

Exploring Multiplier Architecture and Layout
 for Low Power

Pascal C. H. Meier, Rob A. Rutenbar and L. Richard Carley

Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

email: pascal@ece.cmu.edu rutenbar@ece.cmu.edu lrc@ece.cmu.edu

Abstract

*

Multiplication represents a fundamental building block in all
DSP tasks. Due to the large latency inherent in multiplication,
schemes have been devised to minimize the delay. Two methods
are common in current implementations: regular arrays and
Wallace trees. Previous gate-level analyses have suggested that
not only are Wallace trees faster than array schemes, they also
consume much less power. However these analyses did not take
wiring into account, resulting in optimistic timing and power es-
timates. We develop a simplified comparative layout methodolo-
gy to analyze the effect of physical layout on these designs. Re-
sults for short bit-width (8, 16, 24 bit) DSP multipliers show that
while wiring has a major impact on signal delay and power,
Wallace trees still show roughly a 10% power advantage over
array-based designs.

Introduction

There has been renewed interest in basic digital arithmetic in
the last few years, driven originally by the migration of fast float-
ing point hardware into standard microprocessors, and more re-
cently by the demand for multimedia functionality in both desk-
top and portable systems. In the latter case, the demands of DSP-
style systems for both high throughput (e.g., for voice, video)
and low energy consumption has spawned new work in low-
power circuit styles [1], DSP synthesis [2], and examination of
basic tradeoffs in different arithmetic styles [4]. Our interest is
in the basic building blocks of arithmetic circuits, in particular,
short word width (8 - 24 bit) multipliers of the type that dominate
in DSP applications.

For individual arithmetic blocks, different gate-level archi-
tectures have a substantial impact on hardware size, layout com-
plexity, speed and power. For basic adder types (ripple, looka-
head, skip, bypass,

etc

.), the power tradeoffs were clearly
mapped by Callaway and Swartzlander in [4]. For example, rip-
ple adders are slowest but use the least energy, whereas specula-
tive styles such as bypass adders are fast but consume much
more power, since they perform computations they later discard.

The tradeoffs for basic multipliers, however, are much less

* This work was supported in part by the Semiconductor
Research Corp, the National Science Foundation and ARPA.(3)

well characterized. Alternative designs focus on the manner in
which the trapezoidal partial product array of individual bit-wise
products are reduced (summed) to produce the final product (see
Figure 1).

Array

 styles [10] use a regular 2-D grid of adders for
this reduction. Compact and easy to lay out, the arrays perform
this reduction in gate depth that is linear in the bit width. At the
other end of the spectrum,

Wallace tree

 styles [3] use a log-depth
tree network for this reduction. Faster, but irregular, they trade
ease of layout for speed. Although the speed-size tradeoffs for
these two styles are fairly well characterized, the power tradeoffs
are not well understood.

For example, Bellaouar and Elmasry [5] suggest that Wallace
tree styles are best avoided for low power applications, since the
excess wiring is likely to consume extra power. On the hand,
Callaway and Swartzlander [4] demonstrate quantitatively that
switching activity within just the partial product reduction hard-
ware is substantially better for the tree over the array-–if one ig-
nores the wires completely. Montoye [7] alludes to the difficul-
ties in dealing with the tree wiring for one high-performance
commercial processor (IBM RS/6000), but concludes that the
speed gain is worth the trouble; unfortunately power was not a
concern in this design.

 In this paper, we attempt to shed some light on the question:

are Wallace tree style multipliers competitive with array styles
for speed and power

? Intuition suggests that the log-versus-lin-
ear depth of the reduction network for the tree might well lead to
shorter propagation paths and less power-consuming glitching.
First order analysis of the average transition counts across sets of
random vectors applied to both array and Wallace tree designs
supports this point of view (see Figure 2.), as does the work of

Fast Adder

Fast Adder

(a) Array architecture (b) Wallace Tree architecture

8 bit partial product
array

Figure 1. Multiplier Architectures

[4]. However, these analyses are incomplete due to the lack of
any consideration of wiring effects, and are therefore unable to
support or refute the claim of [5].

To remedy this, we suggest a more detailed evaluation model
that considers not only the gate-level differences, but also the
wiring effects due to layout. As we shall see, experiments sug-
gest a posture of cautious optimism for the Wallace trees: they
are neither as bad as [5] suggests, nor as good as [4] estimates,
but they do appear roughly comparable within the limits of our
model, with the tree style somewhat better on both energy con-
sumption and on speed. The rest of the paper describes our mod-
eling methodology, our layout strategy for comparing arrays and
trees, and our experimental results.

Analysis Methodology

To fairly compare the array and Wallace tree multiplier
styles, we need the following:

•

Cell-level generators for the multipliers’ partial product
reduction networks:

where “cell” here means the compo-
nent (3,2) carry save adders and single-product AND gates
needed in the design.

•

Cell-level generators for multipliers’ final 2-level reduc-
ing adders:

each style requires a final addition, and each can
use different adder styles to achieve different tradeoffs.

•

Cell characterization:

to understand power consumption in
each of these primitive component cells, as implemented by
conventional static CMOS circuits.

•

Layout model:

 to allow exploration and first-order estima-
tion of wiring, delay and area, we need a simple layout style
that is easily automatable, yet not so detailed as to demand
manual, full-custom layout.

•

Power and delay estimation:

 to measure power and delay
for the completed multiplier layouts–including the delay and
capacitance of all the intercell wiring.

We summarize our strategy for each of these in this section.

For simplicity, we restrict ourselves to unsigned operands,
and focus exclusively on the short word widths common in DSP

Figure 2. Transition count comparison for multipliers.

0

20000

40000

60000

80000

4 6 8 10 12 14 16
Multiplier Size (bits)

Array Multiplier

Wallace Tree
Multiplier

applications: 8, 16 and 24 bits. Cell-level generation of the netlist
for each multiplier is straightforward. The only degrees of free-
dom here are the detailed arrangement of the levels of carry save
adders in the Wallace tree, for which we use the basic arrange-
ment suggested by Wallace[3], and the final reducing adder at
the bottom of each architecture. Since this adder is a large part of
the overall delay, we evaluate with respect to three different
adder styles for each: carry ripple, carry skip, and carry select ad-
dition. Carry select addition precomputes carries during the ad-
dition operation. Carry skip addition uses parallel evaluation of
the criterion for carry propagation to allow the carry to traverse
the adder faster. Ripple addition is simply a chain of full adders,
and represents the most basic addition technique. See [11] for
more details.

Given these netlists of basic cells, we next characterize the
power and delay of each cell prior to analysis of the overall mul-
tiplier. We designed simple static CMOS circuits for each com-
ponent in our multipliers, using parameters from the Hewlett-
Packard 0.8

µ

m CMOS process (CMOS26G); the designs as-
sume a 3 V supply and are based on circuits presented in [10].
There are two components to power dissipation in these cells: a)
the power dissipated in the circuit switching, and b) power deliv-
ered and removed from the capacitive load on each output. Both
effects were measured using HSPICE simulations for all output
transitions, at various capacitive loads. Cell delay was also cal-
culated, in this case as the difference between the input and out-
put signals at their 50% voltage points.

To evaluate complete multipliers, we require a common layout
model for both the regular array and the Wallace tree. It is important
here to avoid penalizing one style artificially at the expense of the oth-
er. We use a simple unit grid model, in which each component cell of
the multiplier netlist occupies one slot in a set of standard cell-style
rows (see Figure 3). We assume over-the-row routing of vertical wires
connecting cells in different rows, but we conservatively estimate the
impact on total height and wire length of the wires that must make hor-
izontal jogs in each wiring channel. A post-process global router em-
beds wires into the placed model, and the maximum density of each
channel is used to derive channel height and final wirelength estimates.

input pins

output pins

component rows

channels

Figure 3. Multiplier layout model.

global routes

For the array, we procedurally tile the regular partial product
reduction cells into the grid, with the final reduction adder care-
fully located at the bottom of the array. Since nearly all the con-
nections in the array are nearest neighbor between cells in the
partial product reduction network, the array fits well into this
model. On the other hand, the Wallace tree requires constructive
placement and routing of its partial product generation (AND
gates), reduction network ((3,2) carry save adder tree) and final
reduction adder. We use a simple annealing-based placement
strategy [7] that strives to minimize the overall wirelength while
densely packing the grid.

Finally, given a complete netlist and a real, although highly
simplified placement, we can extract back per-net capacitance
and determine estimates of both power and delay for each com-
plete multiplier. Initially, we developed Verilog files for the var-
ious multiplier architectures, where power was computed by
counting the number of transitions which occurred at each cell
output. To accelerate this, we developed a simplified, custom
logic simulator for these designs. The simulator is an event-driv-
en evaluation engine, where drivers send signals to receivers. If
the value of a receiver is unresolved when a new driving signal
arrives, this corresponds to a potential glitch, and the previous
driving signal may be preempted. Since the filtering of small
glitches from the event queue can cause power estimation to be
inaccurate (

i.e.,

 too low), power consumed during glitches is also
estimated. Comparisons between our custom logic simulator, op-
erating on characterized cell-level netlists with backannotated
wire delays, against transient device-level HSPICE simulation
on small (4 bit) multipliers has shown this method to be accept-
ably accurate, typically within 5% of HSPICE estimates.

Determining the complete power dissipated in a multiplier re-
quires sensitizing all possible combinations of inputs. This
means for a circuit of

n

 inputs,

2

2n

 input combinations have to be
simulated. However, it is possible to estimate

average

 power dis-
sipation by running sets of test vectors, and performing mean es-
timation using statistical techniques. Such techniques have been
shown to be effective in determining the actual power dissipation
within a known tolerance [6]. In our approach, we run batches of
vectors to insure 95% confidence intervals,

 i.e.

, to estimate that
the computed average power dissipation is within 2% of the ac-
tual mean, with a confidence of 95%.

To estimate delay, we use three strategies. For the smaller
multipliers (up to 8 bit operands) we exhaustively simulate all
pairs of inputs and use our custom logic simulator to measure the
worst case delay. For larger designs, we use simple static timing
analysis (topological longest path) to derive a

pessimistic

 worst
case for delay. We also simulate batches of random vectors to es-
timate an

optimistic

 worst case delay. Together these two mea-
surements bound–albeit loosely–the worst case delay. In the fol-
lowing section, we present results of all these analyses.

 Experimental Results

We explored 18 different multiplier implementations in all: two
different architectures (array versus Wallace tree), three different fi-
nal reduction adders for each multiplier (carry select, carry skip, car-

ry ripple), and three different word widths (8, 16 and 24 bits).

Table 1. and Table 2. show the area estimates for each multiplier
Recall that wiring impacts the overall area because of the density es-
timates for each wiring channel. Unsurprisingly, the array multipliers
are always smaller due to their much more local wiring. Also, the rip-
ple-adder versions are always the smallest, again due to the smaller
hardware and more local wiring in these adders. As a point of com-
parison here, [12] describes a 6 bit array multiplier as part of an 8-tap
FIR filter that occupies roughly 0.4 mm

2

 in a 0.8

µ

m CMOS process;
this suggests that our area estimates are reasonable.

Figure 4. shows estimated average energy per multiply oper-
ation for each of the multipliers. Results suggest a fairly consis-
tent 10% energy advantage for the Wallace trees, across the three
bit widths examined. Despite the larger amount of irregular wir-
ing, the shallower partial product reduction in the Wallace tree
now appears to be advantageous for power. However, given the
coarseness of our layout model, a more cautious conclusion is
simply that the trees’ energy use appears roughly competitive
with that of arrays.

Figure 5. shows estimated delay for each multiplier. In gen-

Table 1.

Array multipliers - estimated area (mm

2

)

Adder Type 8 bit 16 bit 24 bit

Carry Sel. 0.668 2.195 4.579

Carry Skip 0.627 2.099 4.430

Ripple 0.532 1.913 4.156

Table 2.

Wallace tree multipliers - estimated area (mm

2

)

Adder type 8 bit 16 bit 24 bit

Carry Sel. 0.759 2.626 5.625

Carry Skip 0.736 2.537 5.576

Ripple 0.725 2.488 5.576

Figure 4. Estimated average energy per multiply op.

A

A

A

B

B

B

C

C

C

D

D

D

E

E

E

F

F

F

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25

A

B

C

D

E

F

E
ne

rg
y

pe
r

op
er

at
io

n
(p

ic
oJ

ou
le

s)

Array/ C. Select Adder

Wallace Tree /C. Select Adder

Array/ Ripple Adder
Array/ C. Skip Adder

Wallace Tree /C. Skip Adder
Wallace Tree /Ripple Adder

Multiplier Size (bits)

eral, the delays are fairly long since we use a 0.8

µ

m CMOS pro-
cess, and because all devices are of minimum size. For the small
8 bit design, results of exhaustive simulation over all pairs of in-
puts appears in Table 3., along with more conservative static tim-
ing estimates for comparison. The static timing estimates are
pessimistic by 30-50%. The greatest discrepancy occurs with the
carry-skip adder, which has many false paths, due to carry prop-
agate prediction circuitry. Note that the carry skip adder does not
show a speed advantage at low bit width, due to the lookahead
circuitry. Without this circuitry, the carry skip adder behaves like
a ripple adder. Also note that the use of a ripple adder completely
negates the advantage of using a Wallace tree, as expected.

 Note that Figure 5. offers both a pessimistic (static timing)
and an optimistic (worst case encountered during simulation of
random patterns) timing estimate for each multiplier. The wide
overlap of the array and Wallace tree timing intervals certainly
suggests that the Wallace trees are at least competitive in delay.
Indeed, the intervals for each Wallace tree cover smaller delays
than the corresponding array interval, which also suggests that
the trees are faster, again as expected.

Taken together, Figure 4. and Figure 5. suggest that the Wallace
trees may indeed have an energy•delay advantage over the regular ar-

Table 3. 8 bit multiplier - estimated delay (ns)

array Wallace tree

exhaustive
simulation

static tim-
ing

exhaustive
simulation

static tim-
ing

Carry sel. 16.12 22.73 14.86 18.90

Carry skip 18.93 28.93 18.42 27.25

Ripple 18.79 27.94 18.81 26.47

Figure 5. Estimated worst-case delay (ns).

HHHH HHHH

HHHH

HHHH

HHHH

HHHH

JJJJ JJJJ

JJJJ
JJJJ

JJJJ

JJJJ

BBBB BBBB

BBBB

BBBB

BBBB

BBBB

∆
∆

∆

∆

∆

∆

AAAA AAAA

AAAA

AAAA

AAAA

AAAA

GGGG GGGG

GGGG

GGGG

GGGG

GGGG

0

20

40

60

80

100

120

HHHH

JJJJ

BBBB

∆

AAAA

GGGG

Ripple Adder - (simulation estimate)

8 bit 16 bit 24 bit

Carry Skip Adder - (simulation estimate)
Carry Select Adder - (simulation estimate)

Carry Select Adder - static timing
Carry Skip Adder - static timing
Ripple Adder - static timing

ray multipliers. Wallace trees are not so bad as suggested by [5], nor
as significantly superior as estimated by [4].

Conclusions

By introducing a simple unit grid layout model, we have been
able to compare regular array and Wallace tree style unsigned
multipliers over bit widths 8 to 24 bits, including first-order de-
lay and area effects due to physical wiring. The model is clearly
coarse, but capable of making basic predictions for area, for av-
erage power, and delay. Interestingly, the Wallace trees fare rath-
er well, despite their irregularity and excess wiring. The smaller
depth of their partial product reduction hardware seems to offset
the power lost in the wiring, offering improved energy and delay.
We believe this preliminary result justifies closer investigation
with more refined models of problem,

e.g.

, use of more aggres-
sive exact critical path analysis[11], and better layout optimiza-
tion, to determine where the Wallace tree style may be useful.

Acknowledgments

We thank Dennis Ciplickas of Carnegie Mellon for his in-
sights on circuit timing and power simulation issues.

References

[1] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low Power
Digital Design,”

IEEE JSSC

, vol. 27, pp. 473-484, April 1992.
[2] A.P. Chandrakasan, M.Potkonjak, R. Mehra, J. Rabaey, R.W.

Brodersen, “Optimizing Power Using Transformations,”

IEEE
Transactions on CAD

, Vol. 14, No.1 pp.12-31, Jan. 1995.
[3] C.S. Wallace, “Suggestions for a Fast Multiplier,”

IEE Trans.
Electron. Computers

, EC-13, pp. 14-17, 1964.
[4] T.K. Callaway, and E.E. Swartzlander Jr., “Low Power Arith-

metic Components.” in

Low Power Design Methodologies

,
Rabey, J. and Pedram, M., eds., pp. 161-198, Norwell, Mass:
Kluwer Academic Publishers, 1996.

[5] A. Bellaouar, and M.I. Elmasry,

Low-Power Digital VLSI
Design, Circuits and Systems

, pp. 442-450, Norwell, Mass: Klu-
wer Academic Publishers, 1995.

[6] R. Burch, F. Najm, P. Yang, and T. Trick, “McPOWER: A
Monte Carlo Approach to Power Estimation,”

IEEE/ACM
ICCAD,

pp.90-97, Santa Clara, CA, Nov. 8-12, 1992.
[7] R. Rutenbar, “Simulated Annealing Algorithms: An Overview,”

IEEE Circuits and Devices Magazine

, pp. 19-26, Jan. 1989.
[8] R.K. Montoye E. Hokenek, S.L. Runyon, “Design of the IBM RISC

System/6000 Floating-Point Execution Unit,”

IBM Journal of
Research and Development

, pp. 59-77, Vol. 34, No. 1, January 1990.
[9] N. Weste and K.Eshraghian,

Principles of CMOS VLSI Design

,
p. 312, Addison-Wesley 1988.

[10] D. Goldberg, “Computer Arithmetic,” in

Computer Architecture A
Quantitative Approach

, J.L. Hennessy and D.A. Patterson, pp. A1-
A66, San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1990.

[11] M. Sivaraman and A.J. Strojwas, “Towards Incorporating Device
Parameter Variations in Timing Analysis”,

Proceedings of the
European Design Conference

, 1994, pp. 338-342.
[12] L.E. Thon, P. Sutardja, F. Lai and G. Coleman, “A 240MHz 8-

Tap Programmable FIR Filter for Disk-Drive Read Channels,”

IEEE ISSCC

, 1995, pp. 82-83.

