

Abstract

This paper explores techniques for creating accurate
instruction-level energy models for digital signal processors
(DSP). Our initial results confirm previous work showing that
inter-instruction effects can become a significant component of
power consumption for many programs. To overcome limita-
tions of previous models, we develop a straightfoward method
(the NOP model) that models transitions between any two
instructions. Measurements show that our method accurately
models inter-instruction effects without a quadratic increase in
the size of energy tables. Complex instructions are handled by
treating functional units within the processor separately.

1 Introduction

Instruction-level energy models can be an effective tool for
high-level software-based optimizations [LEE97][TIWA94].
The basic technique constructs a table that records each instruc-
tion’s average energy. High-level power estimators use this
table to quickly determine each software instruction’s energy
consumption, avoiding costly circuit-level simulation (e.g.,
Spice). Because instructions are the atomic units used by code
generators, instruction-level energy models can be integrated
with power-optimizing compilers more easily than simulation-
based estimators. Further, instruction-level energy models allow
chip manufacturers to provide fine-grained power information
without having to disclose confidential design layout and imple-
mentation details—allowing software designers to quickly and
accurately estimate a program’s power consumption without
understanding the underlying implementation details.

Unfortunately, accurate instruction-level energy models
require more than simple per-instruction power estimates. Inter-
instruction effects can significantly alter the power consumed
by a given instruction, making it difficult to derive a single
power number for each architectural instruction [LEE97].
Power tables could be expanded to include every pair of instruc-
tions. Unfortunately, building such tables can be very time con-
suming and requires O(N

2

) space (where N is at least the size of
the instruction set). Grouping instructions into common classes
[Lee97] can reduce the table size, but does not scale well for
DSP-type architectures with their rich addressing modes and
parallel instruction issue capabilities.

To overcome the problems of classification, we have devel-
oped a straightfoward method that requires only O(N) space

while accurately estimating program energy. Our results, simu-
lated with an implementation of a subset of the Motorola
DSP56000 (56K), produce instruction-level power tables that
predict program power within 8% percent of simulation-based
estimates. Further, by attributing each instruction’s power con-
sumption to the various functional units, we preserve accuracy
while overcoming the difficulty associated with modeling the
56K’s rich addressing modes and parallel functions.

Section 2 describes our subset of the 56K DSP and our
design methodology. Section 3 presents our approach to gener-
ating instruction-level power tables and compares our results
with previous techniques. Section 4 further evaluates these
models and describes potential limitations. Finally, in Section 5
we present our conclusions and outline future work.

2 Tools and Methodology

2.1 CMU 56000 DSP

To build accurate models and to compare our results with a
real design, we designed and implemented a standard-cell based
subset of the Motorola DSP56000 instruction set [MOTO90].
Synopsys and Cascade’s Epoch synthesized our 56K Verilog
model into a standard-cell layout (see Figure 1).

We choose the 56K because instruction-level power analysis
is more complex than simple RISC cores and because the 56K’s
functionality is representative of many power-conscious archi-
tectures. The 56K is a 24-bit, fixed-point DSP that can encode
and issue one arithmetic operation and up to two “parallel” data
moves in one

packed

 instruction. Our 56K core implements
most of the arithmetic and basic data movement instructions
and accounts for most of the logic that effects power consump-
tion.

2.2 Mynoch Power Estimator

A variety of approaches have been used to characterize the
power consumption of digital systems. For physical devices,
direct-measurement of current gives the most accurate measure-
ments [TIWA94]. However, the granularity of results is limited
to device-level, multi-clock cycle measurements. Accurate,
fine-grained results can be obtained with Spice-based simula-
tors, such as Star-Sim [KRIS97], but long run-times severely
limit the number of cycles/events that can be simulated. Gate-
level power estimators improve simulation speed
[KOJI95][PURS95][XANT97], by sacrificing accuracy to
achieve faster run-times.

The initial analysis of our 56K’s power consumption was
done using CMU’s gate level analysis tool, Mynoch [PURS95].
Mynoch estimates power by counting transitions from a Verilog
simulation and calculating the dynamic energy consumed for
each transition using:

This work was supported by the Defense Advanced Research Projects
Agency under Order No. A564 and the National Science Foundation
under Grant No. MIP90408457.

Presented at the Power Driven Microarchitecture Workshop in conjunc-
tion with the 25th International Symposium on Computer Architecture,
June 27-July 1, Barcelona, Spain. E

1
2
--- C• V

2•=

Modeling Inter-Instruction Energy Effects

in a Digital Signal Processor

Ben Klass, Donald E. Thomas, Herman Schmit, David F. Nagle
Department of ECE, Carnegie Mellon University

Pittsburgh, PA 15213
benk@ece.cmu.edu, thomas@ece.cmu.edu

Mynoch runs 450 times faster than Spice simulation, allowing
us to simulate thousands of cycles for each test program. Mem-
ory is not modeled with Mynoch since Epoch uses behavioral
models for memory. Spice based simulations have shown mem-
ory to be approximately 20% of the total energy.

We verified the accuracy of Mynoch by comparing
Mynoch’s power estimates against Avanti’s Star-Sim, which
uses a modified Spice engine. Eighteen iterations of a 4-tap FIR
filter were simulated with both Mynoch and Star-Sim. Initially,
Mynoch’s power estimates showed significant error in contrast
to Star-Sim. To locate the source of Mynoch’s error, we com-
pared Star-Sim’s per module power estimates with Mynoch’s
estimates. The analysis showed that Mynoch’s inability to
account for intra-gate capacitance within registers (i.e., D-flip
flops) was the primary source of error. To correct for this error,
we used Star-Sim’s power estimates to build a simple linear-
regression model that included the number of registers. The
resulting model had a very high degree of accuracy (r

2

 factor of
0.98). This model was further verified by comparing results of
Mynoch augmented by the regression model vs. Star-Sim for
120 cycles of an FFT program. The error between the two meth-
ods was less than 1% for the processor, although error on func-
tional units was higher. All of the Mynoch results reported in
this study are augmented by the regression model.

2.3 Test Programs and Reference Energy

In contrast to general processors, a DSP is frequently used to
compute fairly simple, data intensive programs. For the work-
loads of our power analysis we chose five program kernels that
represent those found in typical signal processing applications
(see Table 1). Three of the kernels are finite-impulse response

(FIR) filters, one is a Fast Fourier Transform (FFT), and one is
an adaptive filter (LMS). Gaussian white noise was used as
input data.

Power consumption for the benchmark programs was mea-
sured using Mynoch (see Figure 2). Average energy consumed
per cycle, given in nanoJoules, provides the basic unit of mea-
sure which will be used throughout the paper. This is obtained
by dividing the total energy over the program execution by the
number of cycles. Power consumed by the pads and memory is
not included.

3 Instruction-level Models

Although circuit-level simulations provide insight into
power consumption for a given program, an instruction-level
model is more appropriate for code generators. Instruction-level
models typically use an

energy table

 that describes the energy
cost for each instruction in an instruction-set architecture (ISA).
The challenge in building such a model is balancing accuracy
and energy table size. This section presents four models with
different accuracy and table size trade-offs. The first model,

base model

, produces the smallest table size, but yields poor
energy-prediction accuracy across a program run. The second
model,

pair model

, has greater accuracy, but at the cost of much
larger tables. The third model,

NOP model

, provides nearly the
accuracy of the pair model with much smaller tables. The fourth
model,

general model

, is similar to the NOP model but the
energy table generated is independent of the program being
evaluated. The general model provides reasonable accuracy and
is appropriate for use with code generators.

3.1 Base Model and Estimation

Building the Base Model’s Energy Table

Creating a complete and accurate energy table for the 56K
DSP requires one to account for each instruction in the ISA,
each instruction’s different register and immediate values, and
every possible packed instruction.

1

 This can require a signifi-
cant amount of time and space. To make the base model more
tractable, we only computed the energy cost for every unique
instruction

2

 found in our five workloads—not for every possible
tuple of {

instruction, reg/immed, instr pair}

.

Figure 1: DSP56000 architecture and layout
Major components: 1) 3 KB of SRAM; 2) data ALU, which con-
tains a 24x24-bit multiplier and 56-bit accumulator; 3) address
generation unit (AGU), which contains three sets of eight 16-
bit registers and two ALUs capable of arbitrary modulo and bit
reversed arithmetic; and 4) program control unit (PCU).

Program
Memory
24b x 1kw

X Data
Memory
24b x 1kw

Y Data
Memory
24b x 1kw

Addr. Unit Data ALU Pgm Ctl

XDB
PDB

YDB
GDB

YMEM PMEM

ALU AGU

PCU and Busses

XMEM

Pgm Description Instr
%Instr
arith

Sim
cycles

fir4 4-tap FIR filter (direct form) 5 57% 1760

fir64 64-tap FIR filter (direct form) 5 96% 5,000

fir4u 4 tap FIR filter, unrolled once 12 66% 1,500

FFT 256 point FFT 24 79% 8,062

LMS 64-tap least mean squares
adaptive filter

13 63% 30,000

Table 1: Description of workloads
The Instr column lists the number of unique instructions exe-
cuted in each workload’s main program loop. %Instr arith
lists the percentage of instructions executed that are arith-
metic instructions. Sim cycles lists the number of cycles sim-
ulated for power analysis.

1. Like many DSPs, the 56K allows for packed instructions, where an
arithmetic instruction and a data-movement instruction are grouped
together in one instruction.

0 1 2 3 4 5 6

f f t

lms

f i r4u

f i r 4

f i r 6 4

Average Energy per Cycle (nJoules)

Figure 2: Energy consumption for workloads
This figure shows power consumption for the workloads. The
AGU and ALU are the two largest consumers of power and
almost all of the variation between programs is caused by
variation in the multiplier and AGU power. The multiplier uses
guard latches on the input and consumes less power with
programs that have proportionally fewer multiply operations.

B
en

ch
m

ar
k

P
ro

gr
am

s

Average Energy per Cycle (nJ)

Clock

Busses

Multiplier

Adder

Other

AGU

PCU

Other

ALU

Each instruction’s energy was estimated by constructing a
tight-loop test program that included the target instruction and a
zero-overhead branch instruction so that only the target instruc-
tion was executed in the core of the loop. Figure 3 shows the
tight-loop test program used to characterize the

MAC

 instruction.
Each tight-loop test program was run through Mynoch to gener-
ate the base energy cost, B

inst

. For measuring the

REP

 instruc-
tion, we were forced to use a

NOP

 inside of the loop because a
loop of

REP

 instructions is illegal.
Whenever possible, loops were made with the actual instruc-

tions used in the programs.

Some instructions were modified
slightly to ensure that different operands were used on each
cycle. Data from the workload being characterized was used.
Because the test programs are based on the actual instructions
and data from our five workloads (Table 1), the results of this
approach are optimistic in their accuracy. When generalizing
this approach, parameters such as the destinations of parallel
moves would be abstracted to reduce energy table’s size.

Base Model Energy Estimates

The instruction measurements described above were used to
construct a base model energy table that was then used to esti-
mate the average energy per cycle for each of our workload pro-
grams. For example, the energy per cycle for the

fir4

 program
was calculated by:

E

fir4

 = (B

CLR

 + B

REP

 + 3 B

MAC

 + B

MACR

 + B

MOVE

) / 7

Figure 5 shows the power estimates gained from the instruction
energy table. The results show a very accurate power estimate
for the

fir64

. However, the estimated energy for other pro-
grams is underestimated by 17% to 25%. This error is 50%
higher than the error reported in [LEE97].

This error can be understood by considering the

fir64

 and

fir4

 programs (see Figure 4). The accuracy in the

fir64

workload is due to

fir64

’s limited number of inter-instruction
effects. The

fir64

 repeats the

MAC

 instruction 63 times, with
no intervening instructions, in a loop of 67 instructions. This
behavior is very similar to the tight-loop test programs used to
derive the instruction energy table. In the

fir4

, however,
energy is underestimated by 25% because inter-instruction
effects are significant. The

fir4

 repeats the

MAC

 instruction 3
times in a loop of 7 instructions, while the remaining 4 instruc-
tions are all different. Inter-instruction effects in the remaining
instructions are not represented by the base model, leading to
the observed error.

For each of the workloads, most of the inaccuracy for the
base model occurs in the DSP’s AGU (address-generation unit)
and PCU (program-control unit) functional units. For the fir4,
the energy for the AGU and PCU are underestimated by more
than 30%. The error in these units can be understood by consid-
ering the microarchitecture (Figure 1). The AGU must generate
an address by the end of pipeline stage 2, so no registers exist
between the control logic and the data path (our implementation
does this to increase performance). The PCU does not latch its
control points for similar reasons. The lack of registers allows
glitches in the control logic to propagate into the data path,
causing many false transitions as an instruction word changes.
In contrast, the ALU (data ALU functional unit) latches all of its
control points, so glitches are confined to the control logic,
making the base model more accurate.

3.2 The Pair Model

The impact of inter-instruction effects on power estimation
has been noted before and can be compensated for by assigning
a per-instruction overhead that accounts for inter-instruction
effects [LEE97]. This overhead, O

instr

, is added to the base
energy cost if an instruction is not the same as the previous

2. Instructions are considered different if there is any difference in their
opcode, immediate values, registers, or pairings. For example, two
versions of a MAC instruction, (

MAC x0,y0,a

vs.

 MAC
x1,y0,b

), are considered different and will have different entries
in the base model’s energy table.

DO #<50

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ;target instruction

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ;target instruction

Figure 3: Loop used to characterize MAC from
FIR filters

This loop was used to calculate the base energy cost of the
target instruction, in this case the MAC instruction as it
occurs in the FIR filters. Two data values are read in from
memory each cycle, so both multiplier inputs change. Two
instances of the target instruction are needed to match the
semantics of the DO instruction.

CLR A X0,X:(r0)+ Y:(r4)+,Y0 ; A = 0;
; X0 <- X(n-1); Y0 <- B(0)

REP #<3 ; for j = 0 to 2

MAC Y0,X0,A X:(r0)+,X0 Y:(r4)+,Y2 ; A+= X(n-j)*B(j);
 X0 <- X(n-j-1); Y0<- B(j+1)

MACR Y0,X0,A (r0)- ; A += X(n-3)*B(3);
 update pointer

MOVE X:(r1)+,X0 A,Y:(r5)+ ; X0 <- X(n+1); Y:(out) <- A

Figure 4: Main loop of fir4

This figure shows the code used in the fir4 main loop. The
fir64 is the same, except that the MAC operation is
repeated 63 times by changing the repeat instruction to “rep
#<63 .” The CLR, MAC, MACR, and MOVE instructions
employ parallel moves to move data into registers immedi-
ately before the data is needed.

0

1

2

3

4

5

6

Figure 5: Mynoch vs. Base Model
Simulated energy from Mynoch and estimated energy using
the base model (base) are given for major units. Both clock
and bus power are contained in “Other.” (Due to length and
complexity, LMS has not been done.)

E
ne

rg
y

pe
r

C
yc

le
 (

nJ
)

fir4 fir64 fir4u

M
yn

oc
h

ba
se

ba
se

ba
se

ba
se

M
yn

oc
h

M
yn

oc
h

fft

M
yn

oc
h

Other

PCU

AGU

ALU

instruction. For example, the energy model for the code
sequence:

would only use B

MAC

 for the second MAC operation, while the
energy model for the code sequence:

would use B

MAC

 + O

MOVE,MAC

 because the

MAC

 instruction is
preceded by a different instruction,

MOVE

.
Similar to the base model, we measured O

instr

, using tight-
loop test programs. Each loop consisted of the target instruction
and the instruction that preceded it in the execution trace, giving
average energy per cycle for the loop E

loop

(see Figure 6). Over-
head was calculated by:

O

previous,target

 = E

loop

 – (B

previous

 + B

target

)/2

Using

B

instr

 and

Oinstr where appropriate, the pair model
estimated the energy for each of the workloads (Figure 7). The
results, labeled as pair , are much more accurate than the base
model, with error between 1% and 10% for all programs. How-
ever, generalizing this technique would require characterizing
every possible pair of instructions, requiring a table of size
O(N2), where N is the number of instructions and addressing

modes. For the 49 different instructions and addressing modes
implemented in our 56K chip, a complete instruction energy
table would contain 1176 entries. To reduce the table size,
[LEE97] grouped instructions into classes and derived overhead
costs between classes. This technique works well for simple
machines, but is much more difficult to apply when dealing
with the many complex addressing modes and instruction types
found in a DSP such as the 56K.

3.3 The NOP Model

To avoid the difficulties of instruction grouping, we have
developed a new approach that requires only one overhead cost
for each instruction. This model is based on the assumption that
the overhead cost for an instruction is not strongly dependent on
the neighboring instruction, but does depend on whether the
neighboring instructions are the same or different. This observa-
tion leads to the NOP model, which allows us to account for
instruction changes without enumerating each pair of instruc-
tions.

Like the pair model, the NOP model calculates the energy
for a particular operation with either Binstr or Binstr + Oinstr,
depending on the previous instruction. The NOP model differs
in that we calculated one overhead cost for each instruction,
Oinstr, using loops which alternate the target instruction with
NOP instructions (Figure 8). This techniques allowed us to cap-
ture the energy effects of changing instructions while keeping
the size of the table to O(N). Power estimates using the NOP
model are shown in Figure 7, labeled as NOP. The results show
error between 1% and 8% on programs that previously had
much larger errors with the base model. Considering that group-
ing instructions also decreases accuracy, this should compare
favorably with any model based on instruction classes.

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ; target instruction

MOVE X:(r1)+,X0 Y:(r4)+,Y0

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ; target instruction

DO #<50

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0

MACR Y1,X1,a (r0)- ;target instruction

Figure 6: Loop used to find overhead: pair model
This loop was used to calculate the overhead cost of the tar-
get instruction, in this case the MACR instruction as it occurs
in the FIR filters, under the pair model. The pair of instruc-
tions that appear in the workload programs was used and
the overhead for this pair was assigned to the trailing instruc-
tion. Different source registers were used for the MAC and
MACR instructions to ensure that both multiplier operands
change, as in the FIR programs.

0

1

2

3

4

5

6

Figure 7: Different approaches to estimating inter-instruction overhead
This figure compares energy from Mynoch simulation with estimates from the base model (base), pair model (pair) and NOP model
(NOP). The pair model measures overhead for each pair of instructions that appear in the program trace. The NOP model measures
overhead for each instruction using NOP instructions

E
ne

rg
y

pe
r

C
yc

le
 (

nJ
)

fir4 fir64 fir4u fft

M
yn

oc
h

M
yn

oc
h

M
yn

co
h

M
yn

oc
h

ba
se

ba
se

ba
se

ba
se pa

ir

N
O

P

 N
O

P

N
O

P

N
O

P

pa
ir

pa
ir

pa
ir

Other

PCU

AGU

ALU

DO #<50

NOP

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ;target instruction

Figure 8: Loop used to find overhead: NOP model
This loop was used to calculate the overhead cost of the tar-
get instruction, in this case the MAC instruction as it occurs
in the FIR filters, under the NOP model. A target instruction
is paired with an NOP to calculate its overhead cost.

3.4 General Instruction Model
Having established the effectiveness of the NOP model, we

generalized this approach to build tables that could be used for
any program—a general instruction model. Unlike our previous
models, where the instruction energy tables were built to match
instructions as found in the workloads as closely as possible,
the general instruction model creates a single instruction energy
table that can be used across all programs. Such a table could be
created by processor manufacturers and then used by a code
generator to optimize power.

The general instruction model is similar to the NOP model,
but extends the power analysis by accounting for packed
instructions. Packed instructions present a problem when build-
ing general tables because any combination of arithmetic and
parallel move is allowed. Our previous models used the actual
packed instructions from each workload. When generalizing,
the 23 arithmetic instructions and 24 types of parallel moves
lead to 552 possible combinations, making a complete table
fairly large. Fortunately, the two parts of a packed instruction
are largely executed by different units within the 56K. Using
this architectural knowledge, we separated the two parts of a
packed instruction, building tables for the energy consumed by
each of the functional units rather than the entire DSP.

The general instruction model consists of four tables, corre-
sponding to the four significant functional units: ALU, AGU,
PCU, and “Other.” The first three units have been described
above. “Other” refers to all remaining parts of the chip, prima-
rily the clock and bus power. The ALU and PCU were charac-
terized by the arithmetic portion of packed instructions only,
ignoring the parallel move unless no arithmetic instruction was
present. The AGU and “Other” were characterized by the paral-
lel move portion, ignoring arithmetic instructions. Data was
coarsely modeled in ways that would be visible to a code gener-
ator. Table entries for arithmetic operations were separated

based on which operands changed value; move operations con-
tained separate entries for the number of moves and type of
update performed on address registers.

Energy costs were generated with loops similar to those
described above (Figure 9). From each loop, the relevant energy
costs were calculated for each unit. Uniform random data was
used as input to the arithmetic unit. Under the general instruc-
tion model, the base energy cost of the instruction:

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0

was calculated by:

BALU,MACxy + B AGU,MOVEx+y+ + B PCU,MACxy + B Other,MOVEx+y+

Overhead energy costs, and whether an instruction has changed,
was calculated for each unit in the same way.

Estimates based on these general instruction tables are
shown in Figure 10. By making estimation automatic, we were
able provide estimates for lms as well. Considering that pro-
gram dependent information from Figure 7 has been removed,
results are remarkably similar. Accuracy on all programs is
within 10%.

4 Applications and Limitations
Section 3 developed an general instruction model that pro-

vides reasonable accuracy while limiting the table size. In this
section we analyze this model from two perspectives. The first
examines a possible use of such an energy model—evaluating
the energy of code transformations within a code generator. The
second looks into the importance of program data, which is not
considered by the instruction-level model.

4.1 Code Transformations to Save Power
Comparing different implementations of a 4-tap FIR filter

allows us to see if the energy models can recognize power sav-
ings due to code transformations (see Figure 11). While
[TIWA94] looked at instruction reordering, more aggressive
code transformations are used here. We implemented four ver-
sions of a 4-tap FIR filter which used the same coefficients and
input data. Energy per datum processed is used as the metric to
compare these programs to account for the different number of
cycles required by different programs. Energy per datum is

DO #<50

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ; MACxy

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ; MACxy

DO #<50

MOVE X:(r0)+,X0 Y:(r4)+,Y0 ; MOVEx+y+

MOVE X:(r0)+,X0 Y:(r4)+,Y0 ; MOVEx+y+

Figure 9: Loops used for general model
These loops were used to calculate the base cost of the
MACxy and MOVEx+y+ instructions under the general
model. The MACxy refers to a MAC instruction where both
multiplier inputs change while MOVEx+y+ refers to two par-
allel moves with increment.

0

1

2

3

4

5

6

Figure 10: General Instruction Model
This figure compares Mynoch simulation energy (Mynoch)
and the general instruction-level model (gen). Each compo-
nent: AGU, ALU, PCU, and Other was estimated using sep-
arate tables.

E
ne

rg
y

pe
r

C
yc

le
 (

nJ
)

fir4 fir64 fir4u fft

M
yn

oc
h

lms

M
yn

oc
h

M
yn

oc
h

M
yn

oc
h

M
yn

oc
h

ge
n

ge
n

ge
n

ge
n

ge
n

Other

PCU

AGU

ALU

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

Figure 11: Implementations of a 4-tap FIR filter
This figure compares the energy to produce one datum of
output for four different software implementations of the
same 4-tap FIR filter. The fir4 and fir4u implementa-
tions are described in Table 1. The no-rep implementation
does not use the repeat instruction or store past inputs. The
no-par implementation only uses one parallel move and
does not use packed instructions. The number of cycles per
datum for the fir4 , fir4u , no-rep , and no-par pro-
grams are 7, 6, 6, and 15, respectively.

fir
4

fir
4u

Mynoch gen

fir
4

fir
4u

E
ne

rg
y

pe
r

D
at

um
 (

nJ
)

Other

AGU

PCU

ALU

no
-r

ep

no
-p

ar

no
-r

ep

no
-p

ar

given by per-cycle energy multiplied by the number of cycles
per datum.

Figure 11 shows that Mynoch power estimation predicts that
loop unrolling, fir4u , consumes 20% less energy per datum
than fir4 while the version without packed instructions, no-
par , consumes 75% more energy per datum. The difference in
energy is due to both the energy per cycle and the number of
cycles required to process one datum. The general model is able
to recognize the difference in power, but does not show as dra-
matic an improvement for fir4u and no-rep . The lost accu-
racy comes from the general model underestimating the AGU’s
per-cycle energy for fir4 while overestimating the AGU’s per-
cycle energy for fir4u and no-rep . While improved accuracy
in AGU power estimation is needed, results show that a code
generator using this model would choose the implementation
using the least power under the general model we developed.

4.2 Data Dependent Variation
None of the models presented consider energy effects of pro-

gram data. However, the power consumption of many units,
such as the multiplier, can be highly data-dependent. Other
research on DSP power consumption has noted the data depen-
dent variation and analyzed the energy of individual functional
units, such as the multiplier [KOJI95][LEE97]. Code transfor-
mations that keep one operand constant or reduce the number of
“1” bits in a Booth-Encoded multiplier are ways that the com-
piler can change the data to reduce the multiplier’s energy.

To gauge the importance of data, we used cycle accurate
simulation to measure the power in the ALU when each MAC
operation was active for the workloads. The average power con-
sumed by each instruction, with standard deviation error bars, is
shown in Figure 12 along with the energy costs for these
instructions from the general model. Most instructions deviate
between 8% and 12% from the mean, while two instructions
deviate by 16% and 28%. The costs from the base model are
generally within the one standard deviation of the workloads.

The fft has the largest standard deviation and has the least
accurate ALU estimates under all models (c.f. Figure 7). The
fft showed a bimodal distribution of energy in one of its MAC
instructions, probably due to a large number of multiplications
by zero. Improving accuracy for this problem would require
moving to a model based on execution traces with sample pro-
gram data. Increased accuracy of such a model would come at a
cost of significantly longer simulation time, although tech-
niques such as those proposed in [MARC96] could be used to
reduce the trace length.

5 Conclusion and Future Work

We have presented several approaches for dealing with inter-
instruction effects when building instruction-level energy mod-
els for a specific DSP design. The results show that using NOP
instructions to model transitions between any two instructions
give accuracy within 8% while reducing table size from almost
1200 to less than 100, and eliminates possible human error from
other simplification methods. Using separate models on major
units within the DSP avoided multiple table entries for different
combinations of arithmetic and parallel move instructions and
allowed us to build a general model. Such a model could allow
code generators to recognize code transformations that reduce
the energy consumed by programs.

Future work attempt to recognize when data dependent vari-
ation is likely to be important and include such variation within
the model. Building models for other, non-DSP architectures
would further validate the applicability of the ideas presented
here.

6 Acknowledgments

Andrew Ryan, Chris Inacio, Jonathan Ying-Fai Tong and
Bill Dougherty Jr. provided critical components for this study.

7 References

[BAJW97] R. S. Bajwa, N. Schumann, H. Kojima. Power
Analysis of a 32-bit RISC Microcontroller Integrated with a 16-
bit DSP. Proceedings 1997 International Symposium on Low
Power Electronics and Design, pp. 137-142, 1997.

[KOJI95] H. Kojima, D. Gorny, K. Nitta, and K. Sasaki. Power
Analysis of a Programmable DSP for Architecture/Program
Optimization. IEEE Symposium on Low Power Electronics,
Digest of Tech. Papers, pp. 26-27, Oct. 1995.

[KRIS97] Ram K. Krishnamurthy, Mixed Swing Techniques for
Low Energy/Operation Datapath Circuits, Ph.D. Thesis, Carn-
egie Mellon University, December 1997.

[LEE97] M. T.-C. Lee, V. Tiwari, S. Malik, M. Fujita. Power
Analysis and Minimization Techniques for Embedded DSP
Software. IEEE Trans. on VLSI Systems, pp. 1-14, March, 1997.

[MARC96] Diana Marculescu, Radu Marculescu, Massoud
Pedram. Stochastic Sequential Machine Synthesis Targeting
Constrained Sequence Generation. Proceedings of Design Auto-
mation Conference, pp. 696-701, 1996.

[MOTO90] Motorola, Inc. DSP56000/56001 Digital Signal
Processor User’s Manual. 1990.

[PURS96] D. J. Pursley. A gate level simulator for power con-
sumption analysis. M.S. Thesis, Carnegie Mellon University,
May 1996.

[TIWA94] V. Tiwari, S. Malik, A. Wolfe. Power Analysis of
Embedded Software: A First Step towards Software Power
Minimization. I994 ICCAD, Digest of Technical Papers. pp.
384-390, 1994

[XANT97] T. Xanthopoulos, Y. Yaoi, A. Chandrakasan. Archi-
tectural Exploration Using Verilog-Based Power Estimation: A
Case Study of the IDCT. DAC 97, pp. 415-420, 1997.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 12: Energy per instruction of data ALU
The average energy for each instruction, based on Mynoch
simulation of the programs, is given with standard deviation
error bars to the left. The three instructions with the highest
standard deviation showed a bimodal distribution. Base
energy cost (B) and base plus overhead (B+O) from the gen-
eral model are given to the right.

E
ne

rg
y

pe
r

C
yc

le
 (

nJ
)

fir
4

 M
A

C
xy

fir
64

 M
A

C
xy

fir
4u

 M
A

C
xy

fir
4u

 M
A

C
xa

fir
4u

 M
A

C
ya

fft
 M

A
C

xy

fft
 M

A
C

xy

B
 M

A
C

xy

B
 M

A
C

xa

B
 M

A
C

ya

B
+O

 M
A

C
xy

B
+O

 M
A

C
xa

B
+O

 M
A

C
ya

