Multichannel Blind Estimation: EM Algorithm
Due to the structure of the array data model, it is easy

Gauss(H, z(k)) = exp <

o2
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where H,, is obtained from (11) through the spectral factorthe global initialization mode, it enables the EM algorithm to

ization of the array data sample covariance makix converge to the global maximum of the likelihood function
To completely specify the initial conditiolly, @ remains with a small number of iterations. This behavior is maintained

to be estimated. We accomplish this by working with theven for moderate SNR’s. This will be shown by computer

transformed data set given by (13). We recall the discussisimulations in Section IV.

following (14). In the transformed data space and noiseless

case, the centers; of the clusters are the vertices of arC. Reconstruction of Multiple Symbol Sequences

hypercube, where adjacent vertices are at a distance of 2.
Our strategy to estimat€ is to find in the space of the

transformed data (%) one set of P + 1) adjacent clusters. Of

Assuming that the multisource array channel transfer func-
tion has been successfully estimated, the symbol sequence is
" reconstructed by maximizing the joint log-likelihood function.
course, there are as many of these sets as there are vertice§\for the symbol independence and white Gauss noise as-

) or e
_the hypeLcubed, €., there gy = 2.”SUCh Wts. Finding one sumption, each symbol vector is detected by maximizing the
IS enoug to etermpo, as we will see. Ve use a nearesb fin (16). In fact, and after convergence of the EM algorithm,
neighborhood clustering algorithm to compute estimates pf. o -h transmitted binary vectet, k = 1,2.---, K, this

P +1 adjacent _Vertice%’cl""’cl’ Of_ thg P hypercu_be. maximization is equivalent to selecting, at each tifethe
This hypercube is represented fBr= 3 in Fig. 1(b). Notice symbol s; € C, corresponding to the maximum mode
that the performance of the clustering algorithm benefits fro taUS$(1£I 2(k)) in (19)

the prior knowledge that we have about the dimensions o We provide a useful interpretation of how AChDMA recon-
the hypercube and the noise statistics. A similar approa\rgﬁluctS the multiple source symbol sequence
is reported in [1], where the authors propose a clusteringl) Beamforming Interpretation\When H is known, the so-

algorithm to determine all th€ 4 vertices of the parallelipiped lution to the multiple hypotheses detection problem given by
in data space. The algorithm in [1] is much too demandi ) can be reduced to the minimization

in terms of computational complexity and does not tak
advantage of the well-defined geometry in the signal space. s(k) = arg min ||z(k) — Hs;||>. (25)
. . . S.cA
From the estimates of any’ + 1 adjacent vertices, say,
o, €1, -, cp, We compute theP vectors This means that i is known, we need to search i only
. for the symbols; that in the space spanned by the columns of
w=¢—¢c, i=1- P (22)  H minimizes the distance to the array data veetg).
We give a beamforming interpretation to the minimization

In the noiseless case, replacing (14) in (22), we get defined in (25). WherH is known, this minimization can be

u; = Q(s; — 89), i=1,---,P (23) accomplished by the two step approach:
] ] i) Compute an unconstrained solution for the minimization
where s; and sy, because they aradjacentvertices of the of ||z(k) — Hs(k)||? in (25), here denoted b§(k);
sources’s alphabet hypercube, only differ from each other injj) Find thes; € A closest tas(k) in the metric of H* H,
one element. This means that i.e., for which
uw; =+2¢;, 1=1,---,P (24) (s; — 8(ENE (H? H)(s; — 5(k))
wheregq; is one column off) (not necessarily th&h column). is minimum.

In general, and due to the presence of noise, the vepigis |t is straightforward to verify that the unconstrained mini-
are not orthogonal. We apply the Gram—Schmidt algorithm {gization stepi) leads to

derive from the vectors;,: = 1,---, P a set of orthonormal
vectorsgq,,---,qp Specifying the principal directions of the 3(k) = (H"H)" H" 2(k). (26)
hypercube [see Fig. 1(b)]. These vectors can be taken
estimates of the columns of the unitary matex For the
noiseless case, as we have seen, this procedure obtains
matrix ¢ up to a permutation matrix (entries1). The
Gram-Schmidt algorithm acts like a normalization procedure
and takes care of the factor 2. Thus, as claimed before, the 5(k) = G 2(k). (27)
vectorsg; give the matrix) up to a permutation of its columns.
In terms of the application that we are considering, this Erom (26),
not an obstacle. The ambiguity resulting from the permutation G" = (H'H)"*H"
of the columns of is resolved by headers identifying each
source, and the uncertainty about the sign is solved usifighimizes the output noise power
differential encoding schemes. tr(O'QGHG)

The performance of this initialization scheme is evaluated
in Section IV. Except for low noise situations, the estimatsubject toG?H = Ip.
Hy given by (21) is not good enough to provide acceptable As mentioned at the beginning of this section, the data
bit error rates. However, when used as an initial condition Bymbols are estimated directly by maximizing the Gauss

THis is identified as the output of the generalized multibeam
mﬁimum noise power (mnp) distortionless beamformer [9].
LA be the( NV x P) matrix specifying the mnp beamformer,

i.e

it follows that
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modes so that the computations in (27) are not actuafiyr R, = 25 Kb/s, K,..x will be on the order of 100. We
performed. However, the beamforming operation (27) implicitow discuss the implications @b on the several stages of
in (25) in the reconstruction of the data sequences providesAGhDMA.
interesting interpretation of AChDMA, as we explain next.  3) Global Initialization: The apparent drawback of the
The blind estimation of the array/channel transfer maklfix global initialization procedure proposed in Section 1lI-B is
tracks the propagation channel used by each mobile sourtgrelative computational complexity. The global initialization
The propagation channel used by each of these sourcepriscedure requires the array data sample covariance matrix,
represented in our model by a column Hf, see (3). The which isthen spectrally factorized. Say this matrix is computed
implicit beamforming operation described above separatetem K = K., samples. There are two limitations dfi... .
these channels: Each generalized beam tracks all the multip@tearly, K., < K.x. The smallerK,, is with respect to
arrivals, not just the direct path, corresponding to a giveld,,,.x, the larger is the time available to perform the global
mobile while canceling (attenuating) all the remaining signalmitialization. The second limitation is less obvious and has to
do with the number of sourceB and the cardinality of the
sources alphabet , = 2”. The numbetk ., should be large
D. AChDMA: System Considerations compared withC'4 so that with high probability, we can find

There are several considerations that should be madefto-1 adjacent clusters in the transformed data space. We will
clarify the operation of AChDMA. The first set of comment$ee in Section IV that these constraints are easily taken care
regards the AChDMA suitability for real-time implementationof in practical scenarios. In the scenarios considered there, a
The second set of comments refers to the choice of values fgasonable value foK.., < 100.
some internal parameters and how these relate to real world) Tracking Mode: From a practical point of view, it is
operating environments. not necessary to reinitialize, at evef§,,., samples, the EM

]_) Real-Time |mp|ementatiorﬂ'hree properties of the EM algorithm with the g|0b8.| initialization procedure of Section
algorithm are worth mentioning. The first is the fast convetll-B. The changes in geometry betweé,.. adjacent blocks
gence that it exhibits when combined with the initializatio@e€ small. This means that the EM algorithm can be restarted
procedure of Section IlI-B. This fast convergence will b&sing the estimate off obtained with the previous block
illustrated in Section IV, where we show that, usually, thef data, i.e., it operates in @acking mode. Hence, the EM
EM algorithm converges in a couple of iterations. The seco@porithm is seldom reinitialized with the global initialization
property is a direct consequence of the finite mixture moderocedure of Section 1lI-B. Typically, this global initialization
of the array data. It follows that each mode can be computBtpcedure is used only at startup and when the number of
simultaneously in time. As a result, the right-hand side of (2@purces sharing the radio channel changes as mobiles enter or
can be obtained using a parallel computational architectul@ave the cell.

The third advantage is that symbol detection is achieved usingp) EM Algorithm: The EM algorithm usesK = Kep
internal variables of the EM algorithm—the Gauss modes fapshots of the array data. This numkey, is again bounded
(19). This means that, in reconstructing the symbol sequendfove byKp.x. On the other hand, it should be large enough
there is no additional computational effort. In particular, & provide an accurate estimate Mfand large compared with
noted in Section I1I-C, the computations in (26) are not actualfy.4- Again, these constraints are easily satisfied with realistic
performed. scenarios. In our simulations in Section 1V, we found that

These three properties of the EM algorithm (fast cof{em = Kcov iS quite reasonable.
vergence, parallel structure, and automatic sequence recorf) Reconstruction of the Symbol Sequencdésr each
struction) make the EM-based blind AChDMA suitable foblock of K., samples, the symbols of the multipl&
real-time implementation. sources are detected using the estimdt@btained with the

2) Operating Conditions:We now consider how the ratefirst Ke, symbols.
of change of the propagation channel affects the choice of pa-
rameter values in AChDMA. The rate of change is determined
by the maximum Doppler shifD present. In Section IV, we
calculate this Doppler for realistic mobile radio communica- In this section, we evaluate the performance of the
tions scenarios. A typical value i® = 50 Hz. To represent AChDMA scheme proposed in the paper. First, we study
well the channel variations, we need to estimate the chantie convergence properties of the EM algorithm, comparing it
response at twice this Doppler (Nyquist rate). This means thafth the ILSP scheme proposed in [26]. Then, we present a
at every sampling timé&, = 1/(2D) s, the estimate of the study on the stability of the mobile communications channel,
channel transfer functiod should be updated. In practicewhich is used to predict the channel estimates update rate.
we update this estimate more frequently, i.e., ev&ry o1, Finally, we focus on the capability of the EM algorithm in
with « anywhere from one tenth to one half. During theése, tracking the generalized steering vectors associated with the
AChDMA assumes that the channel transfer functlérdoes mobile sources and on the bit error rates (BER'’s) that are
not change significantly. L&k, be the number of array dataachieved by AChDMA.
samples inA s. If R, is the system data rat& .., = R, A. 1) System Parameters and Cell Geometihe simulations
Values for K., depend strongly o?,. For R, = 1 Mb/s, are performed in the context of a cell in a cellular radio
a typical K,,,,. is on the order of several thousands, whereasobile communications system. The system operates at a

IV. PERFORMANCE EVALUATION
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Fig. 2. Typical channel geometry in the simulated cell. Fig. 3. Trajectories of the mobiles in the simulated scenario.

carrier frequencyf, = 1 GHz and accommodates transmission Our results will show that AChDMA copes well with

rates of R, = 1 Mb/s with differential encoding BPSK these situations, maintaining track of the array channels and

modulation format. These are in the range of typical values fseeping the mobile sources separate. This is a consequence

the Universal Mobile Telecommunications System (UMTS)f AChDMA processing the information provided in all paths

under study by several European research teams. We will atdothe multipath structure, whereas, essentially, DOA-based

consider a data rate @?;, = 25 Kb/s. The mobiles present in SDMA methods utilize only the direct path.

the cell generate signals with unit power that are transmittedWe now illustrate with this scenario and for two different

simultaneously in time and in the same frequency band. SNR’s the performance of the EM algorithm; in particular, we
The geometry of the cell is in Fig. 2. There are threstudy the following points:

reflectors, each one absorbing half of the impinging power,. convergence rate;

and the array is placed at point (0,0) in the diagram of Fig. 2.. jmplementation issues;

For each mobile, we assume one reflection at each reflector, -hannel stability:

The array is linear and uniform, aligned with the horizontal , tracking performance;

axis. We will consider arrays wittv = 4, 8, and 11 identical « symbol error rates achieved.

omn|d|rectlopal gaptors separgted by half yvavelength. 3) Convergence of the EM Algorithmi/e first evaluate the

2) Scenario with Three MobilesTwo mobilesM; and M )

. . . . . erformance and the convergence rate of the EM algorithm,

describe circular counterclock wise trajectories around tRE R
. . ) comparing it with ILSP [26]. As a performance measure, we
receiver with the same velocity 40 Km/h. These speeds arge the squared error
common in city traffic with slow automobiles circling a rotary.u qu
The radii of these trajectories are 30 m for moliife and 40 m P
for mobile M. A third mobile M5 is getting out of the rotary .= Z Ik, — i ||2
along a radial trajectory with a velocity 55 Km/h (see Fig. 3). — por
The signal for mobileM3 experiences significant attenuation. i
The simulations last for 2 s. Notice that during the simulatioRs 5 function of the global SNR
mobile A4; overcomes\/,. This leads to geometries where the

direct paths have practically the same direction, arriving at the

r
array at essentially the same angle. These are hard geometries ZthHQ
to handle by DOA-based SDMA since the two mobiles fall in =1
the same sector of the array. SNR= No2z

We estimate the Doppler shift for the velocities and carrier
frequency indicated above. The Doppler is particularly sengter this problem, we derive the Cr&mRao Bound (CRB),
tive to radial velocities and to large number of reflected rayassuming that at each time instant, the transmitted symbol is
For the scenario of Fig. 3, the Doppler is not negligible, iknown. In this case, it is easy to compute that
particular, A3 has a radial trajectory and, due to the number
of reflectedrays associated with each mobile, this is also true No?
for mobiles M; and M,. For example, with the 55 Km/h CRB= PT' (28)
radial speed ofM3, the Doppler shift is approximately 50
Hz. The channel sampling time is then ab@yt= 10 ms. In  The plots in Fig. 4(a) and (b) study the convergence of the
the studies below, we variously update the channel estimaked and the ILSP algorithms, respectively, with synthetic data.
at A intervals ranging from 1-10 ms. Different values for the number of sensors are considered:
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Fig. 4. (a) Variance of the channel estimation error. (b) Convergence rate.

N = 4,8,11. We generated randomly the initial conditionsvhere we present the typical channel geometry. For each of
for ten different scenarios. These are defined in Table | the ten scenarios, we computed the maffixand the values
polar coordinates. The frame of reference is that of Fig. &f o2 that span the range of values used for the SNR. We then
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TABLE |
DOA'’s oF THE DIRECT PATHS RANDOMLY GENERATED FOR SCENARIOS 1-10

1 2 3 4 5 6 7 8 9 10

M, (d=30m) | 92.5°| 84.5°| 41.0° | 112.2° 5.1° | 59.3° 1 120.7° | 125.5° | 18.9° | 41.4°
M, (d = 40m) || 154.9° | 142.1° [ 174.9° | 109.8° | 136.5° | 76.0° | 39.9° | 145.9° | 134.9° | 41.3°
M;(d=45m) || 79.8°| 67.1°[ 31.1° 5.1° 1 128.6° | 121.0° | 147.2° | 21.1° | 112.0° | 18.8°

calculated the corresponding CRB's from (28), as well as tiséudy yields the ratio

channel estimates provided by each one of the algorithms.
Fig. 4 presents thpe results a)\//eraged over these t%n scenarios. Twsp/mse _ O((3Ni + DEP?)

Fig. 4(a) plots, as a function of the SNR, the CRB and the error Tem O@2Nu K P?)

(in decibels) for four different algorithms: where we usedV = P+ 1 ~ P, and N;; stands for the
1) the clustering global initialization procedure describedumber of iterations until convergence is achieved. Typically

in Section I, which is identified asP + 1 clustering”; [see Fig. 4(b)], N;; = 2. This means that EM exhibits

2) the ILSP algorithm when initialized randomly, which iscomputational savings over ILSP/ILSE on the order of 50%

identified as “ILSP(random)”; in K P2. Since, as argued befor&; >> 2, this gain may be
3) ILSP when initialized with the clustering algorithm Significant when the number of sources is large.
which is identified as “ILSPP + 1 clustering)”; 5) Channel Stability: We study the stability of the channel

4) the EM algorithm initialized by the clustering procedure®S & function of the discretization interval. This helps
which is identified as “ENIP + 1 clustering),” predicting the update rate for the channel estimates. There are

. .. _two issues. The first is a consequence of the Doppler shifts
Except for the P + 1 clustering” procedure, the remaining 9 PP

lqorith d wh he absol diff ¢ aused by the motions. The second relates to the nonlinear
algorithms were stopped when the absolute difference of tge s inquced by the time varying structure of the propagation

estimates provided by two consecutive iterations was Sma'lfﬂannel as reflection paths are created or disappear

than a given threshol#0~7. This gives a way of counting the A giscussed at the beginning of this section, the maximum
nqmber of |terat|ons_ necessary for each algorithm to lock iNtSoppler for the mobile scenario described above (see Fig. 3)
minimum of the estimation error. is approximatelyD = 50 Hz. By the Nyquist criterion, the
From the plots in Fig. 4(a), we can conclude that thel  discretization intervalA of the channel response is upper
clustering” initialization procedure alone (top curve in the plof)mited by the sampling intervall; = 1/(2D) = 10 ms.
yields poor results when compared with the CRB. Howevewe test this by considering four values for the discretization
it initializes efficiently both the ILSP and the EM algorithminterval: A = 1,2,5,10 ms. For each instance, we monitor
since the corresponding error curves match well with the CR#e second-order statistics for the errors associated with 1) the
The “EM(P + 1 clustering)” algorithm achieves a smallemorms of the generalized steering vectors and 2) the variation
CRB than ILSP, especially when the number of sensors @§the orientations of each steering vector in data space during
small (V = 4) and at lower values of SNR. “ILSP(random),”two successive time instantsand ¢ + 1, as measured by
as proposed by [26], also matches well with the CRB. THBe cosine of the angles betwekp(t) and k(¢ + 1). These
clustering initialization procedure provides faster convergengtatistics are averaged over 2 s. The results are in Table II.
than random initialization, as studied in Fig. 4(b). When We first consider the mean and variance of the estimates of
initialized with the clustering algorithm of Section IIl, theth® norms of the generalized eigenvectors. Table li(a) shows

ILSP and the EM algorithms converge to the CRB in fewdpat these values remain practically constant over the range of

number of iterations [bottom two curves in Fig. 4(b)] thafliscretization intervals tested. In other words, from the point
ILSP initialized randomly [top curve in Fig. 4(b)] of view of the norms of the generalized eigenvectors, there is

4) Implementation:When properly initialized with the clus- no need to oversample the channel response beyond what is

tering algorithm of Section I, both ILSP and EM have nicé)reOIICted by the Nyquist criterion. . N
. . - Table ll(b) shows the mean and variance for the directional
convergence properties. However, EM provides significant

. . iabili : th [ f th I f th -
computational advantages over ILSP. ILSP is a sequent\éﬁa"j{;Iabl 'ty parameters: the cosines of the angles of the gen

. ) . . lized steering vectors at two successive time instants. For
algorithm, whereas the EM iteration can be implemented UsiNd 5 ms. these angles remain small over the entire range of

a parallel architecture. Moreover, the ILSP approach does Wcretization intervals tested. In fact, evemat 10 ms, only
provide accurate symbol detection because it is necessan; 9 |oses approximate co-linearity between channel updates. In
run at least one iteration of the ILSE algorithm to achievgg case, the problem is that during the 2-s averaging interval,
acceptable symbol error rates (SER) [26]. On the contrary, t relative geometry associated with the trajectory&fand

EM scheme reconstructs the transmitted sequences without 8{y environment causes several discontinuities in the channel
additional computational effort, as discussed in Section Ill. Wgsed by M5 due to reflection paths that are lost. To keep
compare EM with ILSP/ILSE in terms of computation time byrack of the time-varying channel, we need to oversample at
counting the number of complex multiplications. We count as higher rate than that predicted by the maximum Doppler
one those multiplications that can be performed simultaneoushift. From Table Il(b), oversampling by a factor of 2 & 5
when a parallel architecture is used for EM and ILSE. Thims) seems to be sufficient. This will be confirmed in the
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TABLE 1

CHANNEL STABILITY STUDY. (@) AVMPLITUDE VARIABILITY OF THE GENERALIZED STEERING
VECTORS (b) DIRECTIONAL VARIABILITY OF THE GENERALIZED STEERING VECTORS

Ih1|dB |hzldB |h3|dB
Mean | Variance || Mean | Variance Mean | Variance
A= 1msec |[0.0114 | 0.5429 || —0.9293 | 1.7075 —3.1238 | 3.8293
= 2msec || 0.0111 0.5425 —0.9289 | 1.7060 —3.1266 | 3.8365
= 5msec | 0.0107 | 0.5418 | —0.9288 | 1.7039 —3.1299 | 3.8488
= 10msec || 0.0100 | 0.5407 | —0.9286 | 1.7005 —3.1379 | 3.9057
(@)
cos(angley [t,t +1]) cos(angley[t,t 4+ 1]) cos{angles[t,t + 1])
Mean Variance Mean Variance Mean Variance
A = 1msec i 0.9980 | 0.0000002 |} 0.9977 | 0.0000006 | 0.9917 | 0.0000528
A = 2msec {| 0.9919 | 0.0000033 0.9909 | 0.0000105 || 0.9674 | 0.0005641
A= 5Hmsec| 0.9508 | 0.0001190 | 0.9448 | 0.0003839 || 0.8099 | 0.0158000
A = 10msec || 0.8241 | 0.0014000 0.8008 | 0.0048000 || 0.4463 | 0.0741000
(b)

sequel. In other words, and in conclusion, even for frequenand three iterations for the EM algorithm to converge. This

nonselective channels (as assumed here), we may have torleans that our algorithm tracks channel fluctuations in real
moderately conservative when determining from the Doppléme. The results of these simulations confirm the results of
shift D the channekstimateupdate rates\, and therefore, the last paragraph, namely, that we can specify the channel
the lengthK,,,.. of the data blocks over which we can useipdate rates by studying the channel stability as a function
the same estimatefi. of A.

6) Tracking Performance of the EM Algorithntlere, we 7) Symbol Error Rate:Finally, we consider AChDMA in
study the ability of the EM algorithm to track the timeterms of symbol error rate (SER). We say thaP &symbol is
variations of the generalized steering vectors. We use the samerror if at least one bit is changed. The simulation scenario
simulation scenario as in the channel stability study describi&dagain that of Fig. 3. Fig. 5 shows the theoretical union
in the last paragraph. We conducted experiments with tf@und for SER as a function of the minimum distantés;. )
values for SNR: SNR= 10 dB and SNR= 4 dB. These values between any two vertices of the array data space parallelipiped
were fixed at the initial time instant. For each experiment, tHg€€ Fig. 1) observed during the simulation. This is done for
SNR varies as the mobile sources move along their respectiveral values oV = 4, 8, 11. As before, we took the initial
trajectories. We use the same performance measures as befhd?’s to be 10 and 4 dB. Recall that the SNR is defined as
the norm of the estimates of the generalized steering vect§t§ sum of the SNR’s associated with each source. Therefore,
and the cosine of the generalized angle formed by each colufigSe values of SNR correspond in practice to moderate to
of H and its respective estimate. At the initial time instant, tigmall values of the individual SNR's. When SNR10 dB,
EM algorithm was initialized using the clustering initializatiorf® union bound predicts very good theoretical results, in
procedure of Section I1l. This was done using 100 data poinR@'ticular, for the case wher® = 11. With generality, we
At each subsequent update, the EM algorithm is initializ&t®n Sy that for a given scenario, increasiigmproves the
with the last available channel estimate (tracking mode). whBfrformance. The fact is that the parallelipiped in array space
running the EM algorithm, 100 data points were also usegtTers @ volumetric expansion whel increases. This is
The averages (mean and variance) were taken over the cppfirmed by the curves in Fig. 5, where the intervals spanned

interval of the simulation. The results are in Table llI, Wheré?y tyin A€ shifte_d to the right a8/ b_ecomes Iarge_r.
in the left column,A represents the update period. The curves in Fig. 5 also help predict the theoretical value of

Table I1i(a) and (b) presents the results when the initial SN e outage probability. The outage probability is defined as the
is 10 dB. It considers four values @k — 1.2.5.10 ms. In raction of time for which the SER union bound is greater than

all situations, almost perfect channel tracking is achieved §§glven threshold. For example, wifli = 11 and SNR= 10

’ the predicted outage probability is 0.137 for a threshold
demonstrated by the near zero mean and variance of the egorlo_6 and is negligible (i.e., 0) for a threshold 10,

of the estimated norm of the generalized steering vectors aﬁglll - .
. . . ; ese are acceptable values for the outage probability, which
of the estimated cosine of the generalized angles. The estimates

) : . (E n be significantly improved, even when SNR4 dB by
of the generalized steering vectors are closely aligned with.
using adequate error control schemes.

their respective true vectors. Similar conclusions hold whenWe now address the sensitivity of the receiver with respect

SNR:_ 4 dB andA_g N ms, see Table 1li(c) and (d). ... to the channel complexity, i.e., the number of reflected paths
During the experiments, it was never necessary to I’emltl?j)

. ) . er mobile. In Fig. 6(a), we consider 100 random locations
ize the EM algorithm with the global procedure AChDMA 9- 6(a)
running in tracking mode. On average, it took in between twolThe proof of this fact, being simple, is omitted here.
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TABLE I
TRACKING ABILITY OF THE EM ALGORITHM. (a), (C) AMPLITUDE ERROR OF THEESTIMATED GENERALIZED
STEERING VECTORS (b), (d) DRECTIONAL ERROR OF THE ESTIMATED GENERALIZED STEERING VECTORS

rlos = alyy  Vholap = [hal,, sl — [Ba]
SNR = 10dB Mean | Variance Mean | Variance Mean | Variance
A= 1msec || —0.0050 | 0.0035 || —0.0056 | 0.0044 —0.0131 | 0.0076
A= 2msec || —0.0053 | 0.0033 || —0.0067 { 0.0049 —0.0139 | 0.0082

A= 5smsec 0.0034 { 0.0039 || —0.0068 | 0.0047 { —0.0089 | 0.0080
A= 10msec || —0.0071 | 0.0040 0.0017 | 0.0041 | —0.0098 | 0.0076

@

cos (angle [hl, izll) cos (angle [hz, ilg]) cos (angle [hg, ilg])

SNR = 10dB || Mean Variance Mean Variance Mean Variance
A= 1msec || 0.9995 | 0.0003e — 4 || 0.9994 | 0.0007e — 4 | 0.9990 | 0.0032¢ — 4
A= 2msec || 0.9995 | 0.0003e — 4 {| 0.9994 | 0.0007e¢ — 4 { 0.9990 | 0.0035¢ — 4
A = 5msec || 0.9995 | 0.0003e — 4 {{ 0.9994 | 0.0007e — 4 || 0.9990 | 0.0035¢ — 4
A= 10msec | 0.9995 | 0.0002¢ — 4 || 0.9994 | 0.0007e — 4 || 0.9990 | 0.0028e — 4
(b)
Ihslas — 1h1‘dB Ihalup — lhz‘ds |hslap — |h3|d8

SNR = 4dB Mean | Variance Mean | Variance Mean | Variance
A= Jmsec| —0.0015| 0.0156 —0.0237 | 0.0186 —0.0356 | 0.0316

©

cos (angle [hl, izl}) cos (angle [hz, ilg]) cos (angle [h3, 713])
SNR = 4dB || Mean Variance Mean Variance Mean | Variance
A= b5msec | 0.9981 | 0.0046e — 4 || 0.9977 | 0.0128¢ — 4 || 0.9959 | 0.0549 — 4

(d)
100 7 T T T T T T T T
10° F 1
[ 4
-10‘
10 - SNR=10dB B
107 .
- N=
10 o N=8 * 1
* 4
+ N=11
10'25 1 1 1 1 1 1 L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Fig. 5. Union bound of the symbol error probability.

of the mobiles. These are uniformly distributed along thiecations, we study four cases: zero, one, two, and three
circular intervals shown in the figure. For this set of randomeflectors. The SNR is kept fixed at SNR10 dB. Fig. 6(b)
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Fig. 6. Sensitivity to channel complexity. (a) Random location of mobiles. (b) Statistics of the minimum symbol separation in array space.

shows the second-order statistics &f;, obtained for the  To conclude the performance evaluation of AChDMA, we
random scenarios described above as a function of the numéieidy the impact on the SER of the rate at which we update the
of reflectors (the circles indicate the averagedyf,, and channel estimates. This rate is important because in between
the vertical segments represent the corresponding standapdates, we reconstruct the transmitted bit sequences assuming
deviation). As expected, and from the point of view othe channel remains invariant. Clearly, the longer the time
AChDMA, the reception conditions improve as the channbletween updates, the more significant are the changes in
becomes more complex. This is confirmed by the percentatpe channel. We selected four scenarios. These scenarios are
of situations for which the probability union bound is greatestarted from the positions indicated by the numbers -, 4 on
than10~7, which varies from 8% (line of sight) to 5% (threethe trajectories of the mobiles at the time instants indicated at
reflectors). the top right corner of Fig. 3, for example, scenario 1 starts at
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TABLE IV

IMPACT OF CHANNEL ESTIMATES UPDATE RATES IN BER FOR FOUR SCENARIOS IN FiG. 3: SNR= 10 dB
Scenario 1 {| BER, (%) | BER; (%) | BER3 (%) &* | Upper bound ML (5?%)
3.500, 3.501 0.0000 0.0000 0.0000 0.0200 1.32¢ — 10
3.500, 3.502 0.0000 0.0000 0.0000 0.0231 2.11e — 09
3.500, 3.503 0.0000 0.0000 0.0000 0.0281 4.67e¢ — 08
3.500, 3.504 0.0000 0.0000 0.0050 0.0349 8.16e — 07
3.500, 3.505 0.0000 0.0000 0.2220 0.0431 7.92¢ — 06

Upper bound ML (0?) =1.97¢ — 11

Scenario 2 || BER,(%) | BER; (%) | BER; (%) || &° | Upper bound ML (57)

4.272,4.273 0.0000 0.0000 0.0000 0.0200 5.93e — 09
4.272,4.274 0.0000 0.0000 0.0000 0.0229 4.98e — 08
4.272,4.275 0.0000 0.0000 0.0000 0.0282 7.84e — 07
4.272,4.276 0.b00o 0.0000 0.0425 0.0334 4.98¢ — 06
4.272,4.277 0.0000 0.0000 0.2100 0.0392 2.26e — 05

Upper bound ML (0?) = 2.07¢ — 09

Scenario 3 || BER, (%) | BER, (%) | BER; (%) || 6% [ Upperbound ML (67%)

4.500,4.501 0.0000 0.0000 0.0000 0.0239 1.24e — 08
4.500,4.502 0.0000 0.0000 0.0000 0.0260 4.49¢ — 08
4.500,4.503 0.0000 0.0000 0.0000 0.0295 2.51e — 07
4.500, 4.504 0.0000 0.0000 0.0025 0.0343 1.57¢ — 06
4.500,4.505 0.0000 0.0000 0.0200 0.0402 8.34e — 06

Upper bound ML (6?) = 3.65¢ — 09

Scenario 4 | BER, (%) | BER, (%) | BER; (%) 6% | Upper bound ML (6?)

4.900,4.901 0.0000 0.0000 0.0000 0.0159 1.74e — 08
4.900,4.902 0.0000 0.0000 0.0000 0.0181 1.03e — 07
4.900,4.903 0.0000 0.0000 0.0000 0.0215 9.6%9¢ — 07
4.900,4.904 0.0000 0.0000 0.0275 0.0264 8.52¢ — 06
4.900,4.905 0.0000 0.0000 0.5240 0.0324 5.03¢ — 05

Upper bound M L (o) = 4.68¢ — (9

t = 3.5 s. These scenarios have the following characteristicaismatch process and use these estimates to evaluate the actual
In scenario 1, mobiléV/s is responsible for a severe DopplefSER union bound. As might be expected and as seen from
shift; in scenario 2, one reflection associated with is lost, Tables IV and V,5? increases withA. In both tables, the
which corresponds to a channel discontinuity; in scenariosright-hand side column shows the effect of this in the SER
and 4, the channel is more stable than in the previous casasipn bound. When SNR- 10 dB (see Table 1V), acceptable
but the SNR associated with/; is very small. values of the SER are achieved even far= 5 ms. The

The true channel matriff is updated at the data rate, i.e.losses observed in this case are basically due to the channel
1000 times per ms, whereas the estimate&adre computed time variation. When SNR= 4 dB (see Table V), the SER is
using the firstK.,, = 100 data points. These estimates arpractically insensitive to channel fluctuations, where the main
then used to reconstruct the data blocks received during faetor responsible for poor performance is the low value of
remaining of the updating intervals. We considered the fithke SNR= 4 dB. We conclude that for moderate values of
casesA = 1,2,3,4, or 5 ms. SNR~ 10 dB, the AChDMA scheme proposed in this paper

Tables IV and V summarize the results obtained for SNR yields good performance in terms of the SER, even when
10 dB and SNR= 4 dB, respectively. The tables indicatethe rate at which we update the channel estimates is close to
the theoretical SER union bound computed at the initial tirthe maximum predicted by the Doppler shift analysis. This is
instant for each scenario. This bound cannot be achievedcionfirmed by Table IV. In terms of BER'’s, which are estimated
practice since we keep the estimates Hf constant, even by counting the errors in the reconstructed sequences, the
though the channel fluctuates in between updates. As a resoltresponding values are extremely small, except for mobile
of these fluctuations, the clusters centered at the vertices of file when A = 5 ms. ForA < 4 ms, we get for mobilel/s
parallelipiped specified byl experience a larger dispersionthat the BER ~ 10~ or smaller for all scenarios.
We model this dispersion by increasing the noise variance.A distinct experiment was conducted under the same con-
Doing this, we can obtain estimaté$ for the noise/channel ditions but with a data rate of 25 Kbps. We let SNR 10
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TABLE V
IMPACT OF CHANNEL EsTIMATES UPDATE RATES IN BER FOR FOUR SCENARIOS IN FiG. 3: SNR= 4 dB
Scenario 1 || BER, (%) | BER,(%) | BERs (%) &2 Upper bound ML (&%)
3.500, 3.501 0.0000 0.0056 0.1083 0.0769 5.38e¢ — 04
3.500, 3.502 0.0000 0.0028 0.1750 0.0801 6.43e — 04
3.500, 3.503 0.0000 0.0019 0.4704 0.0851 6.79¢ — 04
3.500, 3.504 0.0000 0.0014 1.3111 0.0918 1.39¢ — 03
3.500, 3.505 0.0011 0.0011 3.2872 0.0997 2.07¢ — 03

Upper bound ML (0?) = 4.68¢ — 04

Scenario 2 | BER, (%) | BER; (%) | BER3 (%) 6% | Upper bound ML (6%)

[4.272,4.273] 0.0000 0.0000 0.1971 0.0779 1.80e — 03
4.272,4.274) 0.0000 0.0000 0.4647 0.0811 2.15e — 03
4.272,4.275) 0.0000 0.0000 1.3980 0.0863 2.81e — 03
4.272,4.276] 0.0000 0.0015 2.2868 0.0912 3.54¢ — 03
[4.272,4.277] 0.0000 0.0024 3.4212 0.0968 4.47¢ - 03

Upper bound ML (0?) = 1.61e — 03

Scenario 3 || BER (%) | BER; (%) | BIXR3(%) 52 Upper bound M L (67)

4.500,4.501 0.0000 0.0000 0.2364 0.0927 1.86e — 03
4.500,4.502 0.0000 0.0000 0.3303 0.0947 2.05e — 03
4.500,4.503 0.0000 0.0000 0.4727 0.0983 2.43e — 03
4.500,4.504 0.0000 0.0000 0.8439 0.1031 2.97e¢ — 03
[4.500,4.505 0.0000 0.0000 1.6315 0.1089 3.71e — 03

Upper bound ML (%) = 1.88¢ — 03

Scenario 4 || BER, (%) | BER; (%) | BERs (%) 62 | Upper bound ML (6?)

[4.900,4.901 0.0000 0.0053 0.2368 0.0614 2.15¢ — 03
[4.900,4.902 0.0000 0.0053 0.3750 0.0635 2.51e — 03
[4.900,4.903 0.0000 0.0044 0.6930 0.0671 3.17e — 03
[4.900,4.904 0.0000 0.0046 1.6178 0.0719 4.20e — 03
[4.900,4.905 0.0000 0.0063 3.9711 0.0775 5.29¢ — 03

Upper bound ML (02) = 2.02¢ — 03

dB. During the 4 ms of the channel update interval, 10e channel stability, good performance in terms of SER can
data points are collected. Based on this data, as befdoe, achieved even at moderate values of SNR.

the channel estimates were computed, and the corresponding
transmitted symbols reconstructed. We tested four independent

runs. Each run lasts for 2 s, corresponding to 500 blocks ) ) )
of 4 ms of data. In each of the four independent runs, the ThiS paper introduced AChDMA, a multiple access blind

EM algorithm was initialized with the global initialization &l90rithm for SDMA. AChDMA exploits the multipath in

procedure of Section IlI-B only once, when processing tH8€ Problem to separate the mobile sources. It is specially

first data block. AChDMA operates in tracking mode in th&vited fo_r nc_)nstatlonary channels, which is typical in mobile

remaining of the experiment. The symbol error rate (SEPMMunications systems. _ _

observed was 0% over the 200 000 transmitted bits. This showdVe explained how AChDMA resolves its three major chal-

that the AChDMA scheme is also efficient at moderately smafinges:

transmission data rates, the important issue being the balancé) estimation of the generalized steering vectors associated

between the data rate, required channel update period, and With the mobiles;

number of users. 2) tracking dynamically these steering vectors as the
The experimental study confirms that AChDMA is a useful sources move,

strategy to expand frequency or time reuse since, like other3) ability for real-time operation.

SDMA techniques, it enables several sources in a particularThe sources are separated by an EM-based blind algorithm

cell to share a common time/frequency channel. It has théth a clustering initialization procedure described in Section

ability to track in real time the channels present in the cell. Ouit. Even at moderate SNR values, the EM algorithm converges

results also show that when the update rates for the changlebally in a few number of iterations and tracks satisfactorily

estimates are chosen in accordance with the measurementhefchanges in the multipath structure induced by the varying

V. CONCLUSIONS
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Doppler and the emergence/annihilation of reflected pattidere, we makeX = {s(k)}i_,, wheres(k) takes equally like
The EM implementation of AChDMA is parallelizable andvaluess; € A. It is then easy to show that

computationally efficient when compared with other blind Ca

SDMA schemes. Finally, AChDMA reconstructs the data from Z Gauss;(Hy, z(k))||z(k) — Hs;|?
internal variables of the EM algorithm directly available after u =

convergence has been achieved. These three properties gf(H|Hl) x _Z Ca

AChDMA (fast convergence, parallel structure, and automatic k=1 Z Gauss;(Hy, z(k))
sequence reconstruction) make it suitable for real-time oper- i=1

ation. (32)

AChDMA as described require¥ > P+ 1 array elements,
where P is the number of mobiles being tracked. In practic
the number of array elements must be moderately higher so Ca
that good performance of AChDMA is achieved. Even for K Z Gauss;(Hy, z(k))s]’
a significant number of mobile users, arrays of this size are g, = Zz(k) i=1
not a problem since current integration technology of patch ] CA
antenna elements [19] enables the manufacturing of small Z Gauss(H, z(k))
wavelength array antennas with a large number of elements. =1

é\/laximization of (31) with respect to the columns Hf yields

-1

As a final comment, just like other SDMA schemes, AChDMA Ca
can be used in hybrid TDMA/FDMA cellular radio systems to x> Gauss(Hy, z(k))sisl!
increase in an efficient way the global capacity of the system. . Z i=1CA (32)
k=1 Z Gausg(H;, z(k))
APPENDIX A =1
EM ALGORITHM: FINITE GAUSSIAN MIXTURE MODEL as claimed in (20). In (32), Gauss as defined in (19).
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