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Abstract

We develop in this paper the optimal Bayes multiframe detector/tracker for rigid extended targets that move randomly

in clutter. The performance of this optimal algorithm provides a bound on the performance of any other suboptimal de-

tector/tracker. We determine by Monte Carlo simulations the optimal performance under a variety of scenarios including

spatially correlated Gaussian clutter and non-Gaussian (K and Weibull) clutter. We show that, for similar tracking perfor-

mance, the optimal Bayes tracker can achieve peak signal-to-noise ratio gains possibly larger than 10 dB over the commonly

used combination of a spatial matched filter (spatial correlator) and a linearized Kalman-Bucy tracker. Simulations using

real clutter data with a simulated target suggest similar performance gains when the clutter model parameters are unknown

and estimated from the measurements.
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I. Introduction

The paper studies integrated detection and tracking of randomly moving targets in clutter using as

input data a sequence of noisy images. The images may be collected by electromagnetic sensors such as

high resolution radars, or optical sensors such as infrared (IR) devices. At each sensor scan, an image or

frame is produced. If one or more targets are present during a scan, the corresponding image contains the

returns from the targets plus the returns from the background clutter. Otherwise, if no target is present,

the sensor return consists exclusively of clutter. The clutter accounts for spurious reflectors, which may

appear as false targets, and for measurement noise.

In the case when multiple, at most M , targets of interest are present, the multitarget detector decides

from the noisy data how many targets (0,1,2,...,M ) are present in each frame. Once a target is declared

present by the detector, a subsequent tracker estimates its position in the surveillance space. The interpo-

lation across successive scans of the estimated positions of a target forms a track for that target. Due to

clutter, false detections, known as false alarms, may occur, and false tracks may be estimated. Conversely,

actual targets may fail to be detected. This situation is known as a miss. Even if correct detections (i.e.,

no misses or false alarms) occur, the background clutter can still cause the tracker to produce a wrong

estimate of the target’s position, i.e., a tracking error.

The ultimate goal is to estimate the target state, typically a collection of kinematic components such

as position, velocity, or acceleration. In most existing algorithms, e.g., [1], detection and tracking are two

separate stages. The measurements of interest to the tracker are not the raw sensor images, but the outputs

of preliminary detection subsystems. The detection stage involves the thresholding of the raw data, usually

one single sensor frame. After further preprocessing, validated detections provide measurements that, for

targets that are declared present, are treated as noise-corrupted observations of the target state such as,

for example, direct estimates of position (range, azimuth, and elevation). Due to the ocurrence of random

false alarms in the detection process, or due to clutter coming from spurious reflectors, interfering targets,

or man-made decoys, validated measurements may actually be false measurements that do not originate

from true targets.

Multitarget trackers generally assume [1], [8] that the targets are pointwise and associate a linear (or

linearized) dynamic model to the state of each target of interest. A tracking filter, usually a variation
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on the Kalman-Bucy filter, combines the validated measurements with the dynamic model, providing an

estimate of the state of the target. An important issue arising from the decoupling of detection and tracking

is the problem of deciding which set of measurements or weighted combination of measurements should

be associated to each target state estimator or to clutter. This problem is known as data association.

The most common data association algorithms, see [8], compute posterior probabilities of association

conditioned on the measurements and use them throughout the estimation process.

Brief review of the literature References concerned only with target detection, not tracking, include

[4], [5], [6]. In [5], Pohlig introduces an algorithm for detection of constant velocity objects such as meteors,

asteroids, and satellites, in fixed stellar backgrounds. The measurements are obtained by a staring sensor

with an array of charged coupled device (CCD) sensors in the focal plane of a telescope. The focal

plane image is integrated and sampled in space and time, resulting in a three-dimensional (two spatial

dimensions and one temporal dimension) discrete model, where the optical intensity of both targets and

the background are modeled as Poisson distributions with different means that reflect the different photon

counts arising from targets and clutter. Pixel intensities under both hypotheses of presence and absence

of target are assumed spatially uncorrelated. The detection algorithm in [5] is a 3D generalized likelihood

ratio test (GLRT) based on batch processing: all available sensor frames are stacked in a data volume,

and then the GLRT decides on the presence or absence of a target anywhere in that volume.

The work by Reed, Gagliardi, and Shao [6] is similar in nature to Pohlig’s approach and introduces

a 3D (again space plus time) matched filter for detection of known, moving targets within a Gaussian

background clutter with known spectral density. However, unlike reference [5], reference [6] considers

the case of continuous (non-sampled) data; it is best suited for optical rather than digital processing.

A different problem is considered by Chen and Reed in [4]. The goal in [4] is to introduce a constant

false alarm rate (CFAR) algorithm to solve the problem of detection of a known target signal in a given

scene, using a set of K correlated reference scenes that contain no target or, alternatively, very weak

target returns. The reference scenes are obtained either from different frequency bands of the main scene

(multispectral or hyperspectral imagery) or from sequential observations in time. The proposed detection

algorithm is a generalized likelihood ratio test (GLRT) that tests for the presence or absence of a target

in the main scene using as data the entire collection of reference scenes plus the main scene itself. The

underlying model assumes that, after pre-processing (essentially removal of the local variable mean), each

individual scene is a zero-mean, Gaussian, white random vector, i.e., the spatial correlation between the

pixels in each individual image is neglected. However, the model assumes a cross-correlation between

pixels at the same spatial location in different scenes. An alternative modeling for multispectral imagery

that incorporates both interframe and intraframe correlation was proposed in [7].

In this paper, instead of decoupling detection and tracking as in [1], or considering detection-only of

moving objects as in [5], [6], we develop the optimal, multiframe, Bayes detector/tracker that processes

directly the sensor images and integrates detection and tracking into a unified framework. The Bayesian

strategy involves the computation at each scan of the posterior probability of the unknown target states

conditioned on the observations. In [3], the author uses a dynamic programing approach and the Viterbi
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algorithm to study target detection. We postpone to section III-E a detailed discussion comparing the

Bayes algorithm with the dynamic programming approach in [3].

In our approach, we integrate detection and tracking into the same framework by augmenting the target

state space with additional dummy states that represent the absence of targets. The posterior probability

of a given target being absent is propagated in time together with the posterior probabilities of the other

“present target” states. In contrast to Pohlig’s batch detector [5], we develop a recursive framework where

we still process all frames available in an optimal way, but these frames are processed one by one and

discarded as we finish processing them. As a new frame is available, we simply update the posterior

probabilities for the target states by running one more iteration of the algorithm.

Modeling assumptions The optimal Bayesian algorithm takes full advantage of all prior information

on the clutter, target signature, and target motion models, and allows multiframe detection and tracking

with recursive processing across all observed sensor scans. We consider in this paper both pointwise

(single pixel) and extended (multipixel) targets. We present detection results for targets with deterministic

signatures and for targets with time-varying random signatures. The random signatures are described by

multivariate, spatially correlated Gaussian distributions. We assume translational motions, and we define

as the target state the spatial coordinates of the target’s geometric centroid. Since practical sensors have

a finite resolution, we restrict the target centroid positions to a finite grid where each pixel represents a

resolution cell of the sensor. We describe motions by finite state machines (FSMs) obtained by discretizing

the continuous differential equations that describe the target dynamics. The dummy states that represent

the absence of a target are incorporated into the FSM model that also specifies the transition probabilities

between the absence and the presence of a target, and vice-versa.

We consider two classes of clutter models: spatially correlated clutter with Gaussian statistics, and

uncorrelated non-Gaussian clutter with heavy tail amplitude (envelope) statistics. The spatial correlation

of the clutter is captured by using noncausal, spatially homogeneous, Gauss-Markov random fields (GMrfs)

of arbitrary order [25]. GMrfs are statistical models that capture the locality properties of the clutter,

namely, the clutter at a given spatial location is strongly dependent on the clutter intensity in neighboring

locations. This assumption is intuitively realistic in many practical scenarios. Regarding non-Gaussian

clutter, we represent it by spherically invariant-random vectors (SIRVs) [13], [14], [15], which have been

shown to generate a variety of envelope statistics of practical interest, including the Weibull, K, Rician

[18], and G [19] envelopes.

Performance studies This paper focuses on performance results for the optimal multiframe Bayes

detector/tracker in a variety of scenarios, including, as we mentioned before, both deterministic and

random signature targets, observed in both Gaussian and non-Gaussian clutter. We test the proposed

algorithm primarily on synthetic data with known clutter and target models. The optimal performance

curves, obtained through extensive Monte Carlo simulations, provide an upper bound to the performance

of suboptimal algorithms. We benchmark against these bounds the performance of competing suboptimal

schemes such as the association of a single frame spatial correlator (matched filter) with a multiframe

linearized Kalman-Bucy filter (KBf) tracker. These studies show that there is a significant margin of
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improvement to be had over existing detectors and trackers.

In practice, the situation of perfect match between the data and the model is not realistic. In order

to assess the robustness of the algorithm to mismatches between the measurements and the model, we

present an example of detection/tracking with real clutter data, obtained by a laser radar mounted to the

bottom of an aircraft. We fit the model to the real clutter by estimating its parameters from the data.

The experimental results confirm that there is a significant improvement in performance over conventional

algorithms such as a plain single frame image correlator associated with a KBf.

Summary of the paper The paper is divided into 6 sections. Section I is this introduction. Sec-

tion II presents the models for sensor, target, motion, and clutter that underly our integrated approach

to detection and tracking. Section III examines the derivation of the optimal Bayesian detector/tracker

based on the models from section II. Sections IV and V quantify respectively the detection and tracking

performances of the algorithm through comprehensive Monte Carlo simulations assuming a single target

scenario. Both correlated Gaussian clutter and non-Gaussian clutter situations are considered, and perfor-

mance comparisons with alternative suboptimal detection and tracking algorithms are provided. Finally,

section VI summarizes the contributions of the paper.

We omit in this paper specific details on the implementation of the Bayes detector/tracker. These can

be found in reference [24] for the particular case of a single, deterministic 2D target observed in GMrf

clutter.

II. The Model

At each sensor scan, there are at most M targets present in the surveillance space. Each target is a rigid

body with translational motion belonging to one of M possible classes characterized by their signature

parameters, and by the dimensions of their noise-free image. We restrict our discussion to the situation

where all targets are distinct. For simplicity of notation, we restrict this section to one-dimensional (1D)

spaces. A brief discussion on the corresponding 2D models and a comprehensive investigation of 2D

detection/tracking performance are found in section V (see also [24] for further details on modeling and

implementation of the 2D detector/tracker algorithm).

A. Surveillance Space and Target Model

We first model the surveillance space of the sensor. Given the sensor’s finite resolution, we discretize

the 1D space by the uniform finite discrete lattice
L = {l: 1 ≤ l ≤ L} (1)

where L is the number of resolution cells and l is an integer. We refer to the lattice L as the sensor lattice.

The resolution cells are also referred to as pixels.

To develop an integrated framework for detection and tracking, it is useful to extend the lattice L
with additional states that will be used to represent the absence of targets and to account for the fact

that target images extend over more than one pixel in the sensor lattice. We introduce first the vector

Zn =
[
z1
n . . . zM

n

]T , which collects the positions of the geometric centroids of the M possible targets in

the sensor image at scan n.
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Let the pixel length Sp of a class p target, 1 ≤ p ≤ M , be Sp = (lpi + lps + 1), where lpi and lps are the

maximum extent in pixels of the target, respectively to the left and to the right of its centroid. These

parameters are assumed known and time-invariant in the paper. If Sp is odd, we make lpi = lps = (Sp−1)/2.

Otherwise, if Sp is even, we adopt the convention that lps = Sp/2 and lpi = lps − 1. To account for the

situations when targets move in and out of the sensor range, we define the extended centroid lattice,
Lp = {l: − lps + 1 ≤ l ≤ L + lpi } (2)

which corresponds to the set of all possible centroid positions zp
n such that at least one pixel of the target

is still visible in the sensor image. Finally, to include the possibility of absence of a target, we introduce

an additional dummy state. We adopt the convention that, whenever a class p target is not present at the

nth scan, zp
n takes the value L + lpi + 1. With the addition of this dummy absent target state, we define

the augmented lattice,

L̃p = {l: − lps + 1 ≤ l ≤ L + lpi + 1} . (3)
Extended Target Model When a class p target is present, i.e., zp

n ∈ Lp, the noise free target image is

simply the spatial distribution of the target pixel intensities, ap
k, −lpi ≤ k ≤ lps , centered at the centroid

lattice cell zp
n. Otherwise, if zp

n = L+ lpi +1, meaning the target is absent, the sensor image corresponding

to target-only returns reduces to a null image. These intuitive ideas are formalized mathematically by

expressing the noise free image of a class p target at the nth sensor scan as the nonlinear function

tp(zp
n) =

lps∑

k=−lpi

ap
kezp

n+k zp
n ∈ Lp (4)

tp(zp
n) = 0L zp

n = L + lpi + 1 (5)
where el, 1 ≤ l ≤ L, is an L-dimensional vector whose entries are all zero, except for the lth entry which is

one. If l < 1 or l > L, el is defined as the identically zero vector. This particular definition for el outside

the original sensor grid L is adopted to guarantee that the target model in (4) will accurately describe

the disappearance of portions of the target from the sensor image as the target’s centroid moves closer to

the boundaries of the surveillance space.

The pixel intensity coefficients ap
k in (4) are also known as the target signature coefficients. They

may be deterministic and known, deterministic and unknown, or random. Random signatures account

for fluctuations in the reflectivity, or in the conditions of illumination of the target, as well as random

variations in channel characteristics such as fading. For simplicity, we assume in most of this paper

that the signature coefficients are known and time-invariant. An extension of the detection/tracking

algorithms to targets with random signature in section III-D. Monte Carlo simulations with synthetic

spatially correlated/temporally uncorrelated Gaussian targets are presented in section IV.

B. Multitarget Observations and Clutter Models

We consider a multitarget scenario with M possible targets, and collect the L sensor readings at each

pixel of the nth scan in the L-dimensional column vector yn. Due to the presence of spurious reflectors and

background, yn consists of the superposition of the various noise-free target images plus clutter. Using

the extended target model introduced in subsection II-A, the observation vector or nth sensor frame, yn,

is given by

yn = t1(z1
n) + t2(z2

n) + . . . + tM(zM
n ) + vn (6)
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where vn is the background clutter vector, also referred to as the nth clutter frame, and tp(zp
n), 1 ≤ p ≤ M ,

is given by equations (4) and (5), depending on whether the pth target is present or absent at the nth

scan. The clutter vn is assumed to be statistically independent of tp(zn), 1 ≤ p ≤ M .

At each frame, the clutter at a given spatial location (pixel) may be statistically correlated with the

clutter at another spatial location. The clutter intensity may also have Gaussian or non-Gaussian statistics.

We adopt one of three models for vn: spatially white Gaussian clutter; spatially correlated Gaussian

clutter; and spatially white non-Gaussian clutter. These models allow us to assess how clutter spatial

correlation or non-Gaussian clutter statistics affect the performance of the detection/tracking algorithms.

Gaussian clutter under the assumption of Gaussianity, the vector vn has a multivariate normal prob-

ability density function (pdf), p(vn) = N (0,R), where R is the clutter spatial covariance, and 0 is the

mean. The zero mean assumption assumes a pre-processing stage that removes the possibly spatially

variant local mean. A non-zero mean can be accounted for trivially. We distinguish two cases for the

covariance matrix R.

White spatially homogeneous Gauss clutter: With spatially uncorrelated (white) clutter, the covariance

matrix R is diagonal. Assuming spatial homogeneity, R = σ2
vI, where I is the identity matrix and σ2

v is

the variance (power) of the clutter.

Spatially correlated homogeneous Gauss-Markov clutter: We model spatially correlated clutter as a

Gauss-Markov random field (GMrf) [25]. This model simply states that the clutter intensity at a given

pixel of the sensor image is a weighted average of the clutter intensity in neighboring pixels plus an error

term. We assume in this paper a noncausal neighborhood region for each pixel. If we add the assumption

of spatial homogeneity, an mth order 1D noncausal GMrf model for the nth clutter frame is given by the

spatial difference equation

vn(l) =
m∑

j=1

αj [vn(l − j) + vn(l + j)] + un(l) 1 ≤ l ≤ L (7)

where un(l) is a zero-mean, correlated prediction error such that

E [vn(l)un(k)] = 0 ∀k 6= l (8)

and the symbol E [.] stands for expectation or ensemble average. In order to completely define equation

(7) at all pixel locations, we specify boundary conditions (bc’s) outside the sensor lattice L. Common

boundary conditions are simply vn(l) = 0 for l < 1 or l > L. These are known as Dirichlet bc’s. Other

bc’s can be alternatively used, see for example [23], [25].

Second-Order Statistics of GMrfs: The GMrf model is very attractive because it provides a simple pa-

rameterization for the inverse of the covariance matrix of the background clutter vn. Collecting the

clutter samples vn(l) and the error samples un(l), 1 ≤ l ≤ L, in two L-dimensional vectors vn and un, an

equivalent matrix representation for the difference equation in (7) is

Avn = un (9)

where A is a sparse and highly structured matrix usually referred to as the potential matrix. For the 1D

mth order homogeneous model in (7), the potential matrix is an m-banded, Toeplitz, symmetric matrix
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with structure [25]

A =




1 −α1 −α2 . . . −αm 0 0 . . . 0 0

−α1 1 −α1 . . . −αm−1 −αm 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 . . . −αm−1 −αm−2 −αm−3 . . . 1 −α1

0 0 0 . . . −αm −αm−1 −αm−2 . . . −α1 1




. (10)

We now derive the second-order statistics of un, which is referred to as the prediction error, and of the

clutter field vn. Combining the orthogonality condition in (8) with the matrix equation (9), we note that

E
[
unuT

n

]
= E

[
Avn uT

n

]
= σ2

uA (11)

where the superscript “T” denotes the transpose of a vector or matrix. In (11), we used the assumption of

spatial homogeneity (roughly speaking, the spatial “equivalent” of stationarity) to make E [vn(l)un(l)] =

σ2
u, for all l, 1 ≤ l ≤ L.

Finally, since A is nonsingular and symmetric, then vn = A−1un and

Σ−1
v =

(
E

[
vnvT

n

])−1
=

(
A−1E

[
unuT

n

]
A−T

)−1

=
(
σ2

uA
−1AA−T

)−1
= A/σ2

u . (12)

Equation (12) gives for free, with no matrix inversion required, the inverse of the clutter covariance in terms

of the highly structured matrix A given in equation (10). This structure is used to design computationally

efficient detection and tracking algorithms when the clutter is correlated as a Gauss-Markov random field.

Finally, for our simulation studies, we use equation (9) and a technique based on the upper Cholesky

factorization of the potential matrix A, [25], to generate samples of the GMrf clutter vn.

Non-Gaussian clutter When dealing with non-Gaussian clutter, we assume that the sensor measures,

at each resolution cell, the in-phase and quadrature returns of the clutter and targets echoes. The clutter

measurements at instant n correspond to a sampling of the returned clutter complex envelope and are

given by the even-sized vector

vn =
[
v1

cn
v1

sn
. . . vL

cn
vL

sn

]
(13)

where L is the number of resolution cells. We assume that the double-sized vector vn has a joint pdf with

non-Gaussian statistics such that the sequence of random variables

ek =
√

(vk
cn

)2 + (vk
sn

)2 1 ≤ k ≤ L (14)

is identically distributed with a probability density function different from a Rayleigh distribution.

K and Weibull envelope statistics

We are interested in analyzing how the tracker performs against a background clutter whose envelope

at each resolution cell has heavier tails than a Rayleigh envelope. Useful clutter envelope statistics are

the K and Weibull models that are frequently used in the literature to represent the amplitude statistics

of clutter returns [20], [21], [22]. The corresponding pdfs for the two models are [18]

1. K pdf: pE(e) = bν+1 eν

2v−1Γ(ν) Kν−1( b e ) e ≥ 0

where ν is a shape parameter, Γ(.) is the Eulerian function, Kν−1( . ) is a modified Bessel function of the

second kind and b is related to σ2 by b2 = (2 ν)/σ2.

2. Weibull pdf: pE(e) = a c ec−1 exp(−a ec) e ≥ 0
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where c is a shape parameter and a relates to the average power σ of the quadrature components by

2σ2 = a−2/c Γ(1 + 2
c ) .

Simulation of K and Weibull clutter samples Rayleigh envelope statistics correspond to a multivariate

joint Gaussian distribution of the in-phase and quadrature clutter returns. Similarly, heavy-tailed envelope

statistics such as the Weibull and K distributions correspond to a generalized spherically-invariant random

vector (SIRV) model in the backscatter domain [13], [14]. Techniques to simulate heavy-tailed clutter using

SIRV models have been discussed extensively in the literature [14], [15], [16]. In particular, we used the

algorithms in [16] to generate the samples of uncorrelated K and Weibull clutter that were used in the

Monte Carlo simulations in section IV-B. We omit the simulation details here for lack of space and refer

the reader instead to the literature, particularly [16].

C. Target Motion

Assuming that the targets are rigid bodies with translational motion, the target motion is completely

specified by the dynamics of the target centroid. We adopt a first order statistical model for the centroid

dynamics. Given the sensor finite resolution, we model the motion of a class p target in the corresponding

augmented lattice L̃p by a set of transition probabilities{
P (zp

n = k | zp
n−1 = j)

}
k, j ∈ L̃p . (15)

The transition probabilities P (zp
n | zp

n−1), 1 ≤ p ≤ M , represent the likelihood of displacement of a class p

target between two consecutive frames. The transition probabilities in (15) define a finite state machine

(FSM) that specifies the dynamics of the centroid for the class p target.

Example: Targets with constant mean velocity

A particular dynamic model of interest is a target where the nominal velocity is constant. We perturb

this mean or nominal velocity by an mth order random walk fluctuation. The target centroid position at

instant n is then given by

zn+1 = zn + d + εn (16)

where d is the mean velocity, and εn is a discrete-valued, zero-mean white noise component that is

independent of the centroid position and takes values on the discrete set S = {−m, . . . − 1, 0, 1, . . . ,m}
for some m ≥ 1. Figure 1 shows the central section of the FSM that corresponds to the model in

(16) when d = 0 and m = 1. This FSM is simply a first order discrete Markov chain. As mentioned

r

q q

r

1-r-q

ii i+1i-1

Fig. 1. Example of Finite State Machine Diagram

before, a target that is present moves to the absent state whenever its centroid is outside the lattice

Lp = {l: − lps + 1 ≤ l ≤ L + lpi }. When no target of a given class is present, we assume that there is
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a non-zero probability pa of a new target from that same class appearing randomly at the next sensor

scan. We assume that the target centroid may appear at any pixel of the centroid lattice Lp, with equal

probability pa/ (L + lpi + lps). This assumption is a worst case scenario, when the detector/tracker has

no a priori information about initial position of a new target. Other more elaborate distributions for the

probability of reappearance are easily taken into account.

III. Optimal Bayes Multitarget Detector/Tracker

We assume that at each scan n an unknown number of targets ranging from zero to M may be present.

The targets that are present belong to distinct classes (i.e., in the context of this model, they have different

signatures). We collect the observation scans from instant 0 up to instant n in the long observation vector

Yn
0 =

[
yT

0 . . . yT
n

]T . Given Yn
0 , we want to perform three tasks at instant n : (1) determine how many

targets are present/absent (detection); (2) assign the detected targets to a given class (data association);

(3) estimate the positions of the detected targets (tracking).

A. Nonlinear Stochastic Filtering Approach

As mentioned in section II, the vector

Zn =
[
z1
n . . . zM

n

]T
, (17)

collects the positions of the centroids of the M possible targets in the sensor image . If all zp
n = L+ lpi +1,

1 ≤ p ≤ M , then no target is present in the surveillance space at the nth scan. The optimal Bayes

solution to the joint detection/tracking problem is obtained by computing at each scan the joint posterior

probability, P (Zn | Yn
0 ), i.e., the conditional probability of the vector

The Bayes detector/tracker that we present processes the observations as they become available. It

computes recursively P (Zn | Yn
0 ) at each scan, thus avoiding having to store all the measurements from

instant zero up to the present. The recursion is divided into two steps. The first step is the prediction

step: it uses the statistical description of the target motion between two consecutive scanned frames to

predict the current position of the targets based on all past observations. Once a new sensor frame is

available, a second step, known as the filtering step, uses the new measurements to correct the prediction.

The incoming sensor data is processed using the information in the clutter and target signature models.

In the sequel, we describe both steps in further detail.

The following assumptions are made in the derivation of the algorithm:

1. In each frame, only one target from each of the M possible classes may be present.

2. The sequence of clutter frames {vn}, n ≥ 1, is independent, identically distributed (i.i.d.).

3. The sequence of target states {Zk}, k ≥ 0, is statistically independent of the sequence of clutter frames

{vk}, k ≥ 0.

4. Targets from different classes move independently and the translational motions for targets from each

class are described by first-order discrete Markov Chains completely specified by the transition probabil-

ities P (zp
n | zp

n−1), 1 ≤ p ≤ M , zp
n ∈ L̃p.

5. In all observed frames, the target signatures are deterministic and known (but not necessarily time-

invariant) for each target class.
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We make the following remarks regarding the previous assumptions:

a) The detector/tracker algorithm can be easily modified to account for unknown, random target signatures

in each sensor frame. We discuss the necessary modifications in subsection III-D.

b) Instead of assuming that at most one target from each class is present in each frame, we could have

used an alternative problem setup in which there is a known maximum number of targets, Np ≥ 1, for

each target class p. In this paper, for convenience, and without loss of generality, we make Np = 1, ∀p,

1 ≤ p ≤ M .

c) The assumption that the sequence {vn}, n ≥ 0, is i.i.d. is equivalently to ignoring all interframe

statistical correlation between the clutter pixels. The 2D GMrf model in section II-B assumes however an

intraframe or spatial clutter correlation.

We now detail the derivation of the algorithm. In the subsequent derivation, we denote the probability

mass function of discrete-valued random variables by the capital letter P , whereas the probability density

function of continuous-valued random variables is denoted by lowercase p.

Prediction Step This step computes the prediction posterior probability
P (Zn | Yn−1

0 ) = P (z1
n, . . . , . . . zM

n | Yn−1
0 ) zp

n ∈ L̃p 1 ≤ p ≤ M . (18)

From P (Zn | Yn−1
0 ), we can obtain the marginal posterior probabilities of the centroid position of each

target conditioned on the past frames from instant 0 to instant n − 1. We also obtain the posterior

probabilities of absence of each target conditioned on the past observations.

Combining the theorem of Total Probability with Bayes law, we write

P (Zn | Yn−1
0 ) =

∑

Zn−1

P (Zn, Zn−1 | Yn−1
0 )

=
∑

Zn−1

P (Zn | Zn−1,Yn−1
0 )P (Zn−1 | Yn−1

0 ) . (19)

Since the sequence of target centroid positions {Zk}, k ≥ 1, is, by assumption, a first-order Markov

process, then, conditioned on Zn−1, the current state Zn is statistically independent of the sequence

{Zk}, 0 ≤ k ≤ n − 2. If we add the assumption that Zn is also independent of the sequence of previous

clutter frames {vk}, 0 ≤ k ≤ n − 1, n ≥ 1, we conclude that, conditioned on Zn−1, Zn is statistically

independent of the previous observations, Yn−1
0 , i.e.,

P (Zn | Zn−1, Yn−1
0 ) = P (Zn | Zn−1) . (20)

Replacing (20) in (19), we get
P (Zn | Yn−1

0 ) =
∑

Zn−1

P (Zn | Zn−1) P (Zn−1 | Yn−1
0 ) . (21)

Finally, assuming that the different targets move according to statistically independent Markov chains,
P (Zn | Zn−1) = P (z1

n | z1
n−1) . . .P (zM

n | zM
n−1) (22)

and we write

P (Zn | Yn−1
0 ) =

∑

z1
n−1

. . .
∑

zM
n−1

P (z1
n | z1

n−1) . . .P (zM
n | zM

n−1) P (Zn−1 | Yn−1
0 ) . (23)

Filtering Step We now compute the filtering posterior probability, P (Zn | Yn
0 ). From Bayes’ law,

P (Zn | Yn
0 ) = P (Zn | yn, Yn−1

0 ) (24)

= Cnp(yn | Zn,Yn−1
0 )P (Zn | Yn−1

0 ) (25)

= Cnp(yn | Zn)P (Zn | Yn−1
0 ) (26)
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where Cn is a normalization constant. To write equation (26), we used the fact that the sequence of

clutter vectors {vn}∞n=0 is i.i.d and independent of the sequence of state vectors {Zn}∞n=0. Hence, given

Zn, vector yn is independent of Yn−1
0 . The term p(yn | Zn) is referred to in the nonlinear stochastic

filtering literature as the observations kernel [29], [31] and specifies the conditional statistics of the observed

data assuming that the targets’ states (positions) are known. The analytical expression for the observation

kernel depends on the clutter and target models. We present next the optimal detection and tracking

algorithms.

B. Minimum probability of error Bayes detector

For each of the M possible targets, there are two possible detection states during the nth scan: absent or

present. The detection algorithm is therefore a statistical test that, based on all present and past observed

data, Yn
0 , chooses one among 2M possible hypotheses Hm, 0 ≤ m, ≤ 2M − 1. In this notation, hypothesis

H0 stands for “all M possible targets are absent”. Conversely, hypothesis H2M−1 means that all M

possible targets are present. Hypotheses Hm, m 6= 0 and m 6= 2M − 1, represent all other combinations

in between of presence and absence of the multiple targets.

Given P (Zn | Yn
0 ), we compute the posterior probabilities of the detection hypothesis Hm, 0 ≤ m ≤

2M − 1.h The minimum probability of error detector decides that hypothesis Hm is true if [32]
P (Hm | Yn

0 ) > P (Hk | Yn
0 ) ∀k 6= m, 0 ≤ m, k ≤ 2M − 1 (27)

where P (Hm | Yn
0 ) is the posterior probability of hypothesis Hm. We describe two illustrative examples.

Example 1: Single Target

With a single target, there are only two possible hypotheses at each sensor scan:

1. H0: {target absent}.
2. H1: {target present}.
The minimum probability of error detector assuming equal cost assignment to misses and false alarms

and zero cost assignment to correct decisions reduces to
P (H0 | Yn

0 )
P (H1 | Yn

0 )

H0
>
<
H1

1 . (28)

Introducing the posterior probability vector, fn|n, such that its kth component is
fn|n(k) = P (z1

n = k | Yn
0 ) k ∈ L̃1 (29)

then
P (H0 | Yn

0 ) = fn|n(L + l1i + 1) (30)

P (H1 | Yn
0 ) = 1 − fn|n(L + l1i + 1) . (31)

Remark: The decision rule in (28) minimizes the total probability of decision errors, misses, and false

alarms. Alternatively, if we change the threshold in (28) and vary it over a wide range, the detection

algorithm operates as a Neyman-Pearson detector [32] that maximizes the probability of detection for a

given probability of false alarm.

Example 2: Two Targets

We illustrate next how to compute the quantities P (Hm | Yn
0 ) from the filtering posterior probability

P (Zn | Yn
0 ) when there are two targets, i.e., M = 2. With two targets, there are 4 possible hypotheses

for the presence or absence of targets at the nth sensor scan:
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H0 = {Both targets absent}.
H1 = {Target 1 absent and Target 2 present}.
H2 = {Target 1 present and Target 2 absent}.
H3 = {Both targets present}.

We introduce the filtering posterior probability matrix, Fn|n, whose (k, j) element is the conditional

probability that target 1 is at pixel k and target 2 is at pixel j, conditioned on the observation path Yn
0 ,

i.e.,

Fn|n(k, j) = P (z1
n = k, z2

n = j | Yn
0 ) k ∈ L̃1, j ∈ L̃2 . (32)

The posterior probabilities of the different hypothesis are computed as follows:
P (H0 | Yn

0 ) = Fn|n(L + l1i + 1, L + l2i + 1)

P (H1 | Yn
0 ) =

L+l2i∑

j=−l2s+1

Fn|n(L + l1i + 1, j)

P (H2 | Yn
0 ) =

L+l1i∑

k=−l1s+1

Fn|n(k, L + l2i + 1)

P (H3 | Yn
0 ) =

L+l1i∑

k=−l1s+1

L+l2i∑

j=−l2s+1

Fn|n(k, j) . (33)

The posterior probability of the two targets being present can be alternatively calculated as

P (H3 | Yn
0 ) = 1 −

2∑

r=0

P (Hr | Yn
0 ) . (34)

C. Tracking: maximum a posteriori (MAP) tracker

We examine next the solution to the tracking (localization) problem. We use a maximum a posteriori

(MAP) strategy that gives optimal localization in a Bayesian sense, with respect to a cost function that

assigns uniform penalty to any tracking error regardless of the magnitude of the error [32].

If, after detection, hypothesis Hm, 1 ≤ m ≤ 2M − 1, is declared true, we introduce the conditional

probability tensor Πm
n|n defined as

Πm
n|n(Zn) = P (Zn | Hm,Yn

0 ) =
P (Zn, Hm | Yn

0 )
P (Hm | Yn

0 )
. (35)

The MAP Bayes tracker looks for the maximum of Πm
n|n over Zn to estimate the positions of the targets

that are assumed present under hypothesis Hm.

Example 1: Single Target

In the single target case, the tensor Π1
n|n reduces to a vector whose general element is

Π1
n|n(k) = P (zn = k | target is present, Yn

0 )

=
fn|n(k)

1 − fn|n(L + l1i + 1)
. (36)

When the target is present, the maximum a posteriori (MAP) estimates of the actual target position are
ẑ1
n|n = arg max

−l1s+1≤k≤L+l1i

Π1
n|n(k) . (37)

Example 2: Two Targets

In the case of two targets, the conditional probability tensors Πk
n|n, k = 1, 2, 3 are matrices. Let Fn|n

be the filtering posterior probability matrix defined in (32) and let H1, H2 and H3 be the three possible

“target present” hypotheses as described before. We have three cases:
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1. Target 1 is declared absent and target 2 is declared present: In this case, we find the optimal MAP

estimate of the centroid position of the class 2 target, denoted by ẑ2
n|n, using the expression

ẑ2
n|n = arg max

j∈L2

Fn|n(L + l1i + 1,j)
P (H1 | Yn

0 )
. (38)

2. Target 1 is declared present and target 2 is declared absent: This situation is the dual of the previous

case. The optimal MAP estimate of the centroid position of the class 1 target, denoted by ẑ1
n|n, is given

by

ẑ1
n|n = arg max

k∈L1

Fn|n(k,L + l2i + 1)
P (H2 | Yn

0 )
. (39)

3. Targets 1 and 2 are declared present: when both targets are declared present, the optimal MAP cen-

troid estimates are

(ẑ1
n|n, ẑ2

n|n) = arg max
k∈L1, j∈L2

Fn|n(k, j)
P (H3 | Yn

0 )
k ∈ L1, j ∈ L2 . (40)

D. Detection/Tracking of targets with random signature

In the previous subsections, we considered the situation where the targets’ signatures are deterministic

and known. We now extend the algorithm to account for targets with random pixel intensity.

For simplicity, assume that the targets have equal size, i.e., lpi = li and lps = ls, 1 ≤ p ≤ M , where M

is the number of targets. Let l = li + ls + 1 and define the l-dimensional column vector of the signature

parameters ap
n such that its ith component is

ap
n(i) = ap

i,n − li ≤ i ≤ ls 1 ≤ p ≤ M . (41)

Now stack these signature parameters in the column vector

Θn =
[
(a1

n)T . . . (aM
n )T

]T
(42)

Assume that the sequence {Θn} is i.i.d. and independent of {Zn} and {vn}, for n ≥ 1. After a few

algebraic steps, it is easy to show that

P (Zn | Yn
0 ) = Cn

[∫
p(yn | Θn,Zn)p(Θn) dΘn

]
P (Zn | Yn−1

0 ) . (43)

Equation (43) shows that, under the assumptions that the sequence of target signatures {Θn} is i.i.d.

and statistically independent of both the sequence of target positions and the sequence of clutter frames,

we can obtain the observations kernel for each possible state vector Zn at instant n by averaging the

conditional pdf of the measurements p(yn|Θn, Zn) over all possible realizations of the vector of target

signatures.

E. Comparison with dynamic programming approaches

In this subsection, we contrast the nonlinear stochastic filtering approach to target tracking with pre-

vious work by Barniv [3]. We contrast Barniv’s paper [3] with ours with respect to two issues: (i) the

Viterbi algorithm used in [3] versus Bayes’ law as used by us; (ii) setup of the problem and other modeling

assumptions. We also make some brief comments on computational complexity.

(i) Viterbi algorithm versus Bayes’ law For simplicity of notation and to follow Barniv’s model, we con-

sider a single target scenario and assume initially that the target is present in the surveillance space

in all observed sensor frames, so that no hard detection decision between presence or absence of target

has to be made at each sensor scan. Reference [3] applies Bellman’s dynamic programming [12] and its
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implementation by Viterbi [10] and Larson [11] to solve the target trajectory estimation problem. Let zk

and yk denote respectively the unknown target state and the observations at instant k. Define the target

state path, Zk
0 , and the observation path, Yk

0 , such that
Zk

0 = [z0, z1, . . . , zk] (44)

Yk
0 = [y0, y1, . . . yk] . (45)

Denote by ẑk+1|k+1 the estimate of the unknown target state zk+1 at instant k + 1, based on the observa-

tions Yk+1
0 . Barring some minor differences in the indexing of the state and observation paths, Barniv’s

estimate of the target state is given by
ẑk+1|k+1 = arg max

zk+1
I(zk+1) (46)

where I(zk) is a quantity that is proportional to
max
Zk−1

0

P (Zk
0 | Yk

0 ) (47)

and is computed using the recursion
I(zk+1) = p(yk+1 | zk+1) max

zk

[P (zk+1 | zk)I(zk)] k ≥ 0 . (48)
When the observation y0 at instant zero is available, equation (48) is initialized with

I(z0) = p(y0 | z0) P (z0) . (49)
Barring some minor differences in the initialization of the algorithm due to the availability of the obser-

vation y0, equation (48) corresponds essentially to the forward recursion step of the Viterbi algorithm,

see [10]. By contrast, our tracking algorithm is an MAP estimator based on Bayes’ law, i.e., our estimate

for the unknown target state at instant k + 1 is
ẑk+1|k+1 = arg max

zk+1
P (zk+1 | Yk+1

0 ) . (50)
Combining the prediction and filtering steps of our algorithm in one equation, the posterior probability

mass function on the righthand side of equation (50) is obtained by the recursion

P (zk+1 | Yk+1
0 ) = Ck+1 p(yk+1 | zk+1)

[∑

zk

P (zk+1 | zk)P (zk | Yk
0)

]
k ≥ 0 (51)

where Ck+1 is a normalization constant that is independent of zk+1. We initialize (51) with
P (z0 | y0) = C0p(y0 | z0)P (z0) (52)

where C0 is a normalization constant that is independent of z0.

Equations (48) and (51) clearly define two different recursive algorithms. We now show that equations

(46) and (50) correspond to two different maximization problems and may lead to different state estimates.

Write
P (Zk+1

0 | Yk+1
0 ) = P (Zk

0, zk+1 | Yk+1
0 )

= P (Zk
0 | zk+1, Yk+1

0 ) P (zk+1 | Yk+1
0 ) . (53)

The second factor in equation (53) is the conditional pmf of the current state zk+1 given the path of

observations Yk+1
0 up to instant k + 1. This is what our proposed nonlinear stochastic filter computes at

each instant. The first factor can be simplified to
P (Zk

0 | zk+1, Yk+1
0 ) = P (Zk

0 | zk+1, Yk
0) . (54)

Recall that Barniv’s state estimate is given by

ẑk+1|k+1 = arg max
zk+1

{
max
Zk

0

P (Zk+1
0 | Yk+1

0 )

}

= arg max
zk+1

{
max
Zk

0

P (Zk
0 | zk+1, Yk

0 ) P (zk+1 | Yk+1
0 )

}
. (55)
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Note now that

max
zk+1

{
max
Zk

0

P (Zk
0 | zk+1, Yk

0 ) P (zk+1 | Yk+1
0 )

}
6=

[
max
Zk

0

P (Zk
0 | Yk

0)

]
max
zk+1

P (zk+1 | Yk+1
0 ) . (56)

If the factorization in (56) were possible, then Barniv’s estimate ẑk+1|k+1 and ours would coincide. How-

ever, because the maximization on the lefthand side of (56) does not factor as the expression on the

righthand side of the same equation, the two estimates may be different. Also note that we provide in our

paper only the filtering estimate for the unknown state path, i.e., our algorithm computes the sequence

ẑk|k for k ≥ 0 .

Reference [3] on the other hand provides the smoothed state path estimate, i.e., the sequence

ẑi| k for k ≥ 0, i ≤ k .

The smoothed estimates in [3] are obtained using the backward retrieval step of the Viterbi algorithm,

see [10]. In terms of applications, Barniv’s algorithm provides a batch estimate of the state path,

Ẑk
0 = arg max

Zk
0

P (Zk
0 | Yk

0 ),

whereas ours is an on-line algorithm that is similar in nature to Kalman-Bucy filtering, i.e., whenever a

new state estimate is available at instant k, we do not go back and reestimate the previous states zi for

i ≤ k.

Finally, in a multitarget scenario where targets are not assumed a priori to be always present, a mul-

titarget detection step must be added to the tracking algorithm. In Barniv’s work, the Viterbi forward

recursion is run as if only one single target were present and multitarget detection is done simply by

thresholding the function I(zk) at the last stage of the recursion. All states zk for which I(zk) exceeds

a certain threshold are assumed to be the final state of one possible target. The state trajectories for

each detected target are then retrieved by moving backwards along the path of corresponding surviving

nodes in the Viterbi trellis, see [10] and [3] for details. Since this procedure leads to a large number of

false detections (roughly 40 detections per target [3]), a post-processing clustering step is used to merge

nearby estimated trajectories. In our approach, we expand the state space to include dummy “absent

target” states and propagate the joint posterior probability mass function of all target states, including the

dummy states. Multitarget detection is then accomplished using a minimum probability of error M-ary

Bayes hypotheses test.

(ii) Setup of problem and modeling assumptions In the sequel, we contrast briefly the state and observa-

tion models used in our work with the models introduced in [3]. In our paper, for targets that are present,

the corresponding states are the pixel locations at each sensor frame of the target centroids in the discrete

centroid grid. In [3], the states are defined as straight line trajectory segments across a group of G > 1

sensor frames that define the stages (instants) for the Viterbi forward recursion. The corresponding ob-

servation (measurements) model in [3] involves a differential pre-processing of the original sensor images.

After pre-processing, it is assumed in [3] that all residual measurement noise is Gaussian and white. In

our work, the measurements are the raw sensor frames themselves, with no pre-processing except for a

possible removal of the moving local mean (as explained in section V-B). Instead of using a white Gaus-

sian measurement noise assumption, we take full advantage of the real statistics of the background clutter
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to improve detection/tracking performance. That includes exploring both the clutter spatial (intraframe)

correlation and the clutter’s possibly non-Gaussian amplitude statistics.
(iii) Computational complexity We compare the computational complexity of the Viterbi algorithm to

our proposed Bayesian tracker. Let zn ∈ L̃ be the hidden variable, with the number of elements in L̃
being denoted by L1. Define the L1-dimensional vectors fk|k and ik, such that fk|k(j) = P (zn = j | Yk

0 ),

and ik(j) = I(zk = j), j ∈ L̃, where I(zk) is the function defined in (47). Introduce also the L1 × L1

transition probability matrix, PT , such that PT (n, j) = P (zk+1 = n, | zk = j), (k, j) ∈ L̃ × L̃. The

recursion in equation (51), that corresponds to the Bayes tracker, can be rewritten in matrix notation as

fk+1|k+1 = Ck+1 Sk+1 �
[
PT fk|k

]
(57)

where � denotes the pointwise multiplication operator and Sk+1 is a L1 × 1 vector such that Sk+1(j) =

p(yk+1 | zk+1 = j), j ∈ L̃. On the other hand, Viterbi’s forward recursion in equation (48) is written as

ik+1 = Sk+1 �
[
max

{
Pl

T � ik
}]

1≤l≤L1
(58)

where Pl
T is the lth row of the transition matrix PT , i.e., P l

T (j) = P (zk+1 = l | zk = j), j ∈ L̃. The

bracketed expression on the righthand side of equation (58) reads as follows: for each l, 1 ≤ l ≤ L1, do the

pointwise multiplication of the lth row of the transition probability matrix, PT , by the previous filtering

vector, ik, resulting in a L1-dimensional vector, ilk. Then, look for the maximum of the entries ilk(j) over

the range 1 ≤ j ≤ L1 and assign this maximum to the lth entry of the bracketed vector.

A comparison between equations (57) and (58) shows that the two recursions differ basically in the

computation of the bracketed vector on the righthand side. The Bayesian tracker involves the multipli-

cation of an L1 × L1 matrix by a L1 × 1 vector, which requires L2
1 floating point multiplications and

L1(L1 − 1) floating point additions. On the other hand, the forward recursion of the Viterbi algorithm

requires L2
1 floating point multiplications and L1 global maximum searches over an L1-dimensional vector.

Those maximum searches require in turn L1(L1 − 1) comparisons. The two algorithms therefore trade

arithmetic (addition) computational complexity for logic (comparison) computational complexity. We

make two additional remarks:

Remark 1: The Viterbi smoother requires that, in addition to the forward propagation of I(zk) using

recursion (58), we must also store the indices of the maxima over j, 1 ≤ j ≤ L1, of ikl (j), for all k > 0 and

all l, 1 ≤ l ≤ L1. This table of stored indices is necessary for the implementation of Viterbi’s backward

retrieval step, see [10].

Remark 2: In most applications, the transition probability matrix, PT , is not a full L1 × L1 matrix, as

transitions are only alllowed between adjacent target states. As a result of the sparse nature of PT , the

number of floating point multiplications required in the prediction step for both the Bayes tracker and

the Viterbi recursion falls in practice from O(L2
1) to O(αL1), where α << L1. The required number of

floating point sums in the prediction step of the Bayes tracker and the complexity of the maxima searches

in the Viterbi recursion are also reduced accordingly.

F. Flowchart summary of the Bayes detector/tracker

We present in Table I a flowchart summary of the proposed optimal Bayes detector/tracker.
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1) Initialize P (Zn | Yn−1
0 ) with the given prior P (Z0).

2) Compute P (Z0 | Y0) using equation (26) with n = 0.

3) For n = 1 up to the total number of available frames:

• Compute P (Zn | Yn−1
0 ) using equation (23).

• Compute P (Zn | Yn
0 ) using equation (26).

• Do M-ary detection using the hypotheses test (27).

• If hypothesis Hm is declared true, compute Πm
n|n(Zn) using (35) and look for its

maximum over Zn to estimate the centroid positions of detected targets.

End of for-loop.

TABLE I

Flowchart summary of the multitarget, multiframe Bayes detector/tracker.

G. Illustrative Example: Two Extended Targets in Gaussian Noise

Finally, we close this section with an illustrative example of application of the optimal Bayes detec-

tor/tracker in a multitarget scenario with overlapping targets. We track/detect two extended targets in

a 1D finite grid, against a white Gaussian background clutter with covariance matrix σ2
wI. Both class 1

and class 2 targets extend over 9 resolution cells with li = ri = rs = ls = 4, but have different (deter-

ministic) signatures. Class 1 targets have a rectangular-shaped signature, whereas class 2 targets have a

triangular-shaped signature.

In any given sensor frame, either two targets (one from class 1, the other from class 2) are present, or

just one target (either class 1 or 2) is present, or no target is present. When two targets are present, the

corresponding sensor returns may be apart from each other, as shown in figure 2. Otherwise, they may

overlap in the sensor, causing their signatures to be added in the sensor image, as shown in figure 3.
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Fig. 2. (a)Noise-free sensor scan with two targets. (b) Observed (noisy) sensor scan, PSNR=3 dB

The targets have translational motion with the position of the targets centroids in the 1D grid described

by known first order discrete Markov chains with deterministic drifts d1 = 2 and d2 = 3 for class 1 and

class 2 targets, respectively. Once a target belonging to a given class disappears from the sensor range,

another target of the same class may appear randomly at any resolution cell with a probability pa = 0.3.

The simulation was conducted for a total of 100 frames, with 100 resolution cells per frame. A target that

is estimated to be absent is indicated by a ‘+’ mark on the horizontal axis, while a true absence of target
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Fig. 3. (a)Noise-free sensor scan with superimposed targets. (b) Observed sensor scan, PSNR=3 dB

is indicated by a ‘o’ mark on the same axis.

Figures 4 (a) and (b) show the tracked positions of the centroids of class 1 and class 2 targets respectively

between frames 20 and 70, with peak signal-to-noise ratio (PSNR = 10 log10(1/σ2
w) equal to 10 dB. Notice

that, between frames 65 and 70, class 1 targets are absent from the sensor view, which is correctly indicated

by the detector/tracker as a series of superimposed ‘o’ and ‘+’ marks on the horizontal axis in figure 4

(a). During the same time period, a class 2 target is present and is correctly tracked as indicated in the

bottom right corner of figure 4 (b). The opposite situation occurs between frames 36 and 42 when the

class 2 target is absent and is correctly declared not present by the detector/tracker (as seen in figure 4

(b)), but the class 1 target is present and accurately tracked as indicated in figure 4 (a). Finally, notice

that between frames 43 and 54, not only are both targets present, but also their images overlap since the

difference between their centroid positions is less than 2 ls + 1. Despite the superposition, figures 4 (a)

and (b) show that the centroids of the two targets are accurately tracked independently. The algorithm

is capable of performing data association with a high degree of accuracy at the same time that it is able

to reject false alarms and prevent misses.

IV. Detection Performance

We study the detection performance of the optimal nonlinear detector/tracker assuming a single target

scenario. The performance is evaluated through the receiver operating characteristic (ROC) curves for the

Neyman-Pearson detector, obtained by varying the threshold in (28). The experimental ROC’s presented

in this section are generated using Monte Carlo simulations.

A. Correlated Gaussian targets in correlated Gaussian clutter

We consider first the case when the background clutter is Gaussian and correlated. We simulate 1D

Gaussian targets with dimensions li = ls = 4 moving in a grid of size L = 100. The synthetic targets

are samples of a correlated first-order GMrf model with mean ma = 1 and covariance parameters αa and

σa. The target image is cluttered by a first order GMrf clutter with parameters αc and σc. The synthetic

targets move in a 1D range resolution grid with a mean drift of 2 cells/scan. There is a fluctuation

probability of one cell around the mean displacement equal to 0.4. As one target disappears from the

DRAFT



AES990806, MULTIFRAME DETECTOR/TRACKER: OPTIMAL PERFORMANCE, BRUNO & MOURA 20

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

time

ce
ll 

n
u

m
b

e
r

Actual Track   
Estimated Track

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

time
ce

ll 
n

u
m

b
e

r

Actual Track   
Estimated Track

(a) (b)

Fig. 4. (a) Centroid tracking for class 1 targets. (b) Centroid tracking for class 2 targets, PSNR = 10 dB

surveillance space, there is a 20 % probability of a new target reappearing at any arbitrary position in the

grid L = {l:1 ≤ l ≤ L}, i.e,. pa = 0.2. This assumption corresponds to a worst case scenario when new

tracks can be initialized with uniform probability at any cell in the sensor grid.

Figure 5 (a) shows the experimental receiving operating characteristic curves (ROCs) for the multi-

frame Bayes detector, with σa = 0.2, αa = 0.16, and αc = 0.24, for two levels of the average SNR =

20 log10(ma/σc), respectively 3 and 0 dB (i.e., σc = 0.7 and σc = 1). Figure 5(b) shows the ROCs when

σa = 0.4 (i.e, increasing the variance of the target pixels). The experimental curves were estimated from

a total of 8,000 Monte Carlo runs. The plots in Figure 5 indicate good detection performance, even in the
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Fig. 5. Performance of the multiframe Bayes detector with correlated Gaussian targets in correlated GMrf clutter: (a)

σtarg = 0.2, (b) σtarg = 0.4

adverse conditions of heavy clutter. For example, the algorithm reaches a 90 % probability of detection
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for false alarm rate of 10−3. Figure 5(b) shows that there is a slight deterioration in performance when

we increase the target variance.

B. Non-Gaussian clutter

To evaluate the detection performance for non-Gaussian clutter, we ran Monte Carlo simulations with a

succession of single targets moving in uncorrelated complex clutter with K and Weibull envelope statistics.

For simplicity, the successive targets are pointwise with a unit signature in the in-phase component. We

use as figure of merit the peak signal-to-noise ratio defined as PSNR= 10 log10(1/σ2
w), where σ2

w is the

variance of the white noise sequence from which the corresponding non-Gaussian SIRV is simulated, see

reference [16] for details. The motion parameters are the same as in the Gaussian simulation, except that,

in the case of complex clutter, a speed of d resolutions cells/scan corresponds to a speed of 2d in the

double-sized sensor image. The probabilities of detection and false alarm for each value of the threshold

are obtained from statistics collected from 10,000 sensor frames, where each frame corresponds to 64

resolution cells or 128 complex quadrature returns.

Figure 6 (a) shows the superposition of the optimal Bayes ROCs with Rayleigh, Weibull, and K clutters,

respectively from top to bottom, for PSNR= 6 dB. The simulated K clutter has shape parameter ν = 1.5.

The parameters for the simulated Weibull clutter are c = 1.5 and a = 0.6777. The plot shows that, even

when the correct clutter statistics are incorporated into the detector’s structure, there is still a slight

deterioration in performance under non-Rayleigh clutter, probably due to the heavier tails of the K and

Weibull statistics, which increase the likelihood of false alarms. Figure 6 (b) shows the superposition of

the ROC under Rayleigh clutter for PSNR= 4 dB and the ROC under K clutter, PSNR = 6 dB. The

two curves in Figure 6 (b) roughly coincide, thus suggesting an approximate 2 dB gain in PSNR under

Rayleigh clutter compared to the spiky K clutter.
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Fig. 6. Comparison of optimal Bayes detector performance (a) under Rayleigh, Weibull (c = 1.5, a = 0.6777), and K

(ν = 1.5) clutter, PSNR= 6 dB; (b) under K (ν = 1.5) clutter (PSNR = 6 dB) and Rayleigh clutter (PSNR = 4 dB)
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V. 2D Detection/Tracking Performance

We investigate in this section the performance of the proposed Bayes detector/tracker with two-

dimensional (2D) extended targets moving in digital images corrupted by heavy clutter. We carry out two

sets of experiments: one with 2D synthetic data and the other with a real data clutter intensity image

recorded by an airbone infrared laser radar [17]. In the second set of experiments, a simulated target

(military vehicle) template is inserted into the real data background.

A. 2D simulations with synthetic clutter

Clutter: The background clutter is a 2D noncausal first order GMrf. The clutter intensity at pixel (i, j)

during the nth scan, vn(i, j) is modeled by its minimum mean square error (MMSE) representation [30]

vn(i, j) = βh [vn(i, j − 1) + vn(i,j + 1)] + βv [vn(i − 1, j) + vn(i + 1,j)] + un(i,j) (59)

where un(i, j) is the driving noise term. We collect the clutter samples, vn(i, j), and the error samples

un(i, j), in two long row-lexicographed vectors, respectively vn and un, thus obtaining an equivalent

matrix representation to the difference equation (59). The matrix representation is analogous to the 1D

case, i.e.,

Avn = un (60)

where A is the potential matrix of the 2D GMrf. Using the orthogonality between the field {vn(i, j)}
and the driving noise, {un(i, j)}, the clutter covariance matrix is proportional [25] to the inverse of the

potential matrix A.

The parametric structure of the potential matrix extends naturally to the 2D case [23], [25]. The

corresponding inverse of the clutter covariance for the 2D clutter background is a block-Toeplitz, block-

banded matrix where each of the individual blocks is itself Toeplitz and banded [25]. A comprehensive

study of the eigenstructure of perturbed Toeplitz and block-Toeplitz matrices and their relation to 1D

and 2D GMrf models of arbitrary order with different choices of boundary conditions is found in [23].

Target and Observations: For simplicity, we limit our discussion in this section to a single target scenario.

The target is a rigid body with a 2D translational motion. We assume that, at any given frame, the

target’s clutter-free image is contained inside a 2D rectangular region of size (ri + rs +1)× (li + ls +1). In

this notation, ri and rs denote the maximum vertical pixel distances in the target image when we move

away, respectively up and down, from the target centroid. Analogously, li and ls denote the maximum

horizontal pixel distances in the target image when we move away, respectively left and right, from the

target centroid. Let I be the 2D finite lattice I = {(k, l): − ri ≤ k ≤ rs, − li ≤ l ≤ ls}. The 2D target

signature at frame n is given by the the signature coefficients

an(k, l) = cn(k, l)φn(k, l) (k, l) ∈ I (61)

where the term φn(k, l) ∈ < specifies the target’s pixel intensity whereas cn(k, l) ∈ B = {0, 1} is a

binary shape coefficient. In the Monte Carlo simulations presented in this section, we assume that the

targets have a rectangular template and that their signatures are deterministic, time-invariant and known.

Without loss of generality, we make the target pixel intensities constant and equal to 1. The targets are

contained in a square region of size 9 × 9, and are cluttered by a first order, highly correlated GMrf
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Fig. 7. (a) Clutter-free target image, (b) Simulated sensor image, PSNR = 0 dB.

background with βh = βv = 0.24. Figures 7 (a) and (b) show respectively the clutter-free target image

and a random sample of the target plus clutter image when the target is centered at pixel (100, 50) with

peak-signal-to-noise ratio (PSNR) equal to 0 dB.

Motion We describe here the 2D translational motion model used in the simulations presented in the

paper. The simulated targets have mean velocity of 2 resolution cells per frame in both the horizontal and

vertical directions, and move in a grid of size L × L pixels. The actual displacement is a random walk

fluctuation around the average displacement. In other words, if (i, j) is the predicted centroid position

according to the deterministic velocity, the actual position lies in a 2D spatial region around (i, j), with

fluctuation probabilities r, s, t, and q shown in Figure 8. In our simulations, all fluctuation probabilities

of one cell were set to 20 %. Like in subsection II-A, we expand the 2D sensor lattice to build a centroid

i, j ij+1ij-1

i+1j

i-1j

s

t

q
r

1-r-s-t-q

Fig. 8. 2D random walk fluctuation around average target drift

lattice that accounts for boundary effects. We define then an equivalent 1D representation of the 2D

centroid lattice that is obtained by sequentially stacking the rows of the 2D lattice into a long vector, see

reference [24]. The equivalent 1D centroid lattice is denoted as L. Finally, like in the 1D case, we build

the augmented lattice L̃ by adding to L a dummy state that represents the absence of the target. The

unknown state at instant n is a 1D random variable, zn, defined on L̃. We denote by PT the transition

probability matrix that collects the transition probabilities {P (zn = i | zn−1 = j)}, (i, j) ∈ L̃ × L̃.

Multiframe Bayes detector/tracker Let yn be the observed L × L sensor frame at instant n. Define

the filtering posterior probability vector, fn|n such that fn|n(l) = P (zn = l | Yn
0 ), l ∈ L̃, where L̃ now

denotes the 1D row lexicographed centroid lattice augmented by the dummy absent target state. Similarly,

introduce the prediction posterior probability vector, fn|n−1. Finally, define the observations kernel vector
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Sn such that Sn(l) = p(yn | zn = l), l ∈ L̃. For simplicity of notation, make ri = li and rs = ls and

introduce L1 = L + li + ls. Let Ip denote the p x p identity matrix and Hp be a p x p matrix such that

H(i, j) = 1 for | i − j |= 1 or zero otherwise. We use the symbol � to denote pointwise multiplication

and the symbol ⊗ to denote the Kronecker or tensor product [27]. The symbol vec denotes the operator

that converts an P × Q into a PQ-dimensional column vector by sequentially stacking all the rows of the

matrix. In the particular case of a single, deterministic target with known and time-invariant signature

coefficients ak, l, and a first-order 2D GMrf clutter model as described by equation (60), the optimal 2D

Bayes detector/tracker with a total number of frames equal to N, is implemented by the pseudocode in

Table II (for a detailed derivation, see [24]).

a) Initialization.

b) For n = 1 to N

• Prediction step: fn|n−1 = PT fn−1|n−1.

• for i, j = 1 to L

Differential operator: µi,j = yn(i, j)− βh [yn(i, j + 1) + yn(i, j − 1)]− βv [yn(i + 1, j) + yn(i − 1, j)],

with yn(i, j) = 0, for i, j < 1 or i, j > L.

end of loop

• for I, J = 1 to L1

i = I − ls; j = J − ls;

Matched filter: λi, j =
∑

k

∑
l
ak, l µi+k, j+l, with the limits for the summations given in Table III.

ai,j =
{

ak, l

}
, with k and l in the ranges assigned to each pair (i, j) in Table III.

At = Ir ⊗ (Ir − βhH
l
) − βvHr ⊗ I

l
where (r, l) = size(ai,j).

Energy term: ρi,j = (vec [ai, j])T At(vec [ai, j ]).

Observations kernel: Sn((I − 1)L1 + J) = exp
[
(2λI−ls, J−ls − ρI−ls J−ls)/2σ2

u

]
.

end of loop.

• Normalized kernel entry for absent target state: Sn(L2
1 + 1) = 1.

• Filtering step: fn|n = CnSn � fn|n−1 where Cn is a normalization constant such that
∑

l
fn|n(l) = 1.

• Binary Detection: fn|n(L2
1 + 1)

H0
>
<
H1

1 − fn|n(L2
1 + 1).

• MAP estimation: If hypothesis H1 (target present) declared true, ẑn|n = argmax
l∈L fn|n(l).

• fn−1|n−1 = fn|n.

End of outer for-loop

c) End of program.

TABLE II

Pseudocode for the 2D Bayes detector/tracker

λ(i, j) −ls + 1 ≤ j ≤ li li + 1 ≤ j ≤ L − ls L − ls + 1 ≤ j ≤ L + li

−ls + 1 ≤ i ≤ li
∑ls

k=−i+1

∑ls
l=−j+1(.)

∑ls
k=−i+1

∑ls
l=−li

(.)
∑ls

k=−i+1

∑L−j
l=−li

(.)

li + 1 ≤ i ≤ L − ls
∑ls

k=−li

∑ls
l=−j+1(.)

∑ls
k=−li

∑ls
l=−li

(.)
∑ls

k=−li

∑L−j
l=−li

(.)

L − ls + 1 ≤ i ≤ L + li
∑L−i

k=−li

∑ls
l=−j+1(.)

∑L−i
k=−li

∑ls
l=−li

(.)
∑L−i

k=−li

∑L−j
l=−li

(.)
TABLE III

Computation of the data term λij
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Remark The actual implementation of the matrix multiplication PT fn−1|n−1 in Table II explores the

sparse and block-banded structure of the transition probability matrix PT . Note also that the energy

term ρ is constant for the range li + 1 ≤ i, j ≤ L − ls and, therefore, can be computed off-line. In

general, for an L × L sensor grid, it can be shown that, using the GMrf clutter model, the Markov chain

motion model, and the small extended target models, we reduce total number of required floating point

multiplications from O(L6) to O(αL2) in the filtering step of the algorithm and, from O(L4) to O(γL2)

in the prediction step, where γ << L.

We now discuss two suboptimal trackers whose performance we later compare to the performance of

our optimal Bayes tracker: the maximum likelihood tracker, and the linearized Kalman-Bucy tracker.

Maximum Likelihood Tracker The correlation or memoryless maximum likelihood (ML) tracker ignores

the information on the dynamics of the target motion and makes tracking decisions at each sensor scan

based solely on the present observed data. In the single target case, let zn denote as before the position

of the centroid of a target that is assumed present in the nth sensor scan. The memoryless ML estimate

of the centroid position is given by

ẑML = arg max
i∈L

p(yn | zn = i) (62)

where L is the equivalent 1D centroid lattice.

Linearized Kalman-Bucy Tracker Although the single frame, memoryless ML tracker is generally accurate

in scenarios of high SNR, its performance deteriorates noticeably as the power level of the clutter increases.

An improvement to the ML estimator in heavy clutter is obtained by further post-processing its output

with a linearized Kalman-Bucy filter (KBf). This is a suboptimal multiframe tracking scheme that

reintroduces information about the target dynamics into the tracking algorithm. It resembles common

algorithms presented in the literature [1].

Remark: Computational Complexity We compare the computational cost of the Bayes detector/tracker

to the association ML-KBf of the maximum likelihood tracker with the Kalman-Bucy filter. The ML

step in equation (62), in the case of deterministic targets observed in correlated Gauss-Markov random

clutter, reduces to maximizing over all the target centroid positions (i, j) the quantity λi,j − ρi,j/2,

where λi,j and ρi,j are the data and energy terms described in Table II. For an L × L sensor grid with

L >> li + ls, this cost is dominated by the computation of λi,j that is an operation of order O(βL2)

with β << L. The computational cost of the KBf stage is neglible in comparison. For a scalar dynamic

model in both dimensions, the cost is only 4 floating point multiplications and 4 floating point additions.

Hence, the overall ML-KBf association has cost O(βL2). On the other hand, as discussed before, the

Bayes detector/tracker requires O(αL2) floating point multiplications in the filtering step, and O(γL2)

floating point multiplications in the prediction step, with α ≈ β ≈ γ << L. In summary, the Bayes

detector/tracker costs roughly twice the cost of the ML-KBf association. The ML-KBf association saves

the prediction step of the Bayes detector/tracker.

Tracking Performance in Correlated Clutter We study first the tracking performance of the Bayes algo-

rithm using synthetic data. The simulated targets are 2D rectangular objects with constant pixel intensity

shown in Figure 7(a). At each sensor scan, we assume that at most one target is present. The target
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Fig. 9. (a) Performance of the nonlinearBayes tracker in correlatedGMrf clutter for PSNR= −3 and +3 dB; (b) Performance

of the nonlinear Bayes tracker vs the linearized KBf, for PSNR= 6 dB

starts from an unknown random location in the 50 × 50 upper left corner of the image and is subsequently

tracked over 70 consecutive sensor frames. Figure 9(a) shows the evolution over time of the standard

deviation of the error in the centroid’s vertical position estimate given by the nonlinear Bayes tracker.

The standard deviation is expressed in number of pixels and evaluated by averaging the errors over 150

Monte Carlo runs. We repeat the experiment for two values of PSNR, respectively +3 dB and −3 dB.

The corresponding curves for the horizontal position estimate are qualitatively similar and are omitted

for conciseness. Figure 9(a) shows that there is an initial localization error which declines over time as

new measurements become available. The target acquisition time (i.e., the number of sensor scans for the

error to reach its steady state) increases as the PSNR decreases. Likewise, the initial and steady state

localization errors also increase with decreasing PSNR.

Next, we compare the nonlinear Bayes tracker with the alternative suboptimal association of the spatial

matched filter and a linearized KBf. Figure 9(b) plots the standard deviation over time of the error in the

vertical position estimate for both trackers, with PSNR equal to 6 dB. We see from the plot that the KBf

tracker has higher initial and steady state position estimate errors and a longer target acquisition time.

Figure 10 shows again the vertical position estimate error curves for both trackers. This time, the KBf

curve is obtained for PSNR equal to 6 dB, while, for the nonlinear Bayes tracker, we lower the PSNR to

-5 dB. The two curves in Figure 10 show that the steady state performance of the nonlinear Bayes tracker

and the linearized KBf are very similar, despite an 11 dB difference in PSNR.

B. Detection/Tracking Example with Real Clutter

In order to have a qualitative assessment of the effect of model/data mismatch on the performance

of the algorithm, we ran a small-scale simulation with real clutter data. We used real-world intensity

imagery of a snow-covered field in Stockbridge, NY, obtained by a 0.85 µ m down-looking laser radar [17]

mounted to the bottom of a Gulfstream G-1 aircraft. The imagery is from the Infrared Airbone Radar

(IRAR) collection at MIT Lincoln Laboratory and was obtained through the website of the Center for
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Fig. 10. Comparison of the tracking performance of the KBf tracker with PSNR = 6 dB and the nonlinear Bayes tracker

with PSNR = - 5 dB
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Fig. 11. Simulated real target in heavily cluttered real background (IRAR imagery): (a) target plus clutter, (b) target

template.

Imaging Science at Johns Hopkins University [33]. Figure 11(a) shows a 120 × 120 real clutter gray-level

intensity image with a heavily cluttered military vehicle (tank) model superimposed on it. Figure 11(b)

shows the tank template alone as a binary image with target intensity equal to 1 and background intensity

equal to zero. The tank template (shape) was extracted from a real image of the vehicle taken at the same

field with the same sensor. The target pixel intensity was set arbitrarily to achieve the desired low level

of contrast between target and clutter. In order to assess tracking performance, we simulated a random

trajectory for the target template and detected/tracked it over 27 frames using the Bayes algorithm. The

target starts from an unknown location in the 120 × 120 image and moves in the real clutter background

according to a 2D random walk model whose parameters are known to the tracker.

Since the clutter background is real data, we initially preprocess each frame in the image sequence.

The pre-processing consists of the segmentation of the original images and the subsequent removal of the

spatially-variant local mean in each subimage so that the pixel intensity histogram approaches a zero-mean

Gaussian distribution [4]. We then adjust a first-order GMrf model to the Gaussianized data, estimating

the corresponding parameters βh, βv, and σu for each frame. The 2D GMrf parameters were estimated
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using a simplified version of the maximum likelihood estimation algorithm introduced in reference [26].

We compare the tracking results using (a) the proposed Bayes tracker, and (b) a standard 2D image

correlator associated to a linearized Kalman-Bucy filter. The corresponding estimated target trajectories

are shown in Figure 12. The Bayes tracker assumes a uniform initial target position distribution over

the entire sensor grid. The linear filter, on the other hand, is initially favored by using a Gaussian initial

position prior that is centered in the vicinity of the true initial position and has a small variance. The

real simulated trajectory is shown in solid line. The position estimates generated by the Bayes tracker are

indicated by the symbol ‘+’, whereas the estimates generated by the linearized KBf are interpolated using

dashed lines. In the first half of the trajectory shown in Figure 12, the simulated tank is going through a
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Fig. 12. Nonlinear Bayes detector/tracker versus linearized Kalman-Bucy filter: performance comparison

heavily cluttered section of the background, and the single frame standard image correlator is unable to

track the target. The KBf tends to discard the correlator’s position estimates and through the inertia in

its prediction step, tries to fit a straight line trajectory. In the second half of the simulation, when the

tank is on an open field, the image correlator is capable of correctly locating the target and the filtering

step of the KBf slowly forces the estimated trajectory to approach the true trajectory. By contrast, the

Bayes tracker, which has no prior knowledge of the initial position, makes a large initial localization error

(the isolated ’+’ on the top left corner of Figure 12), but, afterwards, as new frames become available, the

tracker immediately acquires the target and tracks it almost perfectly. A comparison shows that, even in

steady state, the localization error for the Bayes tracker is lower than for the KBf, while the acquisition

time is much shorter.

Remark: The assumption that the sensor frames are uncorrelated in time is unrealistic in practice.

However, the good tracking results with real clutter presented in this section lead us to believe that the

Bayes detector/tracker exhibits a high degree of robustness to interframe correlation.

VI. Conclusion

In this paper, we presented a new optimal recursive algorithm for integrated, multiframe Bayesian

detection and tracking of multiple targets that move randomly in heavily cluttered environments. We

considered both extended and pointwise targets with deterministic and random signatures. We developed
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models for target signature and target motion that take into consideration the finite resolution of the

sensors and used these models to build a joint framework for detection and tracking that underlies our

proposed Bayesian detector/tracker.

Extensive Monte Carlo simulations in 1D and 2D surveillance spaces determined the performance of

the optimal Bayes multiframe detector/tracker under both spatially correlated Gaussian clutter and non-

Gaussian clutter with heavy tail (K and Weibull) statistics. The detection and tracking characteristics of

the optimal Bayes algorithm is an uppper bound to the performance of other suboptimal algorithms. In

particular, when tracking stealthy targets (dim targets in heavy clutter) with the optimal Bayes tracker,

the Monte Carlo simulations with 2D targets departing from unknown location show substantial steady-

state tracking performance gains of up to 11 dB over alternative algorithms found in the literature such

as spatial correlators (matched filters) and linearized Kalman-Bucy filters. Examples with real clutter

data and a known inserted target also show better detection/tracking performance than the association

of a conventional image correlator and a Kalman-Bucy tracker. These examples illustrate the robustness

of the algorithm to possible mismatches between the data and the underlying models assumed by the

algorithm.
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