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ABSTRACT
We consider the problem of global average-consensus in a

network of sensors. The communication among sensors is

restricted by the underlying network, where each sensor can

exchange information only with its neighbors. We analyze the

influence of the network topology on the convergence speed

of the iterative consensus algorithm and focus on the design

of network topology with respect to this optimality criterion.

Topology optimization is a difficult combinatorial optimiza-

tion problem. We reduce it to a spectral graph design prob-

lem, namely, maximizing the ratio γ of two eigenvalues of the

Laplacian matrix L of the graph. We consider a class of ex-

pander graphs, called Ramanujan graphs, for which we find

a lower bound on γ. Through numerical studies, we show

that the consensus algorithm converges much faster on the

Ramanujan graphs than on structured graphs, on Erdös-Renýi

random graphs, and on graphs exhibiting small-world proper-

ties.

1. INTRODUCTION

The paper studies the problem of network graph design in

large sensor network applications. Specifically, we consider

the design of optimal networks (the connectivity pattern among

the sensors, i.e, specifying with which sensors should each

sensor in the network communicate) for average consensus

in large sensor applications. In [1] network consensus algo-

rithms were studied and in [2] distributed consensus was used

for detection in sensor networks and the topology optimiza-

tion problem was addressed. In this paper, we focus on the

design of topologies which optimize the convergence speed

of distributed average consensus algorithms. We consider the

problem of designing the optimal network topology for N
sensors, given the total number of communication links M
between sensors.

The problem of finding the optimal topology over the space

of all possible networks is a very difficult combinatorial op-

timization problem. We show that for average consensus it
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is equivalent to an algebraic eigenvalue problem, where the

optimality is governed by the ratio γ of the algebraic con-

nectivity of the graph to the largest eigenvalue λN (L) of the

graph Laplacian matrix L. The algebraic connectivity of a

graph is the second smallest eigenvalue λ2(L) of its discrete

Laplacian, [3], [4]. We reduce the problem of maximizing

convergence speed to the problem of maximizing the ratio

γ. To this end, we consider a class of expander graphs, [5],

called Ramanujan graphs. We find for non-bipartite Ramanu-

jan graphs a lower bound on γ. It follows from results in

spectral graph theory literature that this lower bound for the

Ramanujan graphs is, in fact, an upper bound for many classes

of graphs. Through numerical studies, we show that the Ra-

manujan graphs are remarkable in terms of convergence speed

and perform much better than structured graphs, random Erdös-

Rényi graphs and graphs exhibiting small-world property [6,

7, 8].

Section 2 contains preliminaries on algebraic graph theory.

Section 3 presents the distributed consensus algorithm and

section 4 reduces the convergence speed optimization prob-

lem to maximizing the ratio γ of the Laplacian matrix L. Sec-

tion 5 states some results from algebraic graph theory and es-

tablishes a lower bound on the ratio γ for Ramanujan graphs.

Section 6 describes an explicit construction of Ramanujan

graphs [9] and finally section 7 provides numerical results on

the performance of Ramanujan graphs and present a compar-

ative study with other topologies. A more detailed discussion

of these results are in [10].

2. SPECTRAL GRAPH THEORY PRELIMINARIES

The topology of the sensor network is given by the graph G =
(V, E), with nodes vi ∈ V , i ∈ I = {1, ..., N}, and edges the

unordered pairs e = (vi, vj), or, simply, e = (i, j). A graph is

simple if it has no loops or multiple edges. The graphs in this

paper are assumed to be simple connected graphs. To every

graph, we can assign an N × N adjacency matrix A (where

N = |V |), defined by,

ai,j =
{

1 if (i, j) ∈ E
0 otherwise

(1)
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Since the adjacency matrix A is symmetric, all its eigenval-

ues are real. The set of neighbors of node i is denoted by

Ωi = {j : (i, j) ∈ E}. The degree of node i is the number of

its neighbors and is denoted by deg(i). The degree matrix, D
is the N × N diagonal matrix with the i-th entry deg(i).

The Laplacian L, [4] of the graph is the N × N matrix

defined by

L = D − A (2)

The Laplacian is a symmetric, positive semi-definite matrix,

and, consequently, all its eigenvalues are non-negative. For a

connected graph, we can arrange the eigenvalues of the Lapla-

cian L as,

0 = λ1(L) < λ2(L) ≤ ... ≤ λN (L) (3)

see [4]. The eigenvalue λ2(L) is called the algebraic connec-

tivity of the graph.

3. CONSENSUS ALGORITHM

Consensus Algorithm: The consensus algorithm computes

in a distributed fashion the average of N quantities rn, n =
1, · · · , N . Assume a sensor network with connectivity graph

G = (V, E). Initially, sensors take measurements r1, . . . rN .

We compute their mean r = 1
N

∑N
n=1 rn in a distributed fash-

ion using the average consensus algorithm according to the

following linear operation, [11],

x(i) = Wx(i − 1) (4)

where, x(i) = [x1(i) · · ·xN (i)]T denotes the vector of states

at iteration i with x(0) = [r1 · · · rN ]T . W is the weight ma-

trix with Wnl denoting the weight associated with link (n, l).
For n �= l, the weight Wnl = 0 when there is no link associ-

ated with it, i.e., if (n, l) /∈ E. If limi→∞ W i = 11T , then

convergence occurs, i.e., limi→∞ x(i) = x = r 1, where the

N -dimensional vector 1 = [1 · · · 1]T .

Link Weights: In this paper we consider the case of equal

weights, i.e., we assign an equal weight α to each link in the

network. From [11], the optimum equal weight for a given

topology is given by,

Wnl =

⎧⎨
⎩

α∗ if (n, l) ∈ E
1 − α∗ deg(n) if n = l
0 otherwise

(5)

where α∗ = 2
λ2(L)+λN (L) . The weight matrix is then given

by,

W = I − α∗L (6)

where I and L are the N -dimensional identity matrix and the

graph Laplacian.

The eigenvalues of W are given by, γn = 1−α∗λn(L). From

the spectral properties of the Laplacian of a connected graph,

and the choice of α∗, the eigenvalues of W satisfy 1 = γ1 >
γ2 ≥ · · · ≥ γN , with ∀n > 1 : 0 ≤ |γn| < 1 and ∀n > 1 :
γ2 ≥ |γn|.

Convergence rate of the consensus algorithm: It can

be shown from eqn.(4) that for any connected graph G, the

convergence rate of the consensus algorithm is

‖xi − x‖ ≤ ‖x0 − x‖γi
2 (7)

where

γ2 =
1 − γ

1 + γ
(8)

γ =
λ2(L)
λN (L)

(9)

4. PROBLEM REDUCTION

From eqn.(7) it follows that, to obtain the optimal conver-

gence rate, γ2 should be as small as possible. From eqns.(7)

and (9) we note that

the minimum value of γ2 is attained when the ratio γ =
λ2(L)
λN (L) is maximum. We thus restate the convergence speed

optimization problem as:

max
G∈ G

γ = max
G∈ G

λ2(L)
λN (L)

(10)

where G denotes the set of all possible graphs with N vertices

and with M edges.

5. SPECTRUM OF REGULAR GRAPHS AND
RAMANUJAN GRAPHS

This section presents some results from spectral graph theory

for regular connected graphs and establish a lower bound on

the ratio γ for the class of Ramanujan graphs. A graph is

called k-regular if all the vertices have the same degree k.

For connected regular graphs, we can arrange the eigenvalues

of the adjacency matrix A as, k = λ1(A) > λ2(A) ≥ . . . ≥
λN (A) ≥ −k. The integer −k is an eigenvalue of A iff the

graph is bipartite, see [12]. Hence, for non-bipartite graphs,

λN (A) > −k. For k-regular graphs, the eigenvalues of A and

L are related by

∀n ∈ I : λn(L) = k − λn(A) (11)

We state a well-known result from algebraic graph theory.

Theorem 1 (Alon and Boppana [13]) Let G = GN,k be a k-

regular graph on N vertices. Denote by λA(G), the absolute

value of the largest eigenvalue (in absolute value) of the ad-

jacency matrix A, which is distinct from ±k; in other words,

λ2
A(G) is the next to largest eigenvalue of A2. Then

lim inf
n→∞ λA(G) ≥ 2

√
k − 1 (12)
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Thus, for the case of families of k-regular graphs, 2
√

k − 1 is

an asymptotic lower bound on the value of λ2(A) [9].

Definition 2 (Ramanujan Graphs) A graph G = GN,k will

be called Ramanujan if

λA(G) ≤ 2
√

k − 1 (13)

Graphs with small λA(G) are called expander graphs, and

the Ramanujan graphs are one of the best explicit expanders

known. Hence, for non-bipartite Ramanujan graphs, λ2(A) ≤
2
√

k − 1 and λN (A) ≥ −2
√

k − 1.

Then from eqn (11) we have for non-bipartite Ramanujan

graphs, λ2(L) ≥ k − 2
√

k − 1 and λN (L) ≤ k + 2
√

k − 1.

Hence, for non-bipartite Ramanujan graphs

γ2 =
λ2(L)
λN (L)

≥ k − 2
√

k − 1
k + 2

√
k − 1

(14)

Theorem 1 and eqn. (12) show that, for general graphs, λA(G)
is in the limit lower bounded by 2

√
k − 1, while for Ramanu-

jan graphs λA(G) is, for every finite N , upper bounded by

2
√

k − 1. This together with eqn. (14) hints that consensus

algorithms on Ramanujan graph topologies should have very

good convergence properties.

6. EXPLICIT CONSTRUCTION OF RAMANUJAN
GRAPHS

We now provide explicit constructions of Ramanujan graphs.

The explicit constructions presented next are based on the

construction of Cayley graphs. The following paragraph gives

a brief overview of the Cayley graph construction.

Cayley Graphs: The Cayley graph construction uses group

theory to construct k-regular graphs. Let X be a finite group

with |X| = N , and S a k-element subset of X , i.e., s ∈ S
implies s−1 ∈ S. We now construct a graph G = G(X, S) by

having the vertex set to be the elements of X , with (u, v) as an

edge if and only if vu−1 ∈ S. The graph constructed above

is k-regular on |X| vertices. The subset S is often called the

set of generators of the Cayley graph G, over the group X .

6.1. LPS: Explicit Constructions of Ramanujan Graphs

Explicit constructions of Ramanujan graphs for a fixed k and

varying N , [5], have been described for the cases k − 1 is a

prime, [9], [14], or a prime power, [15]. We describe a non-

bipartite Ramanujan graph construction by Lubotzky-Phillips-

Sarnak [9] and call them LPS-II graphs.

LPS-II Construction [9]: We start with two unequal primes

p and q congruent to 1 mod 4, such that the Legendre sym-

bol
(

p
q

)
= 1. We define the set P 1(Fq) = {0, 1, ..., q −

1,∞}(Projective Line over Fq), which is basically the set of

Pajek

Fig. 1. LPS-II graph with number of vertices N = 42 and

degree k = 6 (Figure constructed using software Pajek.)

integers modulo q, with an additional “infinite” element in-

serted in it. It follows that |P 1(Fq)| = q +1. Let i be an inte-

ger satisfying i2 ≡ −1 mod (q). We consider p + 1 matrices

in PSL(2,Z/qZ)(Projective Special Linear Group) given by,

β̃ =
(

a0 + ia1 a2 + ia3

−a2 + ia3 a0 − ia1

)
(15)

where β = (a0, a1, a2, a3) is a solution of the equation a2
0 +

a2
1 + a2

2 + a2
3 = p such that a0 > 0 and odd, and aj even for

j = 1, 2, 3 (there are exactly p + 1 such solutions as given by

a formula of Jacobi [16].) These p + 1 matrices constitute the

set S of generators. The LPS-II graphs are produced by the

action of the set S on P 1(Fq), in a linear fractional way. The

Ramanujan graphs obtained in this way, are non-bipartite p +
1-regular graphs on q+1 vertices [9]. The LPS-II graphs thus

obtained, may few loops [17], which does not pose problems

because their removal does not affect the Laplacian matrix

and hence does not affect its spectrum. As an example of a

LPS-II Ramanujan graph, we take p = 5 and q = 41. (It can

be verified that p, q ≡ 1 mod (4) and the Legendre symbol,(
p
q

)
= 1.) Thus, we have a non-bipartite Ramanujan graph,

which is 6-regular and has 42 vertices. Fig. 1 shows the graph,

thus obtained.

7. NUMERICAL RESULTS

This section shows how the Ramanujan graphs outperform

other topologies with respect to the convergence speed of the

distributed average consensus algorithm. Specifically, we fix
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the number of nodes N and links M and consider various

topologies. We define the average degree of such graphs as,

kavg = 2M
N (Since the Ramanujan graphs are regular, all the

nodes have the same degree k = kavg.)

We first describe the graph topologies to be contrasted with

the Ramanujan LPS-II constructions:

Regular ring lattice: This is a regular structured network in

which the nodes are placed on a ring, and each node is con-

nected to k/2 nodes on either side.

Watts-Strogatz Small-World graphs [6]: It starts from a

regular ring lattice with k = kavg = 2M
N . Then, random

rewiring is conducted on all graph links. With probability

pw, a link is rewired to a different node chosen uniformly at

random. Notice that the pw parameter controls the “random-

ness” of the graph in the sense that pw = 0 corresponds to the

original highly structured network while pw = 1 results in a

random network. Self and parallel links are prevented in the

rewiring procedure and the number of links is kept constant,

regardless of the value of pw. In the sequel, we refer to the

Watts-Strogatz graphs as WS-I graphs.

Erdös-Renýi random graphs: Here, we randomly choose

M edges out of a total of
N(N−1)

2 possible edges.

Since the convergence speed is determined by the ratio γ =
λ2(L)
λN (L) , see section 4, we provide plots of the ratio γ for the

different topologies. In Fig. 2(top) we plot the ratio of γ for

the LPS-II graphs over the regular ring lattice for fixed k =
kavg = 18 and varying N (in the range 1000 to 2100.) We

note from the plot that the relative performance of the LPS-II

graphs improves steadily with increasing N (as indicated by

dramatically large γLPS-II/γlattice) and in fact γLPS-II/γlattice ≈
3400 for N = 2000. Fig. 2(bottom) shows a comparison

of γ between the LPS-II graphs and the Erdös-Renýi random

graphs for fixed kavg = 18 and varying N (in the range 1000

to 3000.) We see that the LPS-II graphs (the top line) out-

perform the Erdös-Renýi graphs with respect to γ and hence

convergence speed. We also note that the LPS-II graphs give

a steady value of γ with increasing N , while the γ for Erdös-

Renýi graphs decreases with increasing N . Finally Fig. 3

compares γ of LPS-II graphs with WS-I graphs for N = 6038
( for different values of the rewiring probability pw ∈ [0, 1]
with kavg = 18.) Evidently the LPS-II graphs perform much

better and we notice that in terms of γ, the LPS-II graph is

about 47% better than the best WS-I graph.

8. CONCLUSION

In this paper we reduce the difficult combinatorial topology

optimization problem for the distributed average consensus

algorithm as an algebraic optimization problem, namely op-

timizing the ratio γ of the graph Laplacian L and the use of

the Ramanujan graphs in this paper is a direct consequence.

The Ramanujan graphs, specifically the LPS-II graphs, out-

perform the structured graphs, Erdös-Renýi random graphs
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Fig. 2. Comparative study of γ = λ2(L)
λN (L) of different topolo-

gies. Top: LPS-II vs regular ring lattice for k = kavg = 18 and

varying N . Bottom: LPS-II vs Erdös-Renýi random graphs

for fixed kavg = 18 and varying N .
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rewiring probability pw ∈ [0, 1].

and graphs exhibiting small-world (Watts-Strogatz) property

in terms of convergence speed of the distributed consensus

algorithm. We also note that the relative performance of the

Ramanujan graphs with respect to the other classes of graphs

considered here improves steadily as the number of sensor

nodes N increases. In [10] we extend this approach and con-

struct a class of random regular graphs which are close to the

Ramanujan graphs for finite values of N .
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