
Abstract

For many low-power systems, the power cost of floating-
point hardware has been prohibitively expensive. This paper
explores ways of reducing floating-point power consumption by
minimizing the bit-width representation of floating-point data.
Analysis of several floating point programs that utilize low-res-
olution sensory data shows that the programs suffer almost no
loss of accuracy even with a significant reduction in bit-width.
This floating point bit-width reduction can deliver a significant
power saving through the use of a variable bit-width floating
point unit.

1 Introduction

Floating point numbers provide a wide, dynamic range of
representable real numbers, freeing programmers from the man-
ual scaling code necessary to support fixed-point operations.
Floating-point (FP) hardware is also very power hungry. For
example, FP multipliers are some of the most expensive compo-
nents in a processor’s power budget. This has limited the use of
FP in embedded systems, with many low-power processors not
including any floating point hardware.

For an increasing number of embedded applications such as
voice recognition, vision/image processing, and other signal-
processing applications, FP’s simplified programming model
(vs. fixed-point systems) and large dynamic range makes FP
hardware a useful feature for many types of embedded systems.
Further, many applications achieve a high-degree of accuracy
with fairly low-resolution sensory data. Leveraging these char-
acteristics by allowing software to use the minimal number of
mantissa and exponent bits, standard floating-point hardware
can be modified to significantly reduce its power consumption
while maintaining a program’s overall accuracy. 

For example, Figure 1 graphs the accuracy of CMU’s Sphinx
Speech Recognition System [Sphinx98] vs. the number of man-
tissa bits used in floating point computation. The left most
point, 23 bits of mantissa, is the standard for a 32-bit IEEE FP
unit. With 23 bits, the recognition accuracy is over 90%; but
even with just 5 mantissa bits (labeled A), Sphinx still main-
tains over 90% word recognition accuracy. For Sphinx, there is
almost no difference between a 23-bit mantissa and a 5-bit man-
tissa. In terms of power, however, a FP multiplier that uses only
5 mantissa bits consumes significantly less power than a 23-bit

mantissa FP multiplier. This property, that programs can main-
tain accuracy while utilizing only a few bits for FP number rep-
resentation, creates a significant opportunity for enabling low-
power FP units. 

The goal of this work is to understand the floating-point bit-
width requirements of several common floating-point applica-
tions and quantify the amount of power saved by using variable
bit-width floating-point units. Section 2 begins our discussion
by examining different aspects of the IEEE floating point stan-
dard that could lead to additional power savings. Section 3 pre-
sents the analysis of several floating point programs that require
less bits than specified in the IEEE standard. In section 4, we
describe the use of a digit-serial multiplier to design variable
bit-width hardware and discuss the possible power savings.
Finally, Section 6 outlines our conclusions and future work. 

2 Background

2.1 IEEE 754 Floating Point Standard

One of the main concerns of the IEEE 754 Floating Point
Standard is the accuracy of arithmetic operations. IEEE-754
specifies that any single precision floating point number be rep-
resented using 1 sign bit, 8 bits of exponents and 23 bits of man-
tissa. With double precision, the bit-width requirements of
exponents and mantissa go up to 11 bits and 53 bits respec-
tively. 

In addition to specifying the bit-width requirement for float-
ing point numbers, IEEE-754 incorporates several additional
features, including delicate rounding modes and support for
gradual underflow to preserve the maximal accuracy of pro-

This work was supported by the Defense Advanced Research Projects
Agency under Order No. A564 and the National Science Foundation
under Grant No. MIP90408457.

Presented at the Power-Driven Microarchitecture Workshop in con-
junction with the 25th International Symposium on Computer
Architecture, June 27 - July 1, 1998, Barcelona, Spain.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

23 21 19 17 15 13 11 9 7 5 3 1

Mantissa Bit-width
R

ec
og

ni
tio

n 
A

cc
ur

ac
y

Figure 1 : Accuracy of Sphinx Speech Recognition vs. 
Mantissa Bit-width

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

23 21 19 17 15 13 11 9 7 5 3 1

Mantissa Bit-width
R

ec
og

ni
tio

n 
A

cc
ur

ac
y

A

Minimizing Floating-Point Power 
Dissipation Via Bit-Width Reduction

Ying Fai Tong, Rob A. Rutenbar, and David F. Nagle
Department of ECE

Carnegie Mellon University
Pittsburgh, PA 15213

{yftong,bassoon}@ece.cmu.edu



grams. Nevertheless, the implementation of an IEEE compliant
floating point unit is not always easy. In addition to the design
complexity and the large area it occupies, a floating point unit is
also a major consumer of power in microprocessors. Many
embedded microprocessors such as the StrongARM
[Dobberpuhl96] and MCore [MPR97] do not include a floating
point unit due to its heavy implementation cost.

2.2 Accuracy Requirements and Workloads

For floating point applications that rely on sensory inputs,
power savings can be obtained by modifying the floating point
hardware’s mantissa and exponent widths while maintaining
sufficient accuracy for overall program execution. There are
four conceivable dimensions that we can explore (see Table 1).
Each of these dimensions allow us to make trade-off between
program accuracy and the power consumption of the floating-
point unit.

3 Experiments and Results

3.1 Methodology

To validate the usefulness and accuracy of reducing FP bit-
widths, we analyzed four single-precision floating point pro-
grams (see Table 2). To determine the impact of different man-
tissa and exponent bit-widths, we emulated different bit-width
FP units in software by replacing each floating-point operation
with a corresponding function call to our floating-point soft-
ware emulation package that initially implements the IEEE-754
standard. Careful modifications to the floating-point emulation
package allowed us to simulate different mantissa and exponent
bit-widths. For each bit-width, the emulation package was mod-
ified to use a smaller number of bits. Then, each program was
run using the modified floating-point package and the results
are compared to determine application accuracy. 

3.2 Results

Figure 2 graphs the accuracy for each of the four programs
across a range of mantissa bit-widths. None of the workloads
displays a noticeable degradation in accuracy when the man-
tissa bit-width is reduced from 23 bits to 11 bits. For ALVINN
and Sphinx III the results are even more promising; the accu-
racy does not change significantly with mantissa bit-width of 5
or more bits. 

Table 1 : Design Dimensions for Floating Point Repre-
sentation

Dimension Description

Reduction in 
mantissa bit-
width 

Reduce the number of mantissa bits at 
the expense of precision.

Reduction in 
exponent bit-
width

Reduce the number of exponent bits at 
the expense of a smaller dynamic range.

Change of the 
implied radix

Increase the implied radix from 2 to 4 (or 
16). This provides greater dynamic range 
but lower density of floating point num-
bers, potentially leading to power savings 
since fewer normalizing shifts are neces-
sary.

Simplification of 
rounding modes

Full support of all the rounding modes is 
very expensive in terms of power. Some 
programs may achieve an acceptable 
accuracy with a modified low power 
rounding algorithm.

Workload Description Accuracy Measurement

Sphinx III CMU’s speech recognition program based on 
fully continuous hidden Markov models. The input 
set is taken from the DARPA evaluation test set 
which consists of spoken sentences from the 
Wall Street Journal. [Hwang94]

Accuracy is estimated by dividing the number of words 
recognized correctly over the total number of words in 
the input set.

ALVINN Taken from SPECfp92. A neural network trainer 
using backpropagation. Designed to take as input 
sensory data from a video camera and a laser 
range finder and guide a vehicle on the road.

The input set consists of 50 road scenes and the accu-
racy is measured as the number of correct travel direc-
tion made by the network.

PCASYS A pattern-level finger print classification program 
developed at NIST. The program classifies 
images of fingerprints into six pattern-level 
classes using a probabilistic neural network. 

The input set consists of 50 different finger print 
images and the classification result is measured as 
percentage error in putting the image in the wrong 
class. The accuracy of the recognition is simply (1 - 
percentage error).

Bench22 An image processing benchmark which warps a 
random image, and then compares the warped 
image with the original one.

Percentage deviation from the original outputs are 
used as a measure of accuracy.

Table 2 : Description of Workloads

0.00%
10.00%

20.00%
30.00%

40.00%
50.00%

60.00%
70.00%

80.00%
90.00%

100.00%

23 21 19 17 15 13 11 9 7 5 3 1

Mantissa Bit-width

A
cc

ur
ac

y

Sphinx
Alvinn
PCASYS
Bench22

Figure 2 : Program Accuracy across Various Mantissa Bit-
widths



Figure 3 shows that each program’s accuracy has a similar
trend when the exponent bit-width is varied. With 7 or more
exponent bits, the error rates remain quite stable. Once the
exponent bit-width drops below 6, the error rates increase dra-
matically and in some cases the programs could not finish prop-
erly. 

Many programs dealing with human interfaces process sen-
sory data with intrinsically low resolutions. The arithmetic
operations on these data may generate intermediate results that
require more dynamic range, but not vastly more precision. This
is different from many scientific programs such as wind tunnel
simulation or weather prediction, which not only require a huge
amount of precision and dynamic range but also delicate round-
ing modes to preserve the accuracy of the results.

For programs that do not need the dynamic range nor the
precision of floating point arithmetic, the use of fixed-point
arithmetic might well be a better choice in terms of chip space,
operation latency, and power consumption. But for the pro-
grams we have analyzed, three of them require 6 bits or more of
the exponents to preserve a reasonable degree of accuracy,
which means they need more than the 32 bits of precision that
fixed point arithmetic can offer. Simply using fixed point repre-
sentation without additional scaling will not resolve the prob-
lem.

It should be noted that these complex applications were
aggressively tuned by various software designers to achieve
good performance using full IEEE representation. However,
Figure 2 and Figure 3 suggest that significantly smaller bit-
width FP units could be used by these applications without
compromising the necessary accuracy. For instance, certain
floating point constants in the Sphinx III code require more than
10 bits of mantissa to represent, but we modified those numbers
so they can be represented using fewer bits during our experi-
ment and yet this have little impact on the overall recognition
accuracy. We believe that if the numerical behavior of these
applications are adjusted to a smaller bit-width unit, we could
get even better performance.

4 Power Savings by Exploiting Variable 
Bit-width Requirement

4.1 Multiplication with a Digit-Serial Multiplier

Since different floating point programs have different
requirements on both the mantissa and exponent bit-width, we
propose the use of a variable bit-width floating point unit1 to
reduce power consumption. To create hardware capable of vari-
able bit-width multiplications (up to 24x24 bit), we used a 24x8
bit digit-serial architecture similar to the one described in Hart-
ley and Parhi [Hartley95]. The 24x8 bit architecture allows us to
perform 8, 16, and 24-bit multiplication by passing the data
once, twice, or three times though the serial multiplier. A finite
state machine is used to control the number of iterations
through the CSA array. 

To perform accurate power and timing measurements, the
multiplier was described in Verilog and then taken to layout
using our ASIC design flow (for a standard 0.5u process). Syn-
opsys’ Design Compiler was used to synthesize the multiplier’s
control logic. Next, the entire structural model was fed into Cas-
cade Design Automation’s physical design tool Epoch. A
description of digit-serial arithmetic and the block diagram of
the digit-serial multiplier can be found in the appendix.

We compare our variable bit-width multiplier with a baseline
fixed-width 24x24 bit Wallace Tree multiplier. The layout of
this Wallace Tree multiplier was generated by Epoch’s cell gen-
erator in the same 0.5u process as used in the design of the
digit-serial multiplier. The two multipliers are described in
Table 3. Cycle time is estimated using Epoch’s static timing
analysis tool, Tactic, and is rounded to the nearest 5ns interval
for the convenience of power simulation. 

4.2 Power Analysis

For each design, a SPICE netlist was generated from layout
and used to estimate power consumption with Avanti’s Star-
Sim. Determining the complete power dissipated in a multiplier
requires the sensitization of all possible combinations of inputs,
which means we need to have 22N input combinations where N
is the number of inputs. Fortunately, it is possible to obtain a
mean estimation of the power consumption using statistical
techniques [Burch92]. In our approach, we ran 50 batches of
vectors with each batch containing 30 vectors to insure a 95%
confidence intervals. The energy dissipation is computed using
the cycle time in Table 3. The test vectors are taken from some
of the actual multiplication operands in Sphinx III. 

Figure 4 graphs the energy/operation and latency/operation
for the digit-serial multiplier. Both the energy/operation and
latency/operation decrease linearly with the operand bit-width.
This is different from [Callaway97], where a multiplier’s power

1. Our current research focuses particularly on the floating point multi-
plier, since multipliers are usually the major consumer of power
[Tiwari94].

Figure 3 : Program Accuracy across Various Exponent 
Bit-widths

Figure 2 and Figure 3 show that we can reduce both the mantissa and 
exponent bit-width without affecting the accuracy of the programs. This 
effect is especially prominent in the mantissa. This reduction of bit-
width can be turned into a reduction in power dissipation with the use of 
appropriate arithmetic circuits

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

90.00%
100.00%

8 7 6 5 4 3

Exponent Bit-width

A
cc

ur
ac

y
Sphinx
ALVINN
PCASYS
Bench22

Multiplier Area Cycle Time Latency/op

Wallace (24x24) .777square mm 40ns 40ns

Digit-Serial (24x8) .804 square mm 15ns 15ns

Table 3 : Timing and Area of the Two Multipliers 

To perform 16 bits multiplication using the digit-serial multiplier, 2 
cycles are needed which increases the total delay/op to 30ns. Simi-
larly, 24 bits multiplication takes 3 cycles(45ns).

 



consumption decreases exponentially with the operand bit-
width. The difference between the two results is due to the fixed
structure (the 24x8 bit CSA array) of the digit-serial multiplier
and the control circuitry needed to do iterative carry and sum
reduction. This additional power dissipation is the penalty we
pay for the flexibility of doing variable bit-width multiplication.

Figure 5 shows the potential power reduction for our three
programs if we use the digit-serial multiplier as the mantissa
multiplier. For 8-bit multiplication, the digit-serial multiplier
consumes less than 1/3 of the power than the Wallace Tree mul-
tiplier (in the case of Sphinx and ALVINN). When 9 to 16 bits
of the mantissa are required (in the case of PCASYS and
Bench22), the digit-serial multiplier still consumes 20% less
power than the Wallace Tree multiplier. The digit-serial multi-
plier does consume 40% more power when performing 24-bit
multiplication due to the power consumption of the overhead
circuitry. 

Table 3 shows another benefit which is improved speed.
When performing 8-bit or 16-bit multiplications, the operation’s
delay can be greatly reduced if the critical path of the circuit lies
in the multiplier. This increases the throughput in addition to the
energy saving.

4.3 Summary of Results

These power comparison results show the potential power
savings achievable by using variable bit-width arithmetic units.
It should be noted that the digit-serial multiplier is designed
using an ASIC approach and is not as heavily optimized physi-
cally; the Wallace Tree multiplier was optimized for the pro-
cess. This explains why the 24x8 bit digit-serial multiplier is
actually slightly larger than the Wallace Tree multiplier. We
believe that with a more careful implementation, both the power
and area of the digit-serial multiplier can be reduced. In addi-
tion, [Chang97] presents several low power digit-serial archi-
tecture that can further reduce the power consumption of the
digit-serial multiplier.

For software designers who know a program’s precision
requirements, code annotation could be used to allow the under-
lying arithmetic circuits re-configure themselves for variable
bit-width operations. As Figure 4 and Figure 5 show, as long as
the bit-width requirement is less than 16 bits, the 24x8 bit digit-

serial multiplier consumes less energy than the Wallace Tree
multiplier. Even for programs which require a large bit-width to
maintain precision, there may be sections within the program
that require a smaller bit-width requirement and thus can benefit
from a variable bit-width unit.

5 Previous Work

The idea of reducing bit-width to save power has been
employed in other areas of low power research. In [He97], it is
shown that an average of more than 4 bits of pixel resolution
can be dropped during motion estimation to obtain a power
reduction of 70%. To reduce energy consumption of the I/O
pins, [Musoll97] proposes sending only those address bits that
have changed. For integer applications that do not need 32 bits
of precision, the Intel MMX instructions allow arithmetic oper-
ations on multiple data simultaneously. Overall, the basic idea
of bit-width reduction is to avoid waste.

6 Conclusions and Future Work

 It is clear that floating point programs that use human sen-
sory inputs may not need the entire 23 bits of mantissa and 8
bits of exponents as specified in the IEEE standard. Our soft-
ware analysis shows no loss of accuracy across each of our pro-
grams when the mantissa bit-width is reduced to less than 50%
of the original value. This large reduction in mantissa bit-width
enables significant power reduction without sacrificing program
accuracy. Further, the digit-serial multiplier results show that it
is possible to obtain a substantial power saving by using a vari-
able bit-width arithmetic unit. 

Currently, we are looking at various digit-serial architectures
and other means of exploiting the variable bit-width require-
ments of programs. Our future work will be directed towards
investigating other characteristics of floating point programs

0

500

1000

1500

2000

2500

8 bits 16 bits 24 bits

Operand Bit-width

E
ne

rg
y/

op

0

5

10

15

20

25

30

35

40

45

La
te

nc
y/

o
p

Energy/Op
(pJ)
Latency/Op
(ns)

Figure 4 : Performance of the Digit-Serial Multiplier

Both energy/op and latency/op of the digit-serial multiplier increase 
linearly with the operand bit-width. Digit-serial architecture allows us 
to perform variable bit-width arithmetic and save power when the bit-
width requirement is less than that specified in the IEEE standard.

Figure 5 : Power Reduction using Digit-Serial Multiplier

A reduction of 70% in energy/op is attainable for Sphinx and ALVINN 
with the use of digit-serial multiplier. Both Sphinx and ALVINN need 
only 5 bits of mantissa to be 90% accurate and thus an 8 bit operand 
bit-width is used for the digit-serial multiplier. PCASYS requires 11 bits 
of mantissa while Bench22 requires 9 bits and thus a 16 bit operand bit-
width is used which results in a 20% energy/op reduction 

0

200

400

600

800

1000

1200

1400

S
ph

in
x

A
lV

IN
N

P
C

A
S

Y
S

B
en

ch
22

Programs

E
ne

rg
y/

op

Digit
Serial
Wallace
Tree



that may provide additional power savings. This includes using
a simplified rounding algorithm and changing the implied radix.

7 Appendix
Arithmetic operations can be performed in different styles

such as bit-serial, bit-parallel, and digit-serial. Bit-serial archi-
tecture processes data one bit at a time, saving hardware at the
expense of processing speed. Bit-parallel circuits process all
bits of the data operands at the same time with more hardware.
Digit-serial arithmetic falls in between these two extremes by
processing a fixed number of bits at one time. Figure 6 shows
the block diagram of the digit-serial multiplier used in our
experiment. For applications that require a moderate amount of
throughput while having serious constraints on design space,
digit-serial systems have become a viable alternative for many
designers. Most of the digit-serial systems are used because of
space limitation. Even though there is research on low-power
digit-serial multipliers [Chang97], it has focused on comparing
power consumption among different digit-serial architecture.

8 References

[Burch92] Burch R., Najm, F., Yang, P., Trick, T. McPOWER:
A Monte Carlo Approach to Power Estimation, IEEE/ACM
International Conference. on CAD, 1992. 

[Callaway97] Callaway, Thomas K., Swartzlander, Earl E.
Power-Delay Characteristics of CMOS Multipliers, IEEE 13th
Symposium on Computer Arithmetic, 1997.

[Chang97] Chang, Y.N., Satyanarayana, Janardhan H., Parhi,
Keshab K. Design and Implementation of Low-Power Digit-
Serial Multipliers, IEEE International Conference on Computer
Design, 1997.

[Dobberpuhl96] Dobberpuhl Dan. The Design of a High Per-
formance Low Power Microprocessor. International Sympo-
sium on Low Power Electronics and Design, 1996.

[Hartley95]  Hartley, Richard I., Parhi, Keshab K. Digit-Serial
Computation. Norwell, Kluwer Academic Publishers, 1995.

[He97] He, Z.L., Chan, K.K., Tsui, C.Y., Liou, M. L., Low
Power Motion Estimation Design Using Adaptive Pixel Trunca-
tion, International Symposium on Low Power Electronics and
Design, 1997.

[Hwang94] Hwang, M., Rosenfeld, R., Theyer, E., Mosur, R.,
Chase, L., Weide, R., Huang, X., Alleva, F. Improving Speech
recognition performance via phone-dependent VQ codebooks
and adaptive language models in SPHINX-II. International
Conference on Acoustics, Speech and Signal Processing, 1994.

[MPR97] MCore Shrinks Code, Power Budgets, Microproces-
sor Report11 (14), 27 October 1997.

[Musoll97] Musoll, E., Lang, T., Cortadella, J. Exploiting the
locality of memory references to reduce the address bus energy.
International Symposium on Low Power Electronics 1997.

[Sphinx98] SPHINX Group, Carnegie Mellon University, Pitts-
burgh, PA. http://www.speech.cs.cmu.edu.speech/sphinx.html

[Tiwari94]  Tiwari, V., Malik, S. Wolfe, A. Power Analysis of
Embedded Software: a first step towards software power mini-
mization, IEEE Transactions on VLSI systems, vol.2, pp. 437-
445, December 1994.

24

24

8

FLIP FLOPS

24x8

CSA ARRAYS

PARALLEL/SERIAL
    CONVERTERS

Control

8 bit
Adder

8

8

Low order 8 bits

High order 8 bits

Figure 6 : Block Diagram of a 24x8 Digit-Serial Multiplier


