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Abstract—In a multicore system, applications running on
different cores interfere at main memory. This inter-application
interference degrades overall system performance and unfairly
slows down applications. Prior works have developed application-
aware memory request schedulers to tackle this problem. State-of-
the-art application-aware memory request schedulers prioritize
memory requests of applications that are vulnerable to interfer-
ence, by ranking individual applications based on their memory
access characteristics and enforcing a total rank order.

In this paper, we observe that state-of-the-art application-
aware memory schedulers have two major shortcomings. First,
ranking applications individually with a total order based on
memory access characteristics leads to high hardware cost and
complexity. Second, ranking can unfairly slow down applications
that are at the bottom of the ranking stack. To overcome these
shortcomings, we propose the Blacklisting Memory Scheduler
(BLISS), which achieves high system performance and fairness
while incurring low hardware cost and complexity. BLISS design
is based on two new observations. First, we find that, to
mitigate interference, it is sufficient to separate applications
into only two groups, one containing applications that cause
interference and another containing applications vulnerable to
interference, instead of ranking individual applications with
a total order. Vulnerable-to-interference group is prioritized
over the interference-causing group. Second, we show that this
grouping can be efficiently performed by simply counting the
number of consecutive requests served from each application –
an application that has a large number of consecutive requests
served is dynamically classified as interference-causing.

We evaluate BLISS across a wide variety of workloads
and system configurations and compare its performance and
complexity with five state-of-the-art memory schedulers. Our
evaluations show that BLISS achieves 5% better system perfor-
mance and 25% better fairness than the best-performing previous
memory scheduler while greatly reducing critical path latency
and hardware area cost of the memory scheduler (by 79% and
43%, respectively).

I. INTRODUCTION
In modern systems, the high latency of accessing large-

capacity off-chip memory and limited memory bandwidth have
made main memory a critical performance bottleneck. In a mul-
ticore system, main memory is typically shared by applications
running on different cores (or, hardware contexts). Requests from
such applications contend for the off-chip memory bandwidth,
resulting in interference. Several prior works [24, 26, 27, 28]
demonstrated that this inter-application interference can severely
degrade overall system performance and fairness. This problem
will likely get worse as the number of cores on a multicore chip
increases [24].

Prior works proposed different solution approaches to mitigate
inter-application interference, with the goal of improving system
performance and fairness [7, 10, 14, 15, 16, 25, 26, 27, 33, 36,
37]. A prevalent solution direction is application-aware memory
request scheduling [15, 16, 26, 27, 33]. The basic idea behind
application-aware memory scheduling is to prioritize requests
of different applications differently, based on the applications’
memory access characteristics. State-of-the-art application-aware
memory schedulers typically i) monitor applications’ memory

access characteristics, ii) rank applications individually based on
these characteristics such that applications that are vulnerable to
interference are ranked higher and iii) prioritize requests based on
the computed ranking.

We observe that there are two major problems with past
ranking-based schedulers. First, such schedulers incur high hard-
ware complexity (logic and storage overhead as well as critical
path latency) to schedule requests based on a scheme that ranks
individual applications with a total order. As a result, the critical
path latency and chip area cost of such schedulers are significantly
higher compared to application-unaware schedulers. For example,
as we demonstrate in Section VII-A, TCM [16], a state-of-the-
art application-aware scheduler is 8x slower and 1.8x larger
than a commonly-employed application-unaware scheduler, FR-
FCFS [30]. Second, when a total order based ranking is employed,
applications that are at the bottom of the ranking stack get heavily
deprioritized and unfairly slowed down. This greatly degrades
system fairness.

Our goal, in this work, is to design a new memory scheduler
that does not suffer from these two problems: one that achieves
high system performance and fairness while incurring low hard-
ware cost and low scheduling latency. To this end, we propose
the Blacklisting memory scheduler (BLISS). Our BLISS design is
based on two new observations.

Observation 1. In contrast to forming a total rank order of
all applications (as done in prior works), we find that, to mitigate
interference, it is sufficient to i) separate applications into only
two groups, one group containing applications that are vulnerable
to interference and another containing applications that cause
interference, and ii) prioritize the requests of the vulnerable-to-
interference group over the requests of the interference-causing
group. Although one prior work, TCM [16], proposed to group
applications based on memory intensity, TCM still ranks applica-
tions individually within each group and enforces the total rank
order during scheduling. Our approach overcomes the two major
problems with such ranking-based schedulers. First, separating
applications into only two groups, as opposed to employing rank-
ing based on a total order of applications, significantly reduces
hardware complexity. Second, since our approach prioritizes only
one dynamically-determined group of applications over another
dynamically-determined group, no single application is heavily
deprioritized, improving overall system fairness.

Observation 2. We observe that applications can be
efficiently classified as either vulnerable-to-interference or
interference-causing by simply counting the number of consec-
utive requests served from an application in a short time interval.
Applications with a large number of consecutively-served re-
quests are classified as interference-causing. The rationale behind
this approach is that when a large number of consecutive requests
are served from the same application, requests of other applica-
tions are more likely to be delayed, causing those applications to
stall. On the other hand, applications with very few consecutive
requests will likely not delay other applications. Our approach
to classifying applications is simpler to implement than prior
approaches (e.g., [15, 16, 27]) that use more complicated metrics
such as memory intensity, row-buffer locality, bank-level paral-
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lelism or long-term memory service as proxies for vulnerability
to interference.

Mechanism Overview. Based on these two observations,
our mechanism, the Blacklisting Memory Scheduler (BLISS),
counts the number of consecutive requests served from the same
application within a short time interval. When this count exceeds
a threshold, BLISS places the application in the interference-
causing group, which we also call the blacklisted group. In
other words, BLISS blacklists the application such that it is
deprioritized. During scheduling, non-blacklisted (vulnerable-to-
interference) applications’ requests are given higher priority over
requests of blacklisted (interference-causing) applications. No
per-application ranking is employed. Prioritization is based solely
on two groups as opposed to a total order of applications.

This paper makes the following contributions:
• We present two new observations on how a simple grouping

scheme that avoids per-application ranking can mitigate inter-
ference, based on our analyses and studies of previous memory
schedulers. These observations can enable simple and effective
memory interference mitigation techniques.
• We propose the Blacklisting memory scheduler (BLISS), which

achieves high system performance and fairness while incurring
low hardware cost and complexity. The key idea is to separate
applications into only two groups, vulnerable-to-interference
and interference-causing, and deprioritize the latter during
scheduling, rather than ranking individual applications with a
total order based on their access characteristics.
• We provide a comprehensive complexity analysis of five pre-

viously proposed memory schedulers, comparing their critical
path latency and area via RTL implementations. Our results
show that BLISS reduces critical path latency/area of the mem-
ory scheduler by 79%/43% respectively, compared to the best-
performing ranking-based scheduler, TCM [16].
• We evaluate BLISS against five previously-proposed memory

schedulers in terms of system performance and fairness across a
wide range of workloads. Our results show that BLISS achieves
5% better system performance and 25% better fairness than the
best previous scheduler, TCM [16].

II. BACKGROUND AND MOTIVATION
In this section, we first provide a brief background on the

organization of a DRAM main memory system. We then describe
previous memory scheduling proposals and their shortcomings
that motivate the need for a new memory scheduler - our Black-
listing memory scheduler.

A. DRAM Background
The DRAM main memory system is organized hierarchically

as channels, ranks and banks. Channels are independent and can
operate in parallel. Each channel consists of ranks (typically 1 -
4) that share the command, address and data buses of the channel.
A rank consists of multiple banks that can operate in parallel.
However, all banks within a channel share the command, address
and data buses of the channel. Each bank is organized as an array
of rows and columns. On a data access, the entire row containing
the data is brought into an internal structure called the row buffer.
Therefore, a subsequent access to the same row can be served
from the row buffer itself and need not access the array. Such
an access is called a row hit. On an access to a different row,
however, the array needs to be accessed. Such an access is called
a row miss/conflict. A row hit is served ∼2-3x faster than a row
miss/conflict [11]. For more detail, please see [17, 18].

B. Memory Scheduling
State-of-the-art memory controllers employ a memory

scheduling policy called First Ready First Come First Served (FR-
FCFS) [30, 38] that leverages the row buffer by prioritizing row
hits over row misses/conflicts. Older requests are then prioritized

over newer requests. FRFCFS aims to maximize DRAM through-
put by prioritizing row hits. However, it unfairly prioritizes re-
quests of applications that generate a large number of requests
to the same row (high-row-buffer-locality) and access memory
frequently (high-memory-intensity) [24, 26]. Previous work [15,
16, 26, 27] proposed application-aware memory scheduling tech-
niques that take into account the memory access characteristics
of applications and schedule requests appropriately in order to
mitigate inter-application interference and improve system per-
formance and fairness. We will focus on four state-of-the-art
schedulers, which we evaluate quantitatively in Section VII.

Mutlu and Moscibroda propose PARBS [27], an application-
aware memory scheduler that batches the oldest requests from
applications and prioritizes the batched requests in order to
prevent starvation. Within each batch, PARBS ranks individual
applications based on the number of outstanding requests of each
application and, using this total rank order, prioritizes requests of
applications that have low-memory-intensity.

Kim et al. in [15] observe that applications that receive low
memory service tend to experience interference from applications
that receive high memory service. Based on this observation, they
propose ATLAS, an application-aware memory scheduling policy
that ranks individual applications based on the amount of long-
term memory service each receives and prioritizes applications
that receive low memory service.

Thread cluster memory scheduling (TCM) [16] ranks indi-
vidual applications by memory intensity such that low-memory-
intensity applications are prioritized over high-memory-intensity
applications. Kim et al. [16] also observed that ranking all appli-
cations based on memory intensity and prioritizing low-memory-
intensity applications could slow down the deprioritized high-
memory-intensity applications significantly and unfairly. In order
to mitigate this unfairness, TCM clusters applications into low and
high memory-intensity clusters and employs a different ranking
scheme in each cluster. In the low-memory-intensity cluster,
applications are ranked by memory intensity, whereas, in the
high-memory-intensity cluster, applications’ ranks are shuffled to
provide fairness. Both clusters employ a total rank order among
applications at any given time.

More recently, Ghose et al. [10] propose a memory scheduler
that aims to prioritize critical memory requests that stall the in-
struction window for long lengths of time. The scheduler predicts
the criticality of a load instruction based on how long it has
stalled the instruction window in the past (using the instruction
address (PC)) and prioritizes requests from load instructions that
have large total and maximum stall times measured over a period
of time. Although this scheduler is not application-aware, we
compare to it as it is the most recent scheduler that aims to
maximize performance by mitigating memory interference.

C. Shortcomings of Previous Schedulers
These state-of-the-art schedulers attempt to achieve two main

goals - high system performance and high fairness. However,
previous schedulers have two major shortcomings. First, these
schedulers increase hardware complexity in order to achieve
high system performance and fairness. Specifically, most of these
schedulers rank individual applications with a total order, based
on their memory access characteristics [15, 16, 27]. Scheduling
requests based on a total rank order incurs high hardware com-
plexity, as we demonstrate in Section VII-A, slowing down the
memory scheduler significantly (by 8x for TCM compared to
FRFCFS), while also increasing its area (by 1.8x). Such high
critical path delays in the scheduler directly increase the time
it takes to schedule a request, potentially making the memory
controller latency a bottleneck. Second, ranking is unfair to ap-
plications at the bottom of the ranking stack. Even shuffling the
ranks periodically (like TCM does) does not fully mitigate the
unfairness and slowdowns experienced by an application when it
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Fig. 1: Request service distribution over time with TCM and Grouping schedulers

is at the bottom of the ranking stack, as we show in Section III.
Our goal, in this work, is to design a new memory scheduler

that does not suffer from these shortcomings: one that achieves
high system performance and fairness while incurring low hard-
ware cost and complexity. To this end, we propose the Blacklist-
ing memory scheduler (BLISS) based on two new observations
described in the next section.

III. KEY OBSERVATIONS
Several previous memory schedulers rank individual applica-

tions with a total order, to mitigate inter-application interference.
While such ranking is one way to mitigate interference, it has
shortcomings, as described in Section II-C. We seek to overcome
these shortcomings by exploring an alternative means to pro-
tecting vulnerable applications from interference. We make two
key observations on which we build our new memory scheduling
mechanism.

Observation 1. Separating applications into only two groups
(interference-causing and vulnerable-to-interference), without
ranking individual applications, is sufficient to mitigate inter-
application interference.

We observe that applications that are vulnerable to in-
terference can be protected from interference-causing applica-
tions by simply separating them into two groups, one con-
taining interference-causing applications and another containing
vulnerable-to-interference applications, rather than ranking indi-
vidual applications with a total order as many state-of-the-art
schedulers do. To motivate this, we contrast TCM [16], which
clusters applications into two groups and employs a total rank
order within each group, with a simple scheduling mechanism
(Grouping) that simply groups applications into two, based on
memory intensity as TCM does, and prioritizes the low-intensity
group without employing ranking in each group. Grouping uses
the FRFCFS policy within each group. Figure 1 shows the number
of requests served during a 100,000 cycle period at intervals of
1,000 cycles, for three representative applications, astar, hmmer
and lbm from the SPEC CPU2006 benchmark suite [2], using
these two schedulers.1 These three applications are run along with
other applications in a simulated 24-core 4-channel system.2

Figure 1 shows that TCM has high variance in the number of
requests served across time, with very few requests being served
during several intervals and many requests being served during
a few intervals. This behavior is seen in most applications in
the high-memory-intensity cluster since TCM ranks individual
applications with a total order. This ranking causes some high-
memory-intensity applications’ requests to be prioritized over
other high-memory-intensity applications’ requests, at any point
in time, resulting in high interference. Although TCM periodi-
cally shuffles this ranking, we observe that an application benefits
from ranking only during those periods when it is ranked very
high. These very highly ranked periods correspond to the spikes
in the number of requests served (for TCM) in Figure 1 for that
application. During the other periods of time when an application

1All these three applications are in the high-memory-intensity group.
2See Section VI for our methodology.

is ranked lower (i.e., most of the shuffling intervals), only a small
number of its requests are served, resulting in very slow progress.
Therefore, most high-memory-intensity applications experience
high slowdowns due to ranking.

On the other hand, when applications are separated into only
two groups based on memory intensity and no per-application
ranking is employed within a group, some interference exists
among applications within each group (due to the application-
unaware FRFCFS scheduling in each group). In the high-
memory-intensity group, this interference contributes to the few
low-request-service periods seen for Grouping in Figure 1. How-
ever, the request service behavior of Grouping is less spiky than
with TCM, resulting in lower memory stall times and a more
steady and overall higher progress rate for high-memory-intensity
applications, as compared to when applications are ranked in a
total order. In the low-memory-intensity group, there is not much
of a difference between ranking and grouping, since applications
anyway have low memory intensities and hence, do not cause
significant interference to each other. Therefore, Grouping results
in higher system performance and significantly higher fairness
than TCM, as shown in Figure 2 (across 80 24-core workloads
on a simulated 4-channel system).
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Fig. 2: Performance and fairness of Grouping

Solely grouping applications into two also requires much
lower hardware overhead than ranking-based schedulers that incur
high overhead for computing and enforcing a total rank order for
all applications. Therefore, grouping can not only achieve better
system performance and fairness than ranking, but it also can
do so while incurring lower hardware cost. However, classifying
applications into two groups at coarse time granularities, on the
order of a few million cycles, like TCM’s clustering mechanism
does (and like what we have evaluated in Figure 2), can still
cause unfair application slowdowns. This is because applications
in one group would be deprioritized for a long time interval,
which is especially dangerous if application behavior changes
during the interval. Our second observation, which we describe
next, minimizes such unfairness and at the same time reduces the
complexity of grouping even further.

Observation 2. Applications can be classified into
interference-causing and vulnerable-to-interference groups
by monitoring the number of consecutive requests served from
each application at the memory controller.

Previous work attempted to perform grouping, along with
ranking, to mitigate interference. Specifically, TCM [16] ranks
applications by memory intensity and classifies applications that
make up a certain fraction of the total memory bandwidth usage
into a group called the low-memory-intensity cluster and the
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remaining applications into the high-memory-intensity cluster.
While employing such a grouping scheme, without ranking indi-
vidual applications, reduces hardware complexity and unfairness
compared to a total order based ranking scheme (as we show in
Figure 2), it i) can still cause unfair slowdowns due to classify-
ing applications into groups at coarse time granularities, which
is especially dangerous if application behavior changes during
an interval, and ii) incurs additional hardware overhead and
scheduling latency to compute and rank by long-term memory
intensity and total memory bandwidth usage.

We propose to perform grouping using a significantly simpler
scheme: simply by counting the number of requests served from
each application in a short time interval. Applications that have
a large number (i.e., above a threshold value) of consecutive
requests served are classified as interference-causing (this clas-
sification is periodically reset). The rationale behind this scheme
is that when an application has a large number of consecutive re-
quests served within a short time period, which is typical of appli-
cations with high memory intensity or high row-buffer locality, it
delays other applications’ requests, thereby stalling their progress.
Hence, identifying and essentially blacklisting such interference-
causing applications by placing them in a separate group and
deprioritizing requests of this blacklisted group can prevent such
applications from hogging the memory bandwidth. As a result, the
interference experienced by vulnerable applications is mitigated.
The blacklisting classification is cleared periodically, at short
time intervals (on the order of 1000s of cycles) in order not
to deprioritize an application for too long of a time period to
cause unfairness or starvation. Such clearing and re-evaluation
of application classification at short time intervals significantly
reduces unfair application slowdowns (as we quantitatively show
in Section VII-B).

IV. MECHANISM
In this section, we present the details of our Blacklisting mem-

ory scheduler (BLISS) that employs a simple grouping scheme
motivated by our key observations from Section III. The basic idea
behind BLISS is to observe the number of consecutive requests
served from an application over a short time interval and blacklist
applications that have a relatively large number of consecutive
requests served. The blacklisted (interference-causing) and non-
blacklisted (vulnerable-to-interference) applications are thus sep-
arated into two different groups. The memory scheduler then pri-
oritizes the non-blacklisted group over the blacklisted group. The
two main components of BLISS are i) the blacklisting mechanism
and ii) the memory scheduling mechanism that schedules requests
based on the blacklisting mechanism. We describe each in turn.
A. The Blacklisting Mechanism

The blacklisting mechanism needs to keep track of three
quantities - 1) the application (i.e., hardware context) ID of
the last scheduled request (Application ID)3, 2) the number of
requests served from an application (#Requests Served), and 3)
the blacklist status of each application.

When the memory controller is about to issue a request, it
compares the application ID of the request with the Application
ID of the last scheduled request.
• If the application IDs of the two requests are the same, the

#Requests Served counter is incremented.
• If the application IDs of the two requests are not the same, the

#Requests Served counter is reset to zero and the Application
ID register is updated with the application ID of the request that
is being issued.

3An application here denotes a hardware context. There can be as
many applications executing actively as there are hardware contexts. Multiple
hardware contexts belonging to the same application are considered separate
applications by our mechanism, but our mechanism can be extended to deal
with such multithreaded applications.

If the #Requests Served exceeds a Blacklisting Threshold (set
to 4 in our evaluations):
• The application with ID Application ID is blacklisted (classi-

fied as interference-causing).
• The #Requests Served counter is reset to zero.

The blacklist information is cleared periodically after every
Clearing Interval (set to 10000 cycles in our evaluations).

B. Blacklist-Based Memory Scheduling
Once the blacklist information is computed, it is used to

determine the scheduling priority of a request. Memory requests
are prioritized in the following order:

1) Non-blacklisted applications’ requests
2) Row-buffer hit requests
3) Older requests
Prioritizing requests of non-blacklisted applications over re-

quests of blacklisted applications mitigates interference. Row-
buffer hits are then prioritized to optimize DRAM bandwidth
utilization and then older requests, for forward progress.

V. IMPLEMENTATION
The Blacklisting memory scheduler requires additional stor-

age (flip flops) and logic over an FRFCFS scheduler to 1) per-
form blacklisting and 2) prioritize non-blacklisted applications’
requests.

A. Storage Cost
In order to perform blacklisting, the memory scheduler needs

the following storage components:
• one register to store Application ID
• one counter for #Requests Served
• one register to store the Blacklisting Threshold that determines

when an application should be blacklisted
• a blacklist bit vector to indicate the blacklist status of each

application (one bit for each hardware context)
In order to prioritize non-blacklisted applications’ requests,

the memory controller needs to store the application ID (hardware
context ID) of each request so it can determine the blacklist status
of the application and appropriately schedule the request.

B. Logic Cost
The memory scheduler requires comparison logic to

• determine when an application’s #Requests Served exceeds the
Blacklisting Threshold and set the bit corresponding to the
application in the Blacklist bit vector.
• prioritize non-blacklisted applications’ requests.

We provide a quantitative evaluation of the hardware area
cost and latency of implementing BLISS and previously proposed
memory schedulers, in Section VII-A.

VI. METHODOLOGY
A. System Configuration

We model the DRAM memory system using a cycle-level
in-house DDR3-SDRAM simulator. The simulator was validated
against Micron’s behavioral Verilog model [22] and DRAM-
Sim2 [31]. This DDR3 simulator is integrated with a cycle-
level in-house simulator that models out-of-order execution cores,
driven by a Pin [20] tool at the frontend, Each core has a private
cache of 512 KB size. We present most of our results on a system
with the DRAM main memory as the only shared resource in
order to isolate the effects of memory interference on application
performance. We also present results with shared caches in Sec-
tion VII-G. Table I provides more details on our simulated system.
We perform most of our studies on a system with 24 cores and 4
channels. We provide a sensitivity analysis for a wide range of
core and channel counts, in Section VII-E. Each channel has one
rank and each rank has eight banks. We stripe data across channels
and banks at the granularity of a row.

4



 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2
W

e
ig

h
te

d
 S

p
e
e
d
u
p

FRFCFS
FRFCFS-Cap

PARBS

ATLAS
TCM

BLISS

 0.2
 0.21
 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29
 0.3

H
a
rm

o
n
ic

 S
p
e
e
d
u
p

FRFCFS
FRFCFS-Cap

PARBS

ATLAS
TCM

BLISS

 6

 8

 10

 12

 14

M
a
x
im

u
m

 S
lo

w
d
o
w

n

FRFCFS
FRFCFS-Cap

PARBS

ATLAS
TCM

BLISS

Fig. 3: System performance and fairness of BLISS compared to previous schedulers

Processor 16-64 cores, 5.3GHz, 3-wide issue,
8 MSHRs, 128-entry instruction window

Last-level cache 64B cache-line, 16-way associative,
512KB private cache-slice per core

Memory controller 128-entry read/write request queue per controller

Memory Timing: DDR3-1066 (8-8-8) [23]
Organization: 1-8 channels, 1 rank-per-channel,
8 banks-per-rank, 8 KB row-buffer

TABLE I: Configuration of the simulated system

B. Workloads
We perform our main studies using 24-core multiprogrammed

workloads made of applications from the SPEC CPU2006
suite [2], TPC-C, Matlab and the NAS parallel benchmark
suite [1].4 We construct 80 workloads with a range of memory
intensities using random combinations of benchmarks. We simu-
late each workload for 100 million representative cycles.
C. Metrics

We quantitatively compare BLISS with previous memory
schedulers in terms of system performance, fairness and complex-
ity. We use the weighted speedup [6, 9, 32] metric to measure
system performance. We use the maximum slowdown metric [6,
15, 16, 35] to measure unfairness. We report the harmonic
speedup metric [21] as another measure of system performance.
The harmonic speedup metric also serves as a measure of balance
between system performance and fairness [21]. We report area
in micrometer2 (um2) and scheduler critical path latency in
nanoseconds (ns) as measures of complexity.
D. RTL Synthesis Methodology

In order to obtain timing/area results for BLISS and previous
schedulers, we implement them in Register Transfer Level (RTL),
using Verilog. We synthesize the RTL implementations with a
commercial 32 nm standard cell library, using the Design Com-
piler tool from Synopsys.
E. Mechanism Parameters

For BLISS, we use a value of four for Blacklisting Threshold,
and a value of 10000 cycles for Clearing Interval. These values
provide a good balance between performance and fairness, as we
observe from our sensitivity studies in Section VII-F. For the other
schedulers, we tuned their parameters to achieve high perfor-
mance and fairness on our system configurations and workloads.
We use a Marking-Cap of 5 for PARBS, cap of 4 for FRFCFS-
Cap, HistoryWeight of 0.875 for ATLAS, ClusterThresh of 0.2
and ShuffleInterval of 1000 cycles for TCM.

VII. EVALUATION
We compare BLISS with five previously proposed mem-

ory schedulers, FRFCFS, FRFCFS with a cap (FRFCFS-Cap),
PARBS, ATLAS and TCM. FRFCFS-Cap is a modified version of
FRFCFS that caps the number of consecutive row-buffer hitting
requests that can be served from an application [26]. Figure 3
shows the average system performance (weighted speedup and
harmonic speedup) and unfairness (maximum slowdown) across
all our workloads. Figure 4 shows a Pareto plot of weighted

4Each benchmark is single threaded.

speedup and maximum slowdown. We make three major obser-
vations. First, BLISS achieves 5% better weighted speedup, 25%
better maximum slowdown and 19% better harmonic speedup
than TCM, the best performing previous scheduler (in terms of
weighted speedup), while reducing the critical path and area by
79% and 43% respectively (as we will show in Section VII-A).
Therefore, we conclude that BLISS achieves both high system
performance and fairness, at low hardware cost and complexity.

5 

7 

9 

11 

13 

15 

7.5 8 8.5 9 9.5 10 

U
n
fa

ir
n
e
s
s
  

(M
a

x
im

u
m

 S
lo

w
d
o
w

n
) 

System Performance  
(Weighted Speedup) 

FRFCFS FRFCFS-Cap PARBS 

ATLAS TCM BLISS 

Fig. 4: Pareto plot of system performance and fairness

Second, BLISS significantly outperforms all these five pre-
vious schedulers in terms of system performance, however, it
has 10% higher unfairness than PARBS, the previous scheduler
with the least unfairness. PARBS creates request batches con-
taining the oldest requests from each application. Older batches
are prioritized over newer batches. However, within each batch,
individual applications’ requests are ranked and prioritized based
on memory intensity. PARBS aims to preserve fairness by batch-
ing older requests, while still employing ranking within a batch
to prioritize low-memory-intensity applications. We observe that
the batching aspect of PARBS is quite effective in mitigating
unfairness, although it increases complexity. This unfairness re-
duction also contributes to the high harmonic speedup of PARBS.
However, batching restricts the amount of request reordering that
can be achieved through ranking. Hence, low-memory-intensity
applications that would benefit from request reordering have
lower performance. As a result, PARBS has 8% lower weighted
speedup than BLISS. Furthermore, PARBS has a 6.5x longer
critical path and ˜2x greater area than BLISS, as we will show
in Section VII-A. Therefore, we conclude that BLISS achieves
better system performance than PARBS, at much lower hardware
cost, while slightly trading off fairness.

Third, BLISS has 4% higher unfairness than FRFCFS-Cap,
but 8% higher performance than FRFCFS-Cap. This is because
FRFCFS-Cap breaks long row hit chains that could potentially
delay other applications’ requests when a naive FRFCFS sched-
uler is employed. Hence, FRFCFS-Cap only restricts the length
of the ongoing row hit streak, whereas blacklisting an application
can deprioritize the application for a longer time, until the next
clearing interval. As a result, FRFCFS-Cap slows down high row-
buffer locality applications to a lower degree than BLISS, thereby
achieving lower unfairness than BLISS. However, restricting
only the on-going streak rather than blacklisting an interfering
application causes higher interference to other applications, de-
grading system performance compared to BLISS. Furthermore,
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FRFCFS-Cap is unable to mitigate interference due to applica-
tions with high memory intensity yet low row-buffer locality,
whereas BLISS is effective in mitigating interference due to such
applications as well. Hence, we conclude that BLISS achieves
higher system performance (weighted speedup) than FRFCFS-
Cap, while slightly trading off fairness.
A. Hardware Complexity

Figures 5 and 6 show the critical path latency and area of five
previous schedulers and BLISS for a 24-core system for every
memory channel. We draw two major conclusions. First, previ-
ously proposed ranking-based schedulers, PARBS/ATLAS/TCM,
greatly increase the critical path latency and area of the memory
scheduler: by 11x/5.3x/8.1x and 2.4x/1.7x/1.8x respectively, com-
pared to FRFCFS and FRFCFS-Cap, whereas BLISS increases
latency and area by only 1.7x and 3.2% over FRFCFS/FRFCFS-
Cap.5 Second, PARBS, ATLAS and TCM cannot meet the strin-
gent worst-case timing requirements posed by the DDR3 and
DDR4 standards [11, 12]. In the case where every request is a
row-buffer hit, the memory controller would have to schedule
a request every read-to-read cycle time (tCCD), the minimum
value of which is 4 cycles for both DDR3 and DDR4. TCM
and ATLAS can meet this worst-case timing only until DDR3-
800 (read-to-read cycle time of 10 ns) and DDR3-1333 (read-to-
read cycle time of 6 ns) respectively, whereas BLISS can meet
the worst-case timing all the way down to the highest released
frequency for DDR4, DDR4-3200 (read-to-read time of 2.5 ns).
Hence, the high critical path latency of PARBS, ATLAS and TCM
is a serious impediment to their adoption in today’s and future
memory technologies. Techniques like pipelining could poten-
tially be employed to reduce the critical path latency. However,
the additional flops required for pipelining would increase area,
power and design effort significantly. Therefore, we conclude that
BLISS, with its greatly lower complexity and cost as well as
higher system performance and competitive or better fairness, is
a more effective alternative to state-of-the-art application-aware
memory schedulers.
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B. Comparison with TCM’s Clustering Mechanism
Figure 7 shows the system performance and fairness of

BLISS, TCM and TCM’s clustering mechanism (TCM-Cluster).
TCM-Cluster performs clustering, but does not rank applications
within each cluster. We draw two major conclusions. First, TCM-
Cluster has similar system performance as BLISS, since both
BLISS and TCM-Cluster prioritize vulnerable applications by

5The area numbers are for the lowest value of critical path latency that
the scheduler is able to meet.

separating them into a group and prioritizing that group rather
than ranking individual applications. Second, TCM-Cluster has
significantly higher unfairness compared to BLISS. This is be-
cause TCM-Cluster always deprioritizes high-memory-intensity
applications, regardless of whether or not they are causing in-
terference (as described in Observation 2 in Section III). BLISS,
on the other hand, observes an application at fine time granular-
ities, independently at every memory channel and blacklists an
application at a channel only when it is generating a number of
consecutive requests (i.e., potentially causing interference to other
applications on the same channel).

 0.8

 0.9

 1

 1.1

 1.2

 1.3

W
e
ig

h
te

d
 S

p
e
e
d
u
p

(N
o
rm

a
liz

e
d
)

FRFCFS
TCM

TCM-Cluster
BLISS

 0.8

 0.9

 1

 1.1

 1.2

 1.3

H
a
rm

o
n
ic

 S
p
e
e
d
u
p

(N
o
rm

a
liz

e
d
)

FRFCFS
TCM

TCM-Cluster
BLISS

 0.6

 0.7

 0.8

 0.9

 1

 1.1

M
a
x
im

u
m

 S
lo

w
d
o
w

n
(N

o
rm

a
liz

e
d
)

FRFCFS
TCM

TCM-Cluster
BLISS

Fig. 7: Comparison with TCM’s clustering mechanism

C. Comparison with Criticality-Aware Scheduling
We compare the system performance and fairness of BLISS

with those of criticality-aware memory schedulers [10]. The basic
idea behind criticality-aware memory scheduling is to prioritize
memory requests from load instructions that have stalled the
instruction window for long periods of time in the past. Ghose
et al. [10] evaluate prioritizing load requests based on both maxi-
mum and total stall times caused by loads instructions in the past.
Figure 8 shows the system performance and fairness of BLISS
and the criticality-aware scheduling mechanisms, normalized to
FRFCFS, across 40 workloads. Two observations are in order.
First, BLISS significantly outperforms criticality-aware schedul-
ing mechanisms in terms of both system performance and fair-
ness. This is because the criticality-aware scheduling mechanisms
unfairly deprioritize and slow down low-memory-intensity appli-
cations that inherently generate fewer requests, since stall times
tend to be low for such applications. Second, criticality-aware
scheduling incurs hardware cost to prioritize requests with higher
stall times. Specifically, the number of bits to represent stall times
is on the order of 12-14, as described in [10]. Hence, the logic for
comparing stall times and prioritizing requests with higher stall
times would incur even higher cost than per-application ranking
mechanisms where the number of bits to represent a core’s rank
grows only as as log2NumberOfCores (e.g. 5 bits for a 32-
core system). Therefore, we conclude that BLISS achieves sig-
nificantly better system performance and fairness, while incurring
lower hardware cost.
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D. Effect of Workload Memory Intensity
Figure 9 shows system performance and fairness for work-

loads with different memory intensities, classified into differ-
ent categories based on the fraction of high-memory-intensity
applications in a workload.6 We draw three major conclusions.
First, BLISS outperforms previous memory schedulers in terms
of system performance across all intensity categories. Second,
the system performance benefits of BLISS increase with work-
load memory intensity. This is because as the number of high-
memory-intensity applications in a workload increases, ranking
individual applications, as done by previous schedulers, causes
more unfairness and degrades system performance. Third, BLISS
achieves significantly lower unfairness than previous memory
schedulers, except FRFCFS-Cap and PARBS, across all intensity
categories. Therefore, we conclude that BLISS is effective in
mitigating interference and improving system performance and
fairness across all intensity categories.
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Fig. 9: Sensitivity to workload memory intensity

E. Sensitivity to System Parameters
Figures 10 and 11 show the system performance and fairness

of FRFCFS, PARBS, TCM and BLISS for different core counts
(when the channel count is 4) and different channel counts (when
the core count is 24), across 40 workloads for each core/channel
count. The numbers over the bars indicate percentage increase
or decrease compared to FRFCFS. We did not optimize the
parameters of different schedulers for each configuration. We
draw two major conclusions. First, BLISS achieves higher system
performance and lower unfairness than all the other scheduling
policies (except PARBS, in terms of fairness) similar to our results
on the 24-core, 4-channel system, by virtue of its effective inter-
ference mitigation. The only anomaly is that TCM has marginally
higher weighted speedup than BLISS for the 64-core system.
However, this increase comes at the cost of significant increase
in unfairness.
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6We classify applications with MPKI less than 5 as low-memory-intensity
and the rest as high-memory-intensity.

Second, BLISS’ system performance benefit (as indicated by
the percentages on top of bars, over FRFCFS) increases when
the system becomes more bandwidth constrained, i.e., high core
counts and low channel counts. As contention increases in the
system, BLISS has greater opportunity to mitigate it.7

F. Sensitivity to Algorithm Parameters
Tables II and III show the system performance and fairness

of BLISS for different values of the Blacklisting Threshold and
Clearing Interval respectively, across 40 workloads. Three major
conclusions are in order. First, a Clearing Interval of 10000 cycles
provides a good balance between performance and fairness. If
the blacklist is cleared too frequently (1000 cycles), interference-
causing applications are not deprioritized for long enough, re-
sulting in low system performance. In contrast, if the blacklist
is cleared too infrequently, interference-causing applications are
deprioritized for too long, resulting in high unfairness. Second,
a Blacklisting Threshold of 4 provides a good balance between
performance and fairness. When Blacklisting Threshold is very
small, applications are blacklisted as soon as they have very few
requests served, resulting in poor interference mitigation as many
applications are quickly blacklisted. On the other hand, when
Blacklisting Threshold is large, low and high memory-intensity
applications are not segregated effectively.

```````̀Threshold
Interval 1000 10000 100000

2 8.76 8.66 7.95
4 8.61 9.18 8.60
8 8.42 9.05 9.24

TABLE II: Perf. sensitivity to threshold and interval

```````̀Threshold
Interval 1000 10000 100000

2 6.07 6.24 7.78
4 6.03 6.54 7.01
8 6.02 7.39 7.29

TABLE III: Unfairness sensitivity to threshold and interval

G. Shared Caches
Table IV shows system performance and fairness with a

32 MB shared cache (instead of the 512 KB per core private
caches used in our other experiments). BLISS achieves 5%/24%
better performance/fairness compared to TCM, demonstrating
that BLISS is effective in mitigating memory interference in the
presence of shared caches as well.

Metric FRFCFS TCM BLISS
Weighted Speedup (Normalized) 1 1.13 1.18

Maximum Slowdown (Normalized) 1 0.99 0.75

TABLE IV: Performance and fairness with a shared cache

VIII. RELATED WORK
Memory Scheduling: The closest previous works to BLISS are
other memory scheduling techniques. We have already com-
pared BLISS both qualitatively and quantitatively to previously
proposed memory schedulers, FRFCFS [30, 38], PARBS [27],
ATLAS [15], TCM [16] and criticality-aware memory schedul-
ing [10], which have been designed to mitigate interference
in a multicore system. Parallel Application Memory Schedul-
ing (PAMS) [8] tackles the problem of mitigating interfer-
ence between different threads of a multithreaded application,
while Staged Memory Scheduling (SMS) [3] attempts to mit-
igate interference between the CPU and GPU in CPU-GPU
systems. Principles from BLISS can be employed in both of
these contexts to identify and deprioritize interference-causing
threads, thereby mitigating interference experienced by vulnera-
ble threads/applications.

7Fairness benefits reduce at very high core counts and very low channel
counts, since memory bandwidth becomes highly saturated.

7



While memory scheduling is a major solution direction to-
wards mitigating interference, previous works have also explored
other approaches such as interleaving [14], memory bank/channel
partitioning [13, 19, 25], source throttling [4, 7, 29] and thread
scheduling [34, 37] to mitigate interference.
Subrow Interleaving: Kaseridis et al. [14] propose minimalist
open page, a data mapping policy that interleaves data at the
granularity of a sub-row across channels and banks such that
applications with high row-buffer locality are prevented from
hogging the row buffer, while still preserving some amount of
row-buffer-locality. Memory scheduling and interleaving can be
employed in a complementary manner, as illustrated in [14].
Our evaluations also show a 7% performance improvement when
BLISS is implemented on top of minimalist open page.
Memory Channel/Bank Partitioning: Previous works [13, 19,
25] propose techniques to mitigate inter-application interference
by partitioning channels/banks among applications such that the
data of interfering applications are mapped to different chan-
nels/banks. Our approach is complementary to these schemes and
can be used in conjunction with them to achieve more effective
interference mitigation.
Source Throttling: Source throttling techniques (e.g., [4, 7,
29]) propose to throttle the memory request injection rates
of interference-causing applications at the processor core itself
rather than regulating an application’s access behavior at the
memory, unlike memory scheduling, partitioning or interleaving.
BLISS is complementary to source throttling and can be com-
bined with it to achieve better interference mitigation.
OS Thread Scheduling: Previous works [34, 37] propose to
mitigate shared resource contention by co-scheduling threads that
interact well and interfere less at the shared resources. Such a
solution relies on the presence of enough threads with such symbi-
otic properties, whereas our proposal can mitigate memory inter-
ference even if interfering threads are co-scheduled. Furthermore,
such thread scheduling policies and BLISS can be combined in
a synergistic manner to further improve system performance and
fairness. Other techniques to map applications to cores to mitigate
memory interference, such as [5], can be combined with BLISS.

IX. CONCLUSION
We introduce the Blacklisting memory scheduler (BLISS),

a new and simple approach to memory scheduling in multicore
systems. We observe that the per-application ranking mechanisms
employed by previously proposed application-aware memory
schedulers incur high hardware cost, cause high unfairness and
lead to high scheduling latency to the point that the scheduler can-
not meet the fast command scheduling requirements of state-of-
the-art DDR protocols. BLISS overcomes these problems based
on the key observation that it is sufficient to group applications
into only two groups, rather than employing a total rank order
among different applications. Our evaluations across a variety of
workloads and systems demonstrate that BLISS has better system
performance and fairness than previously proposed ranking-based
schedulers, while incurring significantly lower hardware cost
and latency in making scheduling decisions. We conclude that
BLISS, with its low complexity, high system performance and
high fairness, can be an efficient and effective memory scheduling
substrate for current and future multicore systems.
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