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Abstract

Die-stacked DRAM has been proposed for use as a large, high-bandwidth, last-level cache with hundreds or
thousands of megabytes of capacity. Not all workloads (or phases) can productively utilize this much cache space,
however. Unfortunately, the unused (or under-used) cache continues to consume power due to leakage in the
peripheral circuitry and periodic DRAM refresh. Dynamically adjusting the available DRAM cache capacity could
largely eliminate this energy overhead. However, the current proposed DRAM cache organization introduces new
challenges for dynamic cache resizing. The organization di�ers from a conventional SRAM cache organization
because it places entire cache sets and their tags within a single bank to reduce on-chip area and power overhead.
Hence, resizing a DRAM cache requires remapping sets from the powered-down banks to active banks.

In this paper, we propose CRUNCH (Cache Resizing Using Native Consistent Hashing), a hardware data remap-
ping scheme inspired by consistent hashing, an algorithm originally proposed to uniformly and dynamically dis-
tribute Internet tra�c across a changing population of web servers. CRUNCH provides a load-balanced remap-
ping of data from the powered-down banks alone to the active banks, without requiring sets from all banks to be
remapped, unlike naive schemes to achieve load balancing. CRUNCH remaps only sets from the powered-down
banks, so it achieves this load balancing with low bank power-up/down transition latencies. CRUNCH’s combi-
nation of good load balancing and low transition latencies provides a substrate to enable e�cient DRAM cache
resizing.

1 Introduction
Die-stacking technologies are rapidly maturing [21, 31]. One likely near-term use is to stack a processor with a large,
high-bandwidth, in-package DRAM cache [4, 18, 23]. Projections indicate that the size of the DRAM cache may
be hundreds of megabytes or more. Many workloads (or workload phases) may not productively utilize such large
caches, however. This leads to wasted energy consumption because of signi�cant DRAM background power (from
leakage and peripheral circuitry). Recent studies have shown that a system’s DRAM is consuming an increasing
fraction of the overall system power [14, 25]. While a die-stacked DRAM’s overall capacity will be less than that of
main memory (and therefore not likely to consume nearly as much power as o�-chip DRAM), in the present age of
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power-constrained designs, any power consumed by the stacked DRAM is power that cannot be consumed by the
CPU cores [10].

Thus, there is opportunity to reduce the energy consumption of the die-stacked DRAM cache while maintaining
the performance advantages of having a large-capacity caching structure. When the DRAM cache is under-utilized,
it should reduce its active portions to match the capacity needs of the current workload. This can be achieved by
turning o� some banks of the DRAM cache. While turning o� ways/banks is a well-studied problem in the context of
SRAM caches [2, 30, 32, 40], the organization of the DRAM cache poses new challenges. Current proposals for DRAM
cache organizations [7, 23, 26] call for entire sets and their tags to reside within a single bank in order to reduce the
number of row activations per access. Hence, a DRAM cache resizing mechanism would need to (1) consider not
only which banks to turn o� (well-explored problem in SRAM caches) but also (2) address the new challenge of
remapping sets from the powered-down banks into active banks (or su�er 100% miss rates for those addresses) and
migrating the dirty data from the powered-down banks to either the active banks or to the o�-chip DRAM.

Naive data remapping when resizing a DRAM cache can be very costly. One possible way to do this is to remap
all of the data from a powered-down bank into another active bank. This remapping scheme could make the active
bank a hotspot, increasing DRAM cache access latencies. Another possibility is to completely remap data from all
banks to the remaining active banks with a modulo-k operation (k=number of active banks after a bank shut-down),
providing a uniform distribution of data among the active banks without creating hotspots. However, completely
remapping data across all banks every time the cache size changes can be very costly, as this requires migrating a
large amount of dirty data.

To address the challenge of remapping data in a load-balanced manner with low transition overhead, we take
inspiration from the consistent hashing algorithm originally proposed to uniformly and dynamically distribute load
across a large number of web servers [19]. Cloud providers may have servers go down at any point in time (e.g.,
server crashes, scheduled maintenance). Similarly, new servers may come online (e.g., machines rebooted, adding
new machines to the server pool). The frequency of machines coming and going make it infeasible to perform a
complete re-indexing each time the pool of available servers changes.

Consistent hashing provides an elegant scheme where a machine failure results in re-indexing only the subset of
elements that mapped to that machine. That subset is redistributed among the surviving machines in a load-balanced
manner; at the same time, any elements already mapped to the remaining machines remain where they are. Turning
o� DRAM cache banks is analogous to servers going down (and turning on banks is like servers coming online).
In this work, we present a hardware remapping scheme inspired by consistent hashing, called Cache Resizing Using
Native Consistent Hashing (CRUNCH), to maintain load balancing among the remaining active banks while providing
e�cient transitions.

Our paper makes the following contributions:

• To our knowledge, this is the �rst paper to observe and address the challenges of remapping data from
powered-down banks in DRAM caches in a load-balanced manner, thereby enabling dynamic DRAM cache
resizing.

• We propose a low-overhead mechanism, CRUNCH, to remap data from powered-down banks. Our mechanism,
inspired by consistent hashing, incurs low latency/power overhead, while achieving good load balancing.

• We compare our mechanism, CRUNCH, to two data mapping schemes, one optimized for low transition over-
head and the other optimized for load balancing. CRUNCH achieves the best of both worlds, resulting in both
good steady-state performance and low transition costs.

2 Background and Motivation
In this section, we provide a brief characterization of application working set sizes, demonstrating the need for
DRAM cache resizing. We then discuss DRAM cache organizations and two simple DRAM cache bank remapping
schemes to illustrate the challenges in powering down DRAM cache banks.

2.1 Memory Footprint vs. Cache Capacity
Variations in working set sizes across applications, in addition to variations in cache activity across time (program
phases), make it such that the full capacity of a DRAM cache is not always needed. Figure 1(a) shows the observed
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Figure 1: Memory footprints for (a) each of the SPEC CPU2006 applications, and (b) the aggregate footprint for each
of the 28C4 possible four-application multi-programmed workloads.

memory footprints for SPEC CPU2006 applications.1 A few applications exhibit memory usage with large footprints
that would bene�t from large DRAM caches. However, in many other cases, the working sets would �t comfortably
in a 128MB or smaller DRAM cache. Modern machines have multiple cores capable of simultaneously running
multiple applications, and an e�ective DRAM cache should be able to accommodate the aggregate memory demands
of multiple applications. Figure 1(b) shows the total working set sizes for all possible 4-core multi-programmed
combinations of the SPEC2006 workloads. With multiple simultaneously-running applications, there is still a wide
variance in memory demands, with many combinations unable to fully utilize a large DRAM cache. For a 128MB
DRAM cache, 44% of all 4-way workload combinations would use less than the full cache capacity; for a 256MB
DRAM cache, 65% of the combinations do not use the full capacity. Therefore, although the generous capacity of
die-stacked DRAM caches is bene�cial for some workloads/applications, there clearly exist many scenarios where
such a large cache is an overkill.

2.2 DRAM Cache Organizations
SRAMTag Store andMulti-Banked Cache Sets: One simple approach to organize tags and data in a DRAM cache
is to follow the conventional layout for a multi-banked SRAM cache as shown in Figure 2(a). This organization has
a dedicated on-chip storage (i.e., SRAM) for tags2 and it splits the data into multiple banks, thus each cache set is
distributed across multiple banks for a set-associative cache. However, using an on-chip tag store incurs tens of MB
of overhead due to the large projected capacities of DRAM caches [18, 23]. As a result, a conventional SRAM-style
organization is impractical for implementing a DRAM cache.
Tags in one DRAM bank andMulti-Banked Cache Sets: To eliminate a large SRAM tag store, tags can be stored
in one/more DRAM banks with data distributed across the remaining banks as shown in Figure 2(b). There are
two main disadvantages with this organization. First, performance will su�er as the tag banks becomes a severe
bottleneck, because all requests must access these banks for tag-lookup. Furthermore, DRAM cannot multi-port or
pipeline accesses like SRAM does, because only one row may be opened at a time. Second, the power consumption
increases linearly with the number of tags banks because each access now requires activating multiple banks for
tags and data.

1Simulation methodology is described in Section 4.
2A tag store can be single- or multi-banked.
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Figure 2: Di�erent tags and data organizations for DRAM caches: (a) tags in SRAM and data in DRAM, (b) one
dedicated DRAM bank for tags and the remaining banks for data, (c) tags in DRAM with sets distributed across
banks, and (d) tags in DRAM with sets in a single bank. Each bank in (c) and (d) is the same as a bank in (a) and (b).
They may appear di�erent because we are showing a more detailed cache set-layout in (c) and (d).

Tags in DRAM andMulti-Banked Cache Sets: Another alternative to eliminate a large SRAM tag store is to store
tags in the DRAM in the same row as their data. Figure 2(c) shows a DRAM cache using an SRAM-like layout with
tags and data distributed across all banks. Using this organization has two main disadvantages. First, every cache
line lookup requires accessing all banks in parallel, which signi�cantly increases the dynamic power consumption.
This is because every lookup requires sending one row activation to each bank. Second, the opportunity to serve
multiple cache line lookups in parallel from di�erent banks (i.e., bank-level parallelism [22]) reduces because all
banks are required to serve one lookup.
Tags in DRAM and Single-Banked Cache Sets: To reduce the number of costly row activations required to
perform an access, Loh and Hill [23] proposed the DRAM cache organization shown in Figure 2(d). This organization
packs data and tags of a set together in the same physical DRAM row/page within a bank. Figure 3 shows the
power consumption of DRAM caches with this organization and the multi-banked cache sets organization (shown
in Figure 2(c)) across multiple workloads3. On average, the multi-banked design consumes 25.9% more power than
the single-banked design proposed by Loh and Hill [23]4. Therefore, unless stated otherwise, we assume a DRAM
cache organization proposed by Loh and Hill for the remainder of this paper.

3Simulation methodology is described in Section 4.
4Although workload 10 has very low memory intensity (<2 L3-MPKI), it still increases the power by 9.3% when using the multi-banked cache sets design.
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Figure 3: DRAM cache power consumption comparison between the multi-banked cache sets design (shown in Fig-
ure 2(c)) and the single-banked cache sets design (shown in Figure 2(d)).
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Figure 4: (a) An example scenario for Bank Fail-Over where cache lines mapped to a powered-down bank are
remapped to the next sequential active bank. Dark blocks (white text) indicate sets that are remapped from one
bank to another. (b) An example scenario for Modulo Re-Indexing where the address is rehashed (mod 3) and then
remapped to a new bank.

2.3 DRAM Cache Resizing Challenges
Prior works have studied resizing caches based on shutting down ways or banks [2, 30, 32, 40]. However, there
are two main challenges with dynamically resizing a DRAM cache. First, resizing a cache with the Loh and Hill
cache organization by powering down banks introduces a set-indexing issue because turning o� a bank takes away
all sets from that powered-down bank. To avoid 100% miss rates for those requests that access cache sets in a
powered-down bank, we need to remap these requests’ addresses to active banks. Although using organizations that
have sets distributed across multiple banks as shown in Figure 2(a), (b), and (c) does not have set-indexing issues
for dynamically resized caches, these organizations are not practical for large DRAM caches as discussed in the
previous sub-section. The second challenge is handling dirty data in powered-down banks, which must either be
written to memory or migrated to other banks5. More data migration incurs more overhead. We now discuss two
simple remapping schemes to illustrate these challenges.

2.4 Two Simple Bank Remapping Schemes
Bank Fail-Over: The �rst scheme is Bank Fail-Over (BFO), where cache lines mapped to bank i simply get remapped,
or fail over, to the next available consecutive bank (with wrap-around). Figure 4(a) shows an example DRAM cache
with four total banks with one bank turned o�. Cache lines that map to bank 1 (which is o�) are failed over to
bank 2 (displaced sets are shown as dark blocks in the �gure). Such fail-overs are easily computed by using the
bank-selection bits from the address in conjunction with a vector that indicates which banks are active. In addition,

5Clean data can be safely dropped, which is what we assume in this paper.
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Scheme Fast Transition Latency Load Balancing

Bank Fail-Over Yes No

Modulo Re-Indexing No Yes

CRUNCH Yes Yes

Table 1: Summary of the strengths and weaknesses of the Bank Fail-Over and Modulo Re-Indexing schemes, along
with CRUNCH proposed in this paper.

because BFO allows addresses from multiple banks to be remapped to the same bank, the cache tags must be widened
to include the bank-selection bits.

The advantage of BFO is that when a bank is turned o�, only cache lines in the powered-down bank are impacted.
In particular, BFO moves only dirty cache lines to the fail-over bank. In the worst case, a 100% dirty bank requires
migration or writeback of all of its cache lines, but no other banks will be a�ected (apart from having to accept the
incoming migrants).

The disadvantage of BFO is that after bank shut-down, there exists the potential for unbalanced load distribution
across banks. For example in Figure 4(a), after bank 1 goes down, bank 2 has twice as much capacity pressure as the
other banks from having to accommodate bank 1’s cache lines as well as those originally mapped to bank 2. This can
lead to a sharp increase in con�ict misses for the a�ected banks.
Modulo Re-Indexing: The second scheme, Modulo Re-Indexing (MRI), redistributes all cache lines evenly across the
remaining banks. In the top of Figure 4(b), all four banks are on, and the bank index for a given line is computed by
taking some number of bits from its physical address and performing a modulo-4 operation. With MRI, when there
are only k banks enabled, we compute the bank index by performing a modulo-k operation (k=3 in this example)
and then shifting the computed bank index to map to the actual enabled bank’s index. Other than the modulo
computation hardware for re-indexing, MRI’s hardware requirements are similar to that of BFO (wider tags and
bank selection from among enabled banks).

The advantage of MRI is that cache lines are uniformly redistributed across all banks, so no bank will be signi�-
cantly more prone to being a hotspot than any other. The disadvantage is that k (number of active banks) changes as
banks are powered-down or -up, thus the majority of cache lines will be remapped to new banks on every transition.
This global reshu�ing of cache contents, while good for load balancing, severely increases the latency for power-
ing down a bank, as nearly all dirty cache lines migrate to their newly assigned banks6. Thus, MRI’s power-down
transition latency is proportional to the dirty data contained across all banks.

The descriptions above on power-down transition latency also apply to bank power-up transition latency. With
BFO, dirty cache lines in the fail-over bank must be “repatriated” back to the bank that is being powered up. On the
other hand, with MRI, cache lines from all of the banks must be re-shu�ed using the updated modulo-(k+1) mapping.
Design Objective: Each of BFO and MRI have their strengths and weaknesses, which are summarized in Table 1.
BFO has bank power-down/up latency proportional to only the number of powered-down banks, but su�ers from poor
load-balancing. MRI achieves uniform load balancing, but su�ers from poor transition latencies proportional to the
total number of active banks. In this work, we propose Cache Resizing Using Native Consistent Hashing (CRUNCH),
a new DRAM cache remapping scheme, to simultaneously achieve both fast transition latency and load-balanced
cache line distribution.

3 Remapping via Native Consistent Hashing
The key challenges in remapping addresses to handle bank shut-down are (1) ensuring load-balanced address remap-
ping and (2) achieving e�cient dirty data migration. This section details how our design leverages key ideas from
consistent hashing to handle the address remapping challenge and to correctly and e�ciently migrate dirty data. Note
that CRUNCH focuses on the remapping mechanism and can work with any cache sizing policy (e.g., [3, 30, 38, 40]).

3.1 Consistent Hashing: A Brief Overview
Consistent hashing maps addresses to banks indirectly by �rst hashing both the banks and addresses on to the same
unit circle. Each address maps to the �rst available bank encountered in a clockwise walk of the unit circle starting
from its own hash-value on the unit circle. As shown in Figure 5(a), address X maps to bank 2 because it is the �rst

6Alternatively, they can be written back to main memory, and then on the next miss reinstalled into the newly assigned bank.
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bank encountered in a clockwise walk (see solid-arrow). If bank 2 were to be powered down, address X maps to the
next bank in clockwise order, which is bank 3 (see dashed arrow). We de�ne bank 3 to be the fail-over bank for bank 2
for address X. Note that in this example, any address that maps into the region of the unit circle between banks 1 and
2 (e.g., X) maps to bank 2, and subsequently fails over to bank 3 if bank 2 is disabled. As shown, this is identical to
BFO. To provide load balancing, consistent hashing creates multiple virtual banks for each physical bank, such that
each bank is actually associated with multiple regions distributed around the unit circle. For example, Figure 5(b)
shows three copies of each bank. An address maps to a bank if it maps to any of the virtual copies of the same bank.
Thus, both X and Y map to bank 2. Because the virtual bank copies are permuted in pseudorandom order by the
hashing function, there is not one single fail-over bank for all addresses in bank 2. For example, the fail-over bank
for address Y is bank 1 whereas the fail-over bank for address X is bank 3.

Because of symmetry, one can see that the properties are similarly true for bank power-up. Only a proportional
fraction of addresses are remapped to a newly powered-up bank and the addresses that are remapped are distributed
among all the previously active banks.

3.2 Multi-namespace Variant
We develop a modi�ed variant of the above consistent hashing mechanism that facilitates easier hardware implemen-
tation in CRUNCH, while retaining the basic design goals of load-balancing and minimal remapping. The modi�ed
variant introduces two changes in how addresses and resources (i.e., banks) are mapped to the unit circle. The �rst
change decomposes the mapping of the addresses to the unit circle into a two stage-process: addresses are �rst
mapped to “super-regions” of the unit-circle, and then they are further mapped to a region within the super-region.
The second change replaces pseudo-random hashing of resource replicas with a more-careful construction. Under
the original consistent hashing, resource distribution may have some non-uniformities. For example, there may be
di�erences in distribution of the resource replicas with some parts of the unit circle having higher resource density
than others. Similarly, it is also possible that multiple replicas of the same resource may be consecutive in clockwise
order. We address this problem by arti�cially placing exactly one copy of each resource in each super-region. Conse-
quently, each super-region has as many regions as resources. The exact order in which the resources/regions appear
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in the super-region is pseudo-randomly permuted. Figure 6 illustrates an example in which the unit circle is divided
into three super-regions. Within each super-region, there is exactly one virtual instance of each bank. Further, we
modify the fail-over strategy within a super-region to be limited to resources in that super-region. Thus, when an
address exhausts all resources in a clockwise walk in a super-region, it wraps around to the �rst resource in the same
super-region, as illustrated in Figure 6. The address X originally maps to bank 3. When bank 3 is unavailable, the
address X would map to bank 2 in traditional consistent hashing because bank 2 appears next in a clockwise walk
of the unit-circle. In our variant, the constraint on mapping within a super-region forces address X to wrap-around
to the beginning of the super-region and thus maps to bank 1 instead.

3.3 Remapping from a Shut-Down Bank
The CRUNCH hardware implementation of our consistent hashing variant uses a region remapping table (RRT)
that contains the mapping from each region to each physical DRAM cache bank. We organize the RRT as a two-
dimensional table as shown in Figure 7. Along the �rst dimension, the table holds rows corresponding to each
super-region. Each per-super-region row holds a wide word that contains a pseudorandom permutation of all banks.

The number of super-regions/regions is a design choice that a�ects load balance and table size. Because a region
is the smallest unit of the address space that remaps to other banks, we are able to achieve better load balance with a
larger number of smaller regions. However this may lead to a larger table. On the other hand, with a small number
of regions, the RRT can be small and fast; but the remapping of regions to other banks occurs in chunks that may
be too large to distribute evenly across all banks. Fortunately, this tension between remap granularity and table size
is not a serious problem. Because the number of banks is typically small (say, 8 banks per channel), using 256 total
regions (which corresponds to 32 super-regions) is su�cient to ensure good load balance. Our sensitivity studies
with a larger number of regions (2048 regions in 256 super-regions) show that there is no signi�cant bene�t from
larger RRTs.

Our design choices imply a 32-entry RRT where each entry contains 24 bits (8 bank-ids, each of which is 3-bits
wide) for a total of 96 bytes, which is small compared to the DRAM cache. Furthermore, the RRT table does not
change the DRAM internals and it is implemented in the DRAM cache controller. Note, the RRT is a read-only table
which contains pseudorandom permutations of the bank-ids. Because it is read-only, it may be computed statically
using arbitrary algorithms at design time. Furthermore, the problem sizes are fairly small for o�ine analysis; we
have to choose 32 permutations that are not rotation equivalent (for our 32-entry RRT) out of 5040 (= 8!/8 = 7!)
possible permutations. Ideally, the permutations must be chosen carefully such that the fail-over banks are balanced
for any number and combination of banks being shut-down. However, we use a simpler method in which we only
ensure that the fail-over banks are evenly distributed with one bank failure. Our results show that our simple table
generation method achieves performance very similar to MRI, which perfectly load balances the di�erent sets across
banks, and so we do not believe that there is signi�cant value in further optimizing the fail-over orders.

Each access to the DRAM cache �rst maps the address to the appropriate bank by consulting the RRT. When
all banks are active, the appropriate bank is selected from the permutation by �rst indexing into the RRT to read
the appropriate super-region entry; and then selecting the bank by using the additional bits of the region-index.
When some banks are inactive, we do a priority-selection to �nd the �rst active bank in permutation order within
the super-region. Because RRT lookup is at hardware speeds, DRAM cache access latency remains comparable to
traditional bank-selection latency, which typically uses simpler forms of hashing ranging from trivial bit-selection
to bit “swizzling” techniques.

3.4 Handling Dirty Data in a Shut-Down Bank
When shutting down a bank, dirty data in the bank must be handled correctly. One simple approach writes back all
dirty lines to main memory. We employ an alternative approach that migrates the data from its home bank (i.e., the
bank under the old mapping) to its new bank. Such migration retains some data in the DRAM cache while ensuring
that dirty data is not “lost” to subsequent reads 7. The motivation for migrating (as opposed to writing back) is that
write-back operations are limited by the o�-chip memory bandwidth, while migration between banks can use the
DRAM cache’s larger bandwidth. Note that there might be a case where migrating some clean data (e.g., top-N MRU
lines) is bene�cial for the steady-state performance (despite an increase in the transition latency). We leave this as
part of future work.

7Strictly speaking, correctness is not a�ected if lost data is (transitively) dynamically dead. However, we adopt a strict de�nition of correctness
in which any lost data is treated as a violation of correctness.
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3.5 Finding the Dirty Blocks
The need to writeback/migrate all dirty data in a DRAM cache bank requires the enumeration of all dirty blocks.
While the dirty bit in traditional write-back cache designs can identify a given block as dirty/clean, it cannot o�er
an e�cient enumeration of dirty blocks for writeback or migration. A naive implementation, based on a full walk
of the cache bank to identify and enumerate dirty data, incurs cost proportional to the size of cache banks even in
cases where the amount of dirty data is a small subset of the data in the cache bank.

We develop an improved implementation with hierarchical dirty bits (HIER) in which a tree-based hierarchy
of dirty row counters indicates dirty-block presence at successively coarser-grain collections of DRAM rows. For
example, a root-level dirty block counter indicates the number of rows in the entire DRAM cache that have at least
one dirty block. At the next level of the tree, a set of d dirty row counters indicate the number of rows in each of the
1
d fractions of the DRAM cache that hold dirty blocks. The hierarchy ultimately terminates at the individual DRAM
cache rows. Such a hierarchy enables pruning of the cache walk by avoiding coarse-grain regions of cache that hold
clean data.

HIER incurs two overheads; one in space and the other in time. The space overhead is modest because we only
count rows that hold dirty blocks as opposed to the dirty blocks themselves. HIER uses a perfectly-balanced d-ary
tree that is easy to represent in linear arrays (similar to d-ary heaps). The number of entries needed to handle R rows
is approximately (d ·R)/(d − 1) counters. For example, consider an R=2,048-row DRAM cache bank, with d = 16.
The root counter must be 12 bits wide to count up to 2,048 dirty rows. The leaf-node counters, however, are only 1 bit
wide to indicate whether there are any dirty blocks within each respective row. Counters at intermediate nodes in
the tree are sized appropriately to count the number of rows covered within that super-region. This amounts to only
2,772 bits (346.5 bytes) per table per bank. Assuming eight banks per channel, and four channels per DRAM stack
(see Section 4), this adds up to 10.8KB for a 128MB DRAM cache. Note that HIER is not solely used for CRUNCH,
but it is also used for BFO and MRI, incurring the same overhead for all mapping schemes. As we will show in the
evaluation section, HIER provides signi�cant bene�t to all remapping schemes.

The HIER structure is implemented as a small SRAM table alongside the DRAM cache controller and remapping
logic. When a row’s dirty counter changes from dirty to clean (or vice versa), the changes need to be propagated up
the tree to the root. This propagation delay is a negligible time overhead because (1) d-ary trees are fairly shallow,
(2) access times to small SRAM arrays are short compared to DRAM cache access times, and (3) the propagation is
not on the critical path for the main DRAM cache accesses.
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Processor 4-core, 3.2 GHz, 4-wide issue, 256 ROB

Private L1 cache 4-way associative, 32 KB

Shared L2 cache 16-way associative, 4 MB

Stacked DRAM cache

29-way associative [23], 128 MB,
1 GHz (DDR 2 GHz), 128-bit channel,
channels/ranks/banks = 4/1/8, 2 KB rows,
tCAS/tRCD/tRP = 8/8/15

O�-chip DRAM
8 GB, 800 MHz (DDR3 1.6 GHz [28]),
64-bit channel, channels/ranks/banks = 2/1/8,
2 KB rows, tCAS/tRCD/tRP = 11/11/11

Table 2: Con�guration of simulated system.

3.6 Repatriating Displaced Dirty Blocks
A powered-down bank’s dirty data may be displaced to several (potentially all) active banks. When that bank is
eventually powered up, all its displaced data has to be brought back to the newly powered-up bank. This need for
dirty-data repatriation imposes two costs; discovery costs to locate such remote dirty data, and migration costs to
copy the data over to the newly powered-up bank.

To discover dirty data with CRUNCH and MRI, a naive approach is to walk all banks to discover remote dirty
blocks (with HIER optimizations to expedite the cache walks). An alternative is to disallow remote blocks from being
dirty (i.e., write-through for these blocks only). However, this may result in steady-state costs in the form of higher
write-tra�c to main memory because of write-through blocks. Because this design increases steady-state cost to
reduce the (uncommon) transient costs, we do not consider this design in this paper. On the other hand, BFO has an
advantage because all displaced dirty blocks that need to be repatriated can be found in exactly one fail-over bank.

4 Experimental Methodology
Simulator Model: We use MacSim [15], a cycle-level x86 CMP simulator for our evaluations of application-level
performance. We model a quad-core CMP system with private L1 caches, and a shared L2 cache. We use a detailed
DRAM timing model for the shared L3 stacked DRAM cache and the o�-chip main memory (DDR3 SDRAM-1600 [28]).
Unless stated otherwise, our detailed system con�guration is as shown in Table 2. The size of our DRAM cache is
128 MB. As we discussed in Section 2.2, we assume the DRAM cache organization proposed by Loh and Hill [23].
Power Model: We modi�ed Micron’s DRAM power calculator [27] to estimate the DRAM cache power. In contrast
to o�-chip DDR3, stacked DRAM has a much wider data width of 128 bits. Hence, only one stacked DRAM chip is
accessed for each read or write command, as opposed to eight chips in the case of x8 DDR3. The stacked DRAM
therefore requires less energy per activation because it does not need to access duplicate sets of peripheral circuits
(e.g., row decoders), although we assume the actual read/write energy itself remains the same because the same total
number of bits are driven. The DRAM power calculator’s IDD values are adjusted accordingly. Furthermore, we
double stacked DRAM’s refresh rate to factor in the higher operating temperature [9].
Workloads: We evaluate our system using SPEC CPU2006 [36]. We focus on memory-intensive benchmarks be-
cause the DRAM cache has very little impact on low memory-intensity applications. To form suitable workloads,
we group the benchmarks into categories based on L2 misses per thousand instructions (MPKI). Benchmarks with
MPKI > 25 are in Category H (high intensity), while those with MPKI > 15 are in Category M (medium intensity), and
the rest of the benchmarks are in Category L (low intensity). We construct 10 multiprogrammed workloads using
these benchmarks, as shown in Table 3, for our main evaluations.
Evaluating Di�erent Data Remapping Schemes: To evaluate the e�ects of di�erent data remapping schemes
on power and performance, we would ideally like to run seconds-long simulations where banks are powered up and
down dynamically, with data being remapped on every transition. However, the cycle-level simulation time would
be prohibitive with such an approach and the bene�ts/trade-o�s of di�erent remapping schemes can be evaluated
without such a full-scale evaluation. Therefore, we decouple the simulation to separately evaluate the di�erent
aspects of the data remapping schemes. This methodology is similar to those in other studies for evaluating scenarios
spanning much longer timescales than typical cycle-level simulation sample sizes [24].
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Mix Workloads Category

WL-1 mcf mcf mcf mcf 4H
WL-2 mcf lbm milc libquantum 4H
WL-3 libquantum mcf milc leslie3d 4H
WL-4 milc leslie3d libquantum milc 4H
WL-5 libquantum milc astar wrf 2H+2M
WL-6 milc mcf soplex bwaves 2H+2M
WL-7 milc leslie3d GemsFDTD astar 2H+2M
WL-8 libquantum bwaves wrf astar 1H+3M
WL-9 bwaves wrf soplex GemsFDTD 4M
WL-10 gcc gcc gcc gcc 4L

Table 3: Multiprogrammed workloads.

Number of Shut-down Banks Shut-down Pattern

1 11110111
2 11010111
3 11010101
4 10010101
5 10010001
6 10000001
7 10000000

Table 4: Bank Shut-down Patterns.

First, we evaluate system performance of di�erent remapping schemes when di�erent numbers of banks are
turned on. This allows us to examine the performance impact of each remapping scheme’s cache line distribution
(load balancing) with a speci�c bank con�guration, for a certain length of time. We call this the steady state analysis.
For evaluating each scheme, we use a speci�c number of shut-down banks and simulate 100 million instructions
per benchmark. We gather statistics for each benchmark once it retires 100 million instructions. Simulation of all
benchmarks continues (to continue to contend for the memory system) until each one has executed 100 million
instructions.

Second, we evaluate di�erent remapping schemes based on the transition latency and energy overheads, which
we call the transition analysis. We carry out this analysis by �rst warming up the DRAM cache with all banks enabled
(for the power down study) or a speci�ed number of banks disabled (for the power up study). Once the warm-up
completes, we power down (or up) banks, and measure the latency of the transition and the energy expended to
remap dirty blocks. We run each simulation for 150 million warm-up cycles, and then execute until the transition
completes.

Third, we generate a representative set of patterns for shutting down banks instead of using all possible combi-
nations. A policy that determines how many and which banks to power-up/down is beyond the scope of this paper
as we focus on the remapping problem. Table 4 shows the patterns for our evaluations. For each pattern, bank index
starts from left (bank 0) to right (bank 7). The number at each index indicates if the bank is turned on (1) or o� (0).
We use a “binary search” approach for selecting bank shut-down order to avoid (as much as possible) pathological
cases where a large number of shut-down banks all fail-over to the same bank in BFO, thereby creating an unfairly
severe hotspot. We later show in Section 5.5 that CRUNCH is robust against di�erent bank shut-down patterns.
Performance Metrics: For the steady-state analysis, we report system performance using the Weighted Speedup

metric: WeightedSpeedup = ∑
N
i=1

IPCshared
i

IPCalone
i

[8, 35]

For the transition analysis, we report the latency of powering up and down banks in cycles. We also report DRAM
energy consumption during power-up/down transitions.

5 Experimental Evaluation
5.1 Steady-State System Performance
In this section, we evaluate the impact of di�erent remapping schemes on system performance in terms weighted
speedup during steady state operation. Speci�cally, we shut down di�erent numbers of banks and examine the load-
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Figure 8: Steady-state system performance (weighted speedup) of the evaluated bank remapping schemes across
varying numbers of enabled DRAM cache banks.

balancing e�ect of each remapping scheme. Figure 8 shows the steady-state system performance of each remapping
scheme averaged (geometric mean) across all workloads for di�erent numbers of active banks. We draw two key
conclusions.

First, CRUNCH, with carefully designed region remapping tables, provides performance comparable to MRI.
Therefore, we conclude that CRUNCH achieves good load balancing, on par with MRI. In fact, except for the case of
three enabled banks, CRUNCH provides slightly better average system performance than MRI. While MRI provides
even distribution over the address space, the simple modulo-k mapping means that accesses at strides that are not
relatively prime to the number of enabled banks will map to a restricted subset of the available banks. In contrast, the
RRT lookup in CRUNCH performs a swizzling that will evenly distribute these strided accesses across all available
banks. As a result, we expect that MRI coupled with a reasonable swizzling scheme would perform on par with
CRUNCH in the steady state.

Second, CRUNCH outperforms BFO when at least one bank is powered down. This is because BFO creates unbal-
anced load distribution by remapping all cache lines within a powered-down bank to the next available consecutive
bank. For instance, when one bank is powered down, the consecutive bank will receive roughly twice as much re-
quest tra�c as the other remaining banks. To quantitatively compare the load balancing e�ect between di�erent
remapping schemes, we de�ne a metric called the imbalance ratio. The imbalance ratio is the maximum request traf-
�c to any bank divided by the minimum request tra�c to any other bank. With three active banks, we observe the
imbalance ratios are 4.2, 1.3, and 1.0 for BFO, CRUNCH, and MRI, respectively, on average across all workloads. The
high bank imbalance leads BFO to reduce average system performance by 11% compared to CRUNCH. In summary,
CRUNCH provides the ability to consistently provide low imbalance ratios, enabling high system performance, for
all workloads. Thus, we conclude that CRUNCH achieves the design goal of e�ectively load-balancing cache line
distribution across banks.

5.2 Power-Down Transition Analysis
Latency Analysis: There are two phases in powering down a cache bank. The �rst phase is searching the bank for
all modi�ed cache lines so that they can either be migrated to another bank or written back to main memory. The
second phase is actually performing the data transfer. The latency associated with performing these operations is
a factor in system performance as well as in determining how responsive a power management scheme can be to
short-term changes in workload behavior.

Figure 9 shows the power-down transition latency averaged across all evaluated workloads for shutting down
di�erent numbers of banks (starting with all eight banks enabled), with and without the proposed hierarchical dirty
bits technique (HIER). Two conclusions are in order. First, CRUNCH achieves signi�cantly lower power-down la-
tencies than MRI, on par with BFO. Second, as the number of powered-down banks decreases, the transition latency
also drops for CRUNCH and BFO, whereas the transition latency remains approximately the same for MRI. This is
because CRUNCH and BFO only need to walk through and transfer dirty cache lines in the powered-down banks. In
contrast, MRI requires walking through all banks because all cache lines are remapped across the remaining active
banks after banks are powered down.
E�ect of hierarchical dirty bits: Figure 9 shows that using the proposed hierarchical dirty bits technique (HIER)
provides consistent latency reductions for all workloads and variations of powered-down bank counts, with maxi-
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Figure 9: The power-down transition latencies of remapping schemes for varied numbers of powered-down banks.
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Figure 10: Performance of WL-1 sampled over time.

mum reductions of 49%, 55%, and 49% for BFO, CRUNCH, and MRI, respectively. This is because using HIER avoids
unnecessary cache walks by enumerating dirty lines directly for migrations.
Transition impact on instantaneous performance: To gain a better sense of how the power-down transition
impacts instantaneous performance and system responsiveness, Figure 10 and Figure 11 show detailed performance
traces sampled over time for two representative workloads, WL-1 and WL-2, when shutting down two banks. The
y-axis indicates the total number of retired instructions during the last sampling period (500K cycles). Several con-
clusions can be drawn from this data.

First, the system performance drops signi�cantly regardless of the remapping schemes used for both workloads.
The reason is that the DRAM cache is prevented from servicing memory requests during the transition to guarantee
correctness.

Second, MRI has a much larger transition latency than both BFO and CRUNCH. There are two main reasons for
this. First, MRI requires walking through the whole cache to enumerate dirty cache lines because cache lines are
uniformly distributed across all active banks. Second, MRI also needs to migrate more dirty cache lines than BFO
and CRUNCH because of the same explanation as the �rst reason: uniform cache line redistribution. For instance,
the number of migrated dirty cache lines are 817, 842, and 2606, for BFO, CRUNCH, and MRI, respectively, for WL-
1’s example transition in Figure 10. As a result, the migration latency is signi�cantly higher for MRI. In addition,
MRI provides lower system performance during the initial program phase right after the completion of power-down
transitions for both WL-1 and WL-2. For example, Figure 10 clearly shows that the retired instruction curve for
MRI falls below BFO and CRUNCH after the transition completes at the sample point 305. This occurs because MRI
remaps a large number of clean cache lines. Therefore, most of the requests will result in misses during the program
phase after the completion of power-down transitions.

Third, the transition overhead for WL-2 is greater than that for WL-1 simply because WL-2 has a much larger
quantity of dirty data, thus requiring longer latency for transferring these dirty cache lines. For WL-2, the number
of migrated dirty cache lines are 134937, 120630, and 393366, for BFO, CRUNCH, and MRI, respectively, which is at
least 100x more than WL-1.
Energy Analysis: Figure 12 shows the energy consumption for each remapping scheme with HIER applied as the
number of powered-down banks is varied. Because energy consumption is proportional to the number of dirty cache
line migrations, the energy numbers follow the same trend as the latency numbers. The following are some major
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Figure 12: Energy consumption during power-down transitions

conclusions. First, BFO and CRUNCH consume signi�cantly lower energy for lower numbers of powered-down
banks, as they need to migrate only the dirty cache lines in the powered-down banks. On the other hand, MRI’s
power consumption remains roughly the same for all bank con�gurations because MRI remaps data in all banks.
Second, CRUNCH actually consumes 3.8% and 8.8% more energy than MRI when shutting down six and seven banks,
respectively. This is because CRUNCH needs to migrate 3.6% and 7.6% more dirty lines when shutting down six and
seven banks respectively, than MRI for these two con�gurations. Nonetheless, CRUNCH consumes 8.6x less energy
than MRI in the best case (shutting down one bank).

5.3 Power-Up Transition Analysis
Latency Analysis: Powering a cache bank back up requires �nding all of the modi�ed cache lines that previously
would have mapped to this bank, but were displaced elsewhere. This requires searching one or more banks, and
then either repatriating those cache lines back to this bank, or writing them back to main memory. Figure 13 shows
the power-up transition latency (when powering back up to all eight banks enabled) averaged across all evaluated
workloads for di�erent remapping schemes along with the HIER mechanism. We draw the following conclusions.

First, using BFO consistently provides lower transition latency for powering up banks, compared to both CRUNCH
and MRI across all variations of powered-up bank counts. As explained in Section 3.6, this is because BFO only needs
to search through a subset of active banks that contain failed-over cache lines. Finding these active banks is straight-
forward because they are the next sequential active bank(s) relative to the newly powered-up bank(s). On the other
hand, both CRUNCH and MRI require searching every active bank to �nd the displaced dirty cache lines. As a re-
sult, when a naive cache line walking scheme that reads all cache lines in all active banks is employed, the latency of
reading every cache line in the active banks to �nd displaced dirty bits dominates the transition latency for CRUNCH
and MRI.

Second, similar to our observations for the power-down transition analysis, using a smarter cache line walking
scheme (HIER) reduces the transition latency signi�cantly for all remapping schemes. The maximum reductions are
66.2%, 69.3%, and 66.2% for BFO, CRUNCH, and MRI, respectively.
Energy Analysis: Figure 14 shows the energy consumption for each remapping scheme with HIER applied, as
the number of powered-up banks is varied. Following are our key conclusions. First, the energy consumption is
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Figure 13: The power-up transition latencies of di�erent remapping schemes averaged across all workloads for turning
on di�erent numbers of banks.
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Figure 14: Energy consumption during power-up transitions

proportional to the transition latency as explained before, for powering down banks. Second, CRUNCH consumes
less energy than MRI for all bank con�gurations since MRI requires remapping all data when the bank con�guration
changes. Third, BFO consistently provides lower energy consumption than both CRUNCH and MRI. This behavior is
the same as for transition latency, which we explain in detail above. Nevertheless, CRUNCH provides better system
performance than BFO during steady-state.

Although BFO provides the lowest power-up transition latency and hence transition energy among all the remap-
ping schemes, as demonstrated in Section 5.1, it has the disadvantage of leading to potentially unbalanced cache line
distribution, causing some banks to become hotspots and hence become bottlenecks for memory requests to these
banks. Therefore, BFO’s lower power-up latency comes at the cost of reduced steady-state system performance. In
contrast, CRUNCH not only provides high system performance with load-balanced distribution of cache lines, but it
also enables fast transition latency for powering down banks and o�ers lower power-up transition latency than MRI.
By applying a simple optimization, hierarchical dirty bits (HIER), the power-up transition latency gap between BFO
and CRUNCH signi�cantly reduces. In addition, other optimizations that can more e�ciently enumerate dirty data
or bound the amount of dirty data in the cache, could potentially further reduce the transition latency gap between
BFO and CRUNCH. Therefore, we conclude that CRUNCH achieves the two design goals of enabling low transition
latency and providing load-balanced cache line distribution.

5.4 Sensitivity to System Parameters
Varying Core Count: Figure 15 shows the average steady-state system performance of di�erent remapping schemes
on an 8-core system running eight randomly-picked multiprogrammed workloads. Similar to the observation we
made for our baseline 4-core system in Section 5.1, CRUNCH provides slightly better system performance than MRI
and continues to outperform BFO. Therefore, we conclude that CRUNCH continues to provide both good steady-state
performance and low transition latency/energy with increasing cache pressure.
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Figure 15: System performance of di�erent remapping schemes on an 8-core system.

0%

0.4%
10.9% 12.4% 8.3% 6.4% 1.8% 0%

0

1

2

3

4

5

1 2 3 4 5 6 7 8

W
ei

gh
te

d
 S

p
ee

d
u

p

Number of Enabled Banks

BFO-SEQ BFO CRUNCH-SEQ CRUNCH

Figure 16: Steady-state performance comparisons between sequential- and balanced-order bank shut-down for BFO
and CRUNCH. % values are performance degradations of BFO-SEQ relative to BFO.

5.5 Impact of Sequential Bank Shut Down
In this section, we evaluate the impact of di�erent bank shut-down patterns on steady-state system performance.
For our evaluations so far, we have been using balanced bank shut-down patterns, described in Section 4. Alterna-
tively, we can power down banks sequentially starting from the bank with the lowest index value. Figure 16 shows
the steady-state performance comparisons between sequential and balanced bank shut-down orders.We make the
following observations. First, BFO signi�cantly reduces system performance when banks are being turned o� se-
quentially. This is because BFO creates an unbalanced load distribution by remapping all the cache lines within the
shut-down banks to a single active bank. Second, CRUNCH provides the same system performance compared to that
of using balanced shut-down orders even if banks are sequentially disabled. The importance of these results is that
with CRUNCH, the overall DRAM cache power management policy can be simpli�ed so that it needs only �gure out
the number of banks that should be turned on, rather than which speci�c banks.

6 Related Work
While techniques to turn o� banks have been studied by several works in the context of SRAM caches, the organiza-
tion of DRAM caches poses additional challenges. Speci�cally, entire sets are mapped to a row in a bank. Therefore,
powering down banks requires (1) remapping of the sets mapped to the being powered-down banks, to the active
banks and (2) migration of dirty data from the being powered-down banks to the active banks. Naive schemes to
perform this remapping/migration su�er from the problem of either high transition times (to remap/migrate) or
degrade performance in the steady state (after remapping/migration).

To our knowledge, this is the �rst work to propose a data remapping scheme that achieves both good load-
balancing in the steady state and low bank power-up/down transition latency/energy.

A number of prior works have proposed to save SRAM cache power by disabling cache ways (e.g., [2, 32, 40]).
Speci�cally, Albonesi [2] proposes to selectively disable cache ways in the L1 data cache to reduce dynamic power
consumption. Bardine et al. [3] propose a D-NUCA cache that dynamically turns on/o� ways based on the running
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application’s behavior, to save both dynamic and static power. Zhang et al. [40] propose a con�gurable cache design
that allows varying the associativity to save dynamic power.

Industry processors have also adapted dynamic cache sizing techniques to reduce leakage power. The Intel Core
Duo Processor [30] implements a dynamically sizeable L2 cache which is down when the processor core enters deep
sleep states. Similarly, AMD’s Steamroller processor [34] implements L2 cache resizing based on the workload. Both
of these implementations disable ways of the cache to achieve a smaller size.

All of these works focus on small SRAM cache designs that have separate tag stores and whose ways are dis-
tributed across all banks. Therefore, turning o� banks merely reduces the associativity of the cache. Our work,
on the other hand, focuses on a large DRAM cache, for which a practical organization requires an entire set to be
mapped to a row in a bank, as described in Section 2.2. Therefore, when turning o� banks in such DRAM caches,
the sets mapped to a bank need to be remapped to other active banks.

Prior works have proposed to dynamically adapt the cache size at a �ner granularity by disabling cache lines
using decay-based techniques (e.g., [1, 11, 12, 16, 20, 29, 41]). These are complementary to our proposed bank shut-
down scheme and can be applied to DRAM caches as well.

Yang et al. [39] propose a hybrid technique that dynamically resizes caches to save leakage power by changing
the number of active cache sets [33, 38] or ways [2]. Following are the key reasons why CRUNCH is signi�cantly
di�erent from this work. First, this mechanism only allows power-of-two resizing in order to address the indexing
issue when enabling or disabling sets. This scheme is similar to MRI with a power-of-two resizing and would result
in a large number of misses, since a number of cache blocks would have to be remapped. Second, the mechanism’s
primary focus is a policy to determine the number of sets or ways to dynamically resize, which is not the focus of
our work.

There has also been signi�cant work in reducing power in o�-chip DRAMs (e.g., [5, 6, 13, 17, 37]). These works
employ di�erent techniques such as partial activation of the DRAM array or low energy operating modes to reduce
DRAM power and do not address the challenges in turning o� banks when DRAM is used as a cache.

7 Conclusion
Die-stacking technologies enable stacking a processor with DRAM and this DRAM can act as a large, high-bandwidth
cache. While some workloads utilize the entire capacity of this large DRAM cache, several workloads use only
a subset of this cache. Therefore, powering down banks of this DRAM cache can enable power savings, without
degrading performance signi�cantly. However, since entire sets are mapped to the same row (in a bank) in a typical
DRAM cache, when a bank is powered down, the sets mapped to it need to be remapped to other active banks.
Our goal in this work is to address this data remapping challenge, thereby enabling DRAM cache resizing. To
this end, we presented Cache Resizing Using Native Consistent Hashing (CRUNCH), a data remapping scheme that
achieves both low transition latency and load-balanced cache line distribution. CRUNCH outperforms two state-of-
the-art remapping schemes, providing both (1) high system performance during steady-state operation, with a certain
number of banks turned on and (2) fast transition latency and energy when banks are powered up or down. Therefore,
we conclude that CRUNCH provides an e�ective data remapping substrate, enabling DRAM cache resizing.
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