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Abstract

In time reversal, the received signal, including the additive
noise component, is time reversed, energy normalized, and
re-transmitted. The noise contained in the re-transmitted
time-reversed signal has a significant impact on the time re-
versal detection performance. This paper carries out an as-
ymptotic noise analysis of the time reversal generalized like-
lihood ratio detector, and develops an approximate closed
form of the asymptotic SNR gain of the time reversal detec-
tor compared with the conventional detector. We show that
a rich scattering and low noise environment is preferred for
time reversal.

1 Introduction
In time reversal (phase conjugation in frequency domain),
a short pulse, for example, transmitted by a source through
a dispersive medium, is received by an array, then time re-
versed, energy normalized, and retransmitted through the
same medium. If the scattering channel is reciprocal and
sufficiently rich, the retransmitted waveform refocuses on
the original source. In our recent work, [1], we considered
the signal detection problem by time reversal using a pair
of transmit/receive antennas. Among them, the time rever-
sal generalized likelihood ratio detector (TR-GLRT) is de-
veloped, and its performance is compared with the conven-
tional detection.
An important issue in the time reversal detection is the
noise effect. Time reversal is performed iteratively. First,
a probing signal illuminates the target area by a transmit
array, and is received at a receive array. The received sig-
nal contains the backscatters from the scattering medium
and the additive noise due to the sensing device or other
mechanisms. Next, the received total signal, including the
noise, is time reversed (or phase conjugated in frequency
domain), energy normalized, sent back to the same channel,
and recorded at the initial transmit array. Inevitably, part of
the transmission power in the second step will be wasted on
transmitting the additive noise received in the first step. In
other words, the effective output signal-to-noise ratio (SNR)
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in the second step is reduced due to the inserted noise in the
time reversal step.
The goal of this paper is to study the noise impact on the
detection performance. We choose a general multi-static
transmit/receive array configuration, which is also called
Multiple-input Multiple-out (MIMO) in recent radar liter-
ature. The two arrays, denoted by A and B, can switch be-
tween transmit mode and receive mode. The construction of
the TR-GLRT developed in [1] takes two steps, i.e., calcu-
lating the maximum likelihood estimate of the unknown tar-
get channel response from the measurements, followed by
computing the test statistics. To examine the impact of the
noise contained in the time reversed signal, we assume that
the target channel response is known. This assumption im-
plies an asymptotic analysis of the noise impact – the esti-
mate of the target response is accurate if the number of data
samples for estimating the unknown target channel response
goes to infinity. Similarly, the conventional detector for the
known the target channel response is the matched filter. We
then use the signal-to-noise-ratio gain (SNRG) as a metric
to quantify the performance advantage of the time reversal
detection scheme over the conventional detector. This SNR
gain serves as an asymptotic performance bound for the TR-
GLRT detector in which the target channel is unknown and
needs to be estimated from the measurements.

2 Time Reversal Detection Problem

We consider an active multiple antenna system with a pair
of antenna arrays A and B in a multi-static configuration.
The antenna array A has P elements A1, · · · , AP . The
antenna array B has N elements B1, · · · , BN . It is as-
sumed that both antenna arrays A and B can switch be-
tween transmit mode and receive mode. The transmitted
signal s(t) is a wideband signal with Fourier representation
S(fq) at frequencies fq, q = 0, · · · , Q − 1. For simplicity,
we assume that the signals transmitted from the antennas
Ap, p = 1, · · · , P, are all identical, i.e., sp(t) = s(t). The
total transmission energy is defined as

ET =
1
Q

Q−1∑
q=0

‖sA(fq)‖2 = PEs, (1)
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(a). Target monitoring from array A

(b). Time reversal retransmission from array B

Figure 1. Simplified Time Reversal Signal
Model.

where Es = 1
Q |S(fq)|2 is the total energy of the probing

signal at each antenna, and

sA(fq) = [S1(fq), · · · , SP (fq)]T = S(fq)1P , (2)

where 1P is the vector with all the elements being 1.

2.1 Time Reversal Signal Model
We introduce the following two channel frequency re-
sponse matrices to represent the scattering characteristics
of the radar target and clutter response. The N × P clutter
channel frequency response matrixHc(fq), q = 0, · · · , Q−
1, is the response of the channel when no target is present;
the (n, p)-th entry of Hc(fq) is the channel response be-
tween antenna Ap and antenna Bn at fq , i.e.,

[Hc(fq)]n,p = hc(fq; Bn ← Ap), ∀p, n. (3)

TheN ×P target channel frequency responseHt(fq), q =
0, · · · , Q−1, is the difference between the channel response
when a target is present and the channel response when no
target is present. Again, the (n, p)-th entry ofHt(fq) is the
target channel response between antenna Ap and antenna
Bn, i.e.,

[Ht(fq)]n,p = ht(fq; Bn ← Ap), ∀p, n. (4)

The target channel response Ht(fq) represents all the
changes to Hc(fq) induced by the presence of the target,
which includes the direct echo and the secondary backscat-
ters. Throughout the paper, it is assumed that the clut-
ter channel frequency response Hc(fq),∀q, is learned and
subtracted out from the measurements (see [1] for details).
Therefore, it suffices to focus on Ht(fq). The simplified
time reversal signal model is shown in Fig. 1.
For m-th snapshot where m = 1, · · · ,M , we denote by

Ym,p,n(fq) the received signal at antenna Bn transmitted

from antennaAp at frequency fq . We group all the measure-
ments collected at the antennas Bn, n = 1, · · · , N . This
yields an N -dimensional signal vector

ym,p(fq) = [Ym,p,1(fq), · · · , Ym,p,N (fq)]T , ∀p,m. (5)

The signal vector received at antenna Bn that is transmitted
from antenna Ap takes the following form:

ym,p(fq) = Ht(fq)S(fq)ep + vm,p(fq), ∀p,m, (6)

where ep is a column vector of zero entries except that its
pth element is 1. vm,p(fq) is the noise vector at fq . The
total signal vector received at array B form-th snapshot is

ym(fq) =
P−1∑
p=0

ym,p(fq) = Ht(fq)sA(fq) + vm(fq), (7)

where the signal vector sA(fq) and the complex Gaussian
noise vector vm(fq) are given as follows:

vm(fq) = [Vm,1(fq), · · · , Vm,N (fq)]T . (8)

For mth snapshot, collecting frequency response vectors
ym(fq), q = 0, · · · , Q − 1 into an NQ-dimensional vec-
tor yields

ym = [yT
m(ω0), · · · ,yT

m(ωQ−1)]T . (9)

Next, in the time reversal transmission, each data vector
ym(fq) is time reversed, power normalized, and retransmit-
ted back into the scattering medium. The P × 1 received
signal vector at array A is

xm(fq) = kmHT
t (fq)y∗

m(fq) + wm(fq), (10)
= kmHT

t (fq) (H∗
t (fq)s∗A(fq)

+v∗
m(fq)) + wm(fq). (11)

We notice that in (11) the target channel response becomes
HT (fq) due to reciprocity of the channel. wm is the com-
plex Gaussian noise vector

wm(fq) = [Wm,1(fq), · · · ,Wm,P (fq)]T , ∀p,m. (12)

The scalar km is the energy normalization factor for each
antenna Bn and takes the following form:

km =

√√√√ ∑Q−1
q=0 ‖sA(fq)‖2∑Q−1
q=0 ‖ym(fq)‖2

=

√
QPEs∑Q−1

q=0 ‖ym(fq)‖2
.

(13)
Furthermore, we define data vectors xm, vm and wm as
follows:

xm = [xT
m(ω0), · · · ,xT

m(ωQ−1)]T , (14)
vm = [vT

m(ω0), · · · ,vT
m(ωQ−1)]T , (15)

wm = [wT
m(ω0), · · · ,wT

m(ωQ−1)]T . (16)
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Now the time reversal detection problem can be formulated
as a binary hypothesis test based upon the concatenated
measurements (ym,xm),∀m.
For the conventional detection we use a pair of measure-
ments (ym, rm), where ym is defined in (9) and

rm(fq) = βHT (fq)sB(fq) + wm(fq), (17)
rm = [rm(ω0), · · · , rm(ωQ−1)]T , (18)

sB(fq) = [S1(fq), · · · , SN (fq)]T . (19)

where the energy normalization factor β is defined by

β =

√√√√∑Q−1
q=0 ‖sA(fq)‖2∑Q−1
q=0 ‖sB(fq)‖2

=

√
P

N
(20)

We shall notice that the signal vector βsB(fq) transmit-
ted by array B is used to illuminate the medium uniformly.
This is contrast to the time reversal detection method where
an energy normalized, time-reversed signal kmy∗

m(fq) is
transmitted by array B. Using (ym,xm) for time reversal
and using (ym, rm) for conventional detection ensures that,
for bench-marking purposes, the SNR will be the same in
both detection problems.

2.2 The Detectors
Let zm = [yT

m xT
m]T and um = [yT

m rT
m]T . We formu-

late the time reversal binary hypothesis test as follows:

H1 : zm =
[

yt

xt

]
+

[
vm

wm

]

H0 : zm =
[

vm

wm

]
,

(21)

where xt(fq) = kmHT
t (fq)[Ht(fq)sA(fq)+vm(fq)]∗, and

yt(fq) = Ht(fq)sA(fq), and

xt = [xT
t (f0), · · · ,xT

t (fQ−1)]T , (22)
yt = [yT

t (f0), · · · ,yT
t (fQ−1)]T (23)

Similarly, the conventional detection problem can be for-
mulated as below:

H1 : um =
[

yt

rt

]
+

[
vm

wm

]

H0 : um =
[

vm

wm

]
,

(24)

where rt(fq) = βHT
t (fq)sB(fq), and

rt = [rT
t (f0), · · · , rT

t (fQ−1)]T . (25)

The optimal detector of (21) is the likelihood ratio of
the joint pdfs p1(·) under H1 and p0(·) under H0 of
(ym(fq),xm(fq)) for a given m (Note that usingM snap-
shots only shifts the receiver operating characteristic curves

to the left, but it does not change the performance gap be-
tween the asymptotic time reversal detector and the conven-
tional detector. Therefore, it suffices to examine only the
m-th snapshot.)

�TR-GLRT(Asym) =

∏Q−1
q=0 p1(ym(fq),xm(fq))∏Q−1
q=0 p0(ym(fq),xm(fq))

(26)

=
Q−1∏
q=0

p1(xm(fq)|ym(fq))
p0(xm(fq)|ym(fq))

Q−1∏
q=0

p1(ym(fq))
p0(ym(fq))

. (27)

The second line in (27) is due to the Bayesian rule. Simi-
larly, the optimal conventional detector of (24) is the like-
lihood ratio of the joint pdfs of (ym(fq), rm(fq)). Since
ym(fq) and rm(fq) are independent, we can break the joint
pdf as follows:

�CDCMF =
Q−1∏
q=0

p1(rm(fq))
p0(rm(fq))

Q−1∏
q=0

p1(ym(fq))
p0(ym(fq))

. (28)

3 SNR Gain of Time Reversal

Direct inspection of (27) and (28) reveals that the term∏Q−1
q=0

p1(ym(fq))
p0(ym(fq)) is common to both two detectors. This

term does not affect the relative performance of (27) and
(28). Therefore, it suffices to examine the remaining terms
of each detector for performance comparison. By further
examining the statistics of each remaining term, we notice
that both of them are complex Gaussian distributed with a
non-zero deterministic mean, which implies that the perfor-
mance comparison can be well characterized by the ratio of
the output signal-to-noise-ratio of the corresponding detec-
tors:

d2
TR-GLRT(Asym) =

‖xt‖2

σ2
w

=
k2

m

σ2
w

Q−1∑
q=0

‖HT
t (fq)y∗

m(fq)‖2,

d2
CDCMF =

‖rt‖2

σ2
w

=
β2

σ2
w

Q−1∑
q=0

‖HT
t (fq)sB(fq)‖2.

We then define the ratio of the expectation of these two
quantities as the average SNR gain of TR-GLRT(Asym).
Given (13), we have

SNRG �
E{d2

TR-GLRT(Asym)}
E{d2

CDCMF}
(29)

=
(N/P )

∑Q−1
q=0 ‖sA(fq)‖2∑Q−1

q=0 ‖HT
t (fq)sB(fq)‖2

E
{

Φ
Υ

}
(30)
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where the quantities inside of E{·} are

Φ =
Q−1∑
q=0

‖HT
t (fq)H∗

t (fq)s∗A(fq)HT
t (fq)v∗

m(fq)‖2,

Υ =
Q−1∑
q=0

‖Ht(fq)sA(fq) + vm(fq)‖2. (31)

To evaluate SNRG, the statistics of random variables Φ and
Υ are calculated. First we show that

E{Φ}=
Q−1∑
q=0

‖Ht(fq)‖2σ2
v+

Q−1∑
q=0

‖HT
t (fq)H∗

t (fq)s∗A(fq)‖2.

(32)
Let tk(fq) denote kth entry of vector HT

t (fq)y∗
m(fq).

Complex Gaussian random variables Vm,n(fq) ∼
CN (0, σ2

v), where ∼ denotes distribution. We then
obtain

tk(fq) =
P∑

j=1

N∑
i=1

hik(fq)h∗
ij(fq)S∗

j (fq)

+
N∑

i=1

hik(fq)V ∗
m,i(fq) (33)

∼ CN (
P∑

j=1

N∑
i=1

hik(fq)h∗
ij(fq)S∗

j (fq),

N∑
i=1

|hik(fq)|2σ2
v), (34)

|tk(fq)|2 ∼ χ2�N
i=1 |hik(fq)|2σ2

v
(|

P∑
j=1

N∑
i=1

hik(fq)h∗
ij(fq)S∗

j (fq)|2). (35)

Therefore, given (31), we have

Φ =
Q−1∑
q=0

P∑
k=1

|tk(fq)|2 (36)

∼ χ2�Q−1
q=0
�P

k=1
�N

i=1 |hik(fq)|2σ2
v

(37)

(
Q−1∑
q=0

P∑
k=1

|
P∑

j=1

N∑
i=1

hik(fq)h∗
ij(fq)S∗

j (fq)|2)

∼ χ2�Q−1
q=0 ‖Ht(fq)‖2σ2

v

(
Q−1∑
q=0

‖HT
t (fq)

H∗
t (fq)s∗A(fq)‖2). (38)

From [2], the mean of a non-central χ2− distributed random
variable is the sum of the degrees of freedom and the non-
central parameter, then (32) follows. Similar to the treat-
ment in deriving the distribution of Φ, the distribution of Υ

can be obtained as follows:

Υ ∼ χ2
σ2

vNQ(
Q−1∑
q=0

‖Ht(fq)sA(fq)‖2), (39)

which yields an approximation of the first order inverse mo-
ment of the non-central chi-squared distribution, [3],

E
{

1
Υ

}
≈ 1

NQσ2
v +

∑Q−1
q=0 ‖Ht(fq)sA(fq)‖2

. (40)

To obtain a closed form expression of E
{

Φ
Υ

}
we make the

following approximation that Φ and Υ are assumed to be
independent random variables, or E

{
Φ
Υ

} ≈ E {Φ}E{
1
Υ

}
.

Our simulation shows that this is a quite good approxima-
tion, especially when Q is large. Plugging (40) and (32)
into (30) yields (37).
Next we make some comments regarding this SNRG:

1. If the time reversed signal is noise free, i.e, σ2
v = 0 in

ym, this gain reduces to the maximal SNR gain for the
time reversal method (see [1] for maximal SNR gain
with a single antenna pair).

2. WhenMY snapshots of ym(fq),m = 1, · · · ,MY are
used for averaging to reduce the noise variance in time
reversed signal, this gain takes the form of (37) except
that σ2

v is replaced by σ2
v/My (see Fig. 2 forMy = 20

andMy = 1).

3. In our development of SNRG, it is assumed that the
target channel matrixHt(fq) is known. Thus this gain
represents the asymptotic performance gain of the time
reversal GLRT (TR-GLRT) whereHt(fq) is unknown
and needs to be estimated from the (infinite number of
data) measurements.

4 Experiments and Simulations
A set of scattering channels, with and without the target,
in electromagnetic domain with 30 scatterers is measured
in a laboratory environment. Q = 51 uniform frequency
samples in 4 − 6 GHz frequency band are captured. For
each antenna array A and B, a total of 10 positions with
inter-element spacing of 10.16 cm are recorded. A config-
uration where array A has 3 antennas at positions with in-
dexes A = [2, 5, 9] and array B has 2 antennas at positions
with indexes B = [2, 5] is chosen as an example. Other
choice of array configuration will lead to different detection
performance. Fig. 2 depicts the ROC curves for the TR-
CMF – the matched filter detector where the time reversed
signal is noise free, CDCMF – the conventional matched
filter detector, and the TR-GLRT(Asym) – the time reversal
detector where noise is considered in the time-reversed sig-
nal. The SNR gain of TRCMF over CDCMF stands for the
maximal time reversal gain (4.0 dB in our case). The SNR
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SNRG ≈
∑Q−1

q=0 ‖sA(fq)‖2
[∑Q−1

q=0 ‖HT
t (fq)H∗

t (fq)s∗A(fq)‖2 + σ2
v

∑Q−1
q=0 ‖Ht(fq)‖2

]
(P/N)

∑Q−1
q=0 ‖HT

t (fq)sB(fq)‖2
[∑Q−1

q=0 ‖Ht(fq)sA(fq)‖2 + σ2
vNQ

] (37)
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Figure 2. ROC curve for TRCMF—TR channel
matched filter when the time reversed signal
is noise free, versus CDCMF—conventional
matched filter, and TR-GLRT(Asym)—where
the time reversed signal contains noise. σ2

v =
σ2

w. False alarm rate PFA = 0.01.

gain of TR-GLRT(Asym) at detection rate of 0.8 is about
2.2 dB when My = 20, and 1.2 dB when My = 1. The
loss is due to the contamination of the noise in the time re-
versed signal. The SNRG of TR-GLRT(Asym) is plotted in
Fig. 3. The simulation results match well the analytical re-
sults. For example, at SNR of−16 dB in Fig. 2, we observe
a 2.2 dB gain for TR-GLRT(Asym) when My = 20 over
CDCMF. The predicted SNRG at SNR of−16 dB reads 2.2
dB. Fig. 4 depicts the ROC curve for TR-GLRT vs. energy
detector. The SNR gain at PD = 0.8 reads as 0.8 dB, which
is a little less than the asymptotic SNR gain of 1.2 dB.

5 Conclusion

Time reversal takes advantage of the rich scattering en-
vironment. The richer the scattering, the higher the time
reversal performance gain relative to the conventional de-
tection. However, the noise has an adverse impact on the
time reversal detection. In this paper, we derived the ana-
lytical expression of the time reversal asymptotic SNR gain
over the conventional detection. We verified our analysis
using the experimentally obtained scattering channel mea-
surements in electromagnetic domain. The analysis and
experimental results demonstrate that a rich scattering and
quiet environment is preferred for time reversal.
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Figure 3. SNRG: simulation vs. analytical re-
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