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Abstract

Power consumption is an increasingly important con-
sideration in the design of mixed hardware/software
systems. This work defines the notion of instruction
subsetting and explores its use as a means of reducing
power consumption from the system level of design.
Instruction subsetting is defined as creating an applica-
tion specific instruction set processor from a more gen-
eral processor, such as a DSP. Although not as effective
as an ASIC solution, instruction subsetting provides
much of the power savings while maintaining some
level of programmability. Instruction set choice
strongly affects the savings. We synthesized 5 ASIPs
through place and route and found that a poorly chosen
instruction set may consume more than 4 times the
energy of an ASIP with a proper instruction set choice.
This finding will allow designers to consider another
set of trade-offs in their hardware/software design
space exploration.

Introduction

The performance of a fully customized ASIC design
can be optimized in terms of a variety of parameters
such as critical path, execution speed, area, or power
dissipation. Programmable implementations may not
be optimized for any of the performance parameters
but can be reprogrammed for a variety of applications.
This work defines the notion of instruction subsetting
and uses it as a technique to trade-off performance and
programmability. 

Consider the range of implementation styles
shown in Figure 1. If we have a behavioral description,
or a software program, that is to be implemented, the
system can be designed as software running on a gen-
eral purpose processor (GP), as software on a DSP pro-
cessor, as an application specific instruction set
processor (ASIP), or as an application specific inte-
grated circuit (ASIC). These alternate implementations
represent a trade-off of the level of customization and
programmability of the implementation. Clearly, an
ASIC implementation has fully customized datapaths
and control logic, but it is not programmable. At the
other end of the scale, a GP has little or no customized
logic for the application at hand. For signal processing
applications, a DSP is a more customized architecture

than the general processor. An ASIP can be far m
customized to an application or small set of applic
tions but yet be programmable. 

This paper explores the design space availa
between the general purpose processor and AS
design styles mainly with the goal of power reductio
A behavioral description of a processor include
descriptions of all of its instructions. We could use a
off-the-shelf version of the processor, or synthesize
using behavioral synthesis techniques. Alternately, 
could determine a suitable subset of the instructio
for the application at hand, and synthesize an ASIP t
only implements that subset. This process, call
instruction subsetting, typically reduces the area, criti-
cal path, and power dissipation of the implementatio
while partially retaining its programmability. 

Instruction subsetting is an aspect of hardwa
software codesign in that it provides for performan
trade-offs between the software application to be ex
cuted and the underlying hardware architecture spec
cally designed to execute it.

Key to this approach is the use of behavioral inte
lectual property (IP), specifically that of a general 
DSP processor. Given such behavioral IP, new te
niques for creating of a range of ASIPs for custom lo
power system design can be developed. Not only w
the power dissipation be reduced, but the ASIP w
still be programmable (although with a more limite
instruction set). Thus we can trade off the reduc
power of an ASIC with the programmability of an
ASIP. Unlike [Ing94], we will begin with a defined
instruction set and simply remove unneeded instru
tions rather than synthesizing a new instruction s
based specifically on the needs of the target appli
tion.

This paper describes the results of an experim
to characterize the design space and trade-offs av

Figure 1. The Range of Implementation Styles
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Approach

Research in computer-aided design techniques for
mixed hardware/software systems has begun to focus
on reducing the power consumption of the systems
being produced. Attention has been focused on reduc-
ing transition counts in the logic hardware using
behavioral synthesis techniques [Rag94][Meh96]
reducing memory accesses [Cat97], code generation
[Tiw94][Sri96], and shutting down unused parts of a
system [Mon96]. Our goal is to examine power trade-
offs that can be made in the exploration of the design
space. 

Consider the design of a 4-tap finite impulse
response (FIR) filter. The most customized implemen-
tation of it is an ASIC that only executes this FIR filter.
The least customized, as illustrated on the right of
Figure 1, is with a general processor. For our experi-
ments, the GP design is a partial implementation of the
Motorola M68HC11 8-bit microcontroller [Mot91]
that will execute 77 different instructions. Between
those extremes, we have implemented three instruction
subsets of the Motorola DSP56000 [Mot90] 24-bit dig-
ital signal processor (executing 36, 19, and 11 instruc-
tions). These designs can be thought of as a DSP and
two increasingly customized ASIPs. A second version
of the M68HC11 was also created (executing only 24
instructions). This corresponds to an ASIP version of
the M68HC11. Each design and the environment used
to synthesize each design is described below.

The smaller M68HC11 design implemented only
the 24 instructions used in a hand-designed FIR pro-
gram, while the larger design (77 instructions) imple-
mented the instructions needed for an FFT program
[Wil94]. Note that care must be taken in comparing the
raw results of these designs with the other designs,
since the datapath for these is 8-bits wide while the
others have 24-bit datapaths.

The smallest DSP56000 design (11 instructions)
corresponded to the instructions used in a hand-
designed FIR program. The second design (19 instruc-
tions) implemented the instructions necessary for an
FFT algorithm[Mot92]. The third design (36 instruc-
tions) implemented the instructions needed to imple-
ment a portion of the SPHINX-III speech recognition
front-end [Wei97] as determined by compiling the
original C code.

All six designs were implemented with the design
flow shown in Figure 2. Scheduled behavioral level
Verilog is input to DASYS’ RapidPath [Das97], which
allocates hardware for the design. The controller of the
register-transfer level Verilog is passed through Synop-
sys’ Design Compiler [Syn97] for logic synthesis,

while the datapath portions are synthesized with C
cade Design Automation’s Epoch [Cas97]. The desig
were mapped to 0.5 micron CMOS technology. Epo
is also used to place and route the entire design. Po

estimates were obtained from the gate level Veril
with timing and capacitance data back-annotated fro
the placed and routed design. An in-house simulatio
based power estimation tool [Pur96] was used.

Our FIR filter is a baseline design; the ASIC an
the smallest DSP and GP ASIPs were designed spe
cally to execute this filter algorithm. Fuller implemen
tations of the DSP and GP architectures, where 
have implemented larger subsets of their instructio
allow us to measure the incremental changes in pow
dissipation when using larger ASIPs. Although seve
other applications were programmed on the proce
sors, the FIR filter remains the only application comp
rable with the ASIC.

Results and Analysis
Table 1 presents the physical characteristics 

each design used in our experiments. The des
names appear in the first column of the table. The s
ond column shows the size of the design, placed a
routed in a 0.5 micron static CMOS process. The tra
sistor counts presented in the third column are divid
between logic transistors and memory. Like the 56
all the DSP designs contain 9KB of memory, divide
equally among an instruction memory and two da
memories. The ASIC design contains only 6KB o
memory, as it does not require an instruction memor

The critical path of the design, shown in the four
column, represents the minimum clock period for th
design as determined by Cascade's TACTIC static ti
ing analyzer. The fifth column, time per datum, show
the amount of time needed to complete one FIR ite
tion. The HC designs do not directly support signe

Dasys’ 
Rapidpath

Synopsys’
DesignCompiler

Cascade’s
Epoch

Cascade’s
Epoch

Hardware 
Allocation

Logic and 
Datapath 
Synthesis

Gate Level Verilog with Back-annotated 
Delay and Capacitance

Place and 
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Figure 2. High-level design flow

Scheduled Behavioral Verilog
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multiplication, and therefore have significantly longer
time per datum. The sixth and seventh columns show
the number of instructions supported by each design
and the percentage of the total instruction set this com-
prises, respectively. 

While we would expect that the critical paths and
transistor counts would increase at a steady rate as
more instructions are added, we see a jump in the criti-
cal path for the DSP designs at the DSP19 ASIP. This
is accounted for by the significantly larger amount of
control logic introduced between the DSP11 and
DSP19 than is introduced between the DSP19 and
DSP36 designs as a result of the two additional
addressing modes and additional move instructions
required by the fft application. The majority of the
changes made between the DSP19 and DSP36 designs
are additional datapath items. This is also reflected in
the transistor count. As expected, implementing more
instructions in a design increases physical characteris-
tics like design and critical path.

Table 2 shows the energy consumption for all o
designs running the 4 tap FIR filter (fir4). Both norm
and voltage scaled energy results are presented. F
column two, we can see that the DSP36 design c
sumes 44.6 nJ per iteration, while the DSP19 des
consumes only 34.3 nJ for the same amount of work
the DSP19 design is voltage scaled to operate at 
same speed as the DSP36 design, energy consump
drops to 29.8 nJ. Clearly, there is a trade-off to 
made here. If we only want to run 4-tap FIR filte
there is a significant benefit to using the smalle
implementation available.

Table 3 shows similar data for other application
running on the DSP ASIPs. The other applicatio
tested were: a 64 tap FIR filter (fir64), a 64 point FF
(fft), and a 64 tap adaptive least mean square fil
(lms). The N/As in the DSP11 row under the fft an
lms columns are present because the ASIP did not c
tain all of the instructions needed to run the fft and lm
programs as implemented. The program could 
course be rewritten to run on the smaller ASIP, b
would take longer to run and therefore consume mo
energy overall.

The cost of programmability, as determined b
energy consumption, can be measured by looking
the energy consumed over the entire design space. 
trade-off in energy consumption as compared to t

Table 1: Physical Design Characteristics

Design
Chip 
Area 

(mm2)

# of 
Trans-
istors

Critical 
Path
(ns)

Time/
Datum

(ns)

# of
Instr.

% of
Total
Instr.

ASIC 17.76 174,692 
+ 6KB 
SRAM

38 152 N/A N/A

DSP11 30.8 179,099 
+ 9KB 
SRAM

66 464.1 11 17.74%

DSP19 80.91 355,821 
+ 9KB 
SRAM

90 630 19 30.65%

DSP36 85 411,865 
+ 9KB 
SRAM

102 714 36 58.06%

HC24 1.6 16,905 26 6,732 24 7.74%

HC77 4.25 33,483 28 7,219 77 24.84%

Table 2: Energy Consumption per Datum for fir4

Design
Energy/Datum (nJ) 

(fir4)

Voltage Scaled
Energy/Datum (nJ) 

(fir4)

ASIC 6.11 1.33 (@ 1.4V)

DSP11 20.07 11.80 (@2.3V)

DSP19 34.30 29.88 (@ 2.8V)

DSP36 44.64 44.64 (@ 3V)

HC-Fir subset 62.36 58.27 (@2.9V)

HC-FFT 153.16 153.16 (@ 3V)

Table 3: Energy Consumption for DSP Designs

Design

Energy 
per 

Datum 
(nJ) 
(fir4)

Scaled
Energy

per 
Datum 

(nJ) 
(fir4)

Energy
per 

Datum 
(nJ) 
(fir4)

Scaled
Energy

per 
Datum 

(nJ) 
(fir4)

Energy
per 

Datum 
(nJ) 
(fir4)

Scaled
Energy

per 
Datum 

(nJ) 
(fir4)

DSP11 79.24 46.58 N/A N/A N/A N/A

DSP19 142.61 124.23 640.17 557.66 449.63 391.65

DSP36 205.23 205.23 618.54 618.54 482.98 482.98

Figure 3. Energy and Voltage Scaled Energy of 
56k Based ASIPs running fir4.
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percentage of the instruction set implemented for the
DSP designs running fir4 is shown in Figure  3. Both
voltage scaled and unscaled measurements are pre-
sented. The point at 0% of the instruction represents
the ASIC. Moving from the ASIC to the minimum FIR
implementation more than triples the amount of energy
consumed in this architecture. The slope then increases
moving from the DSP11 to DSP19 designs, meaning
the cost of adding this additional programmability is
higher than that experienced by moving away from the
customized design. This can be attributed to the addi-
tional datapath and control logic needed to support the
additional addressing modes required by the fft, and
accounts for the knee in the curves. Beyond this point,
the curve increases at a much lower rate, as much of
the complicated control logic and datapath elements
are present in the design. The shape of the curves will
of course be highly dependent on the particular
instructions present in the design. By creating our
ASIPs moving from simple to more complex DSP pro-
grams, we attempt to add instructions in the order of
general application usefulness.

The rate of increase in power consumption will
vary based on the types of instructions used in the pro-
grams. The energy results can be normalized by divid-
ing by the amount of time needed to produce an output
for the particular application, giving the amount of
power consumed per datum. This information is pre-
sented in Figure  4. For the FIR implementations (fir4
and fir64) there is a substantial increase in power con-
sumed per datum as the number of instructions imple-
mented increases. This holds for both the 56K and
6811 based designs. The fft and lms applications show
a different trend, with the power consumption per
datum dropping when moving from the 19 to the 36
instruction ASIP. This trend appears to arise from the
DSP36’s better layout, as compared to the DSP19,
which reduces the driven capacitance. Still, the trend is
significantly different than that of the FIRs which are

dominated by multiply-accumulate instructions, whil
the fft and lms programs contain large numbers 
move and loop control instructions. 

Beginning with the DSP36 ASIP, the power sav
ings for the FIR applications increases an average 1
when scaling to the 19 instruction design. Moving 
the DSP11 design yields an additional 22% gain in t
non-voltage scaled case. For the 6811 based design
58% improvement in energy consumption was se
moving to the smaller ASIP in the non-voltage scale
case. Voltage scaling increases the improvement in 
fir4 program to 73% in the DSP designs and 60% in t
HC designs. Again, we see a strong benefit from us
the minimum instruction set as required by the applic
tion. 

Power consumption seems to track linearly wi
the instruction set utilization of the ASIPs, higher util
zations tend to lower power consumption. Instructio
set utilization is defined to be the number of instru
tions used in a program divided by the number 
instructions in the ASIP. The fir4 application uses a
11 instructions in the DSP11 processor, and theref
has a utilization of 100%. Running the same progra
on the DSP36 design would have a utilization of 31%
This effect is plotted in Figure  5. For application
heavily dominated by calculations (fir4 and fir64
increasing utilization is accompanied by decreasi
power consumption. As we move from simple applic
tions to more complex ones, the slope of the pow
consumption line tends to increase, and reverses dir
tion for the fft and lms applications in the unscale
measurements. This again appears to be due to the
ter layout achieved by the DSP36 design, and 
would not expect this trend to continue if a larger AS
was created. Computationally intense applicatio
experience significant power savings if the ASIPs th
are run on can be created in such a manner that the

Figure 4. Power consumed per datum across all 
designs and applications
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Figure 5. Power per datum compared to percentage 
of ASIP instructions utilized.
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lization of available instructions is high.

Looking at the breakdown of energy consumption
from datapath, control, and clock elements in each
design shows why the cost of programmability
increases as the designs become more flexible. This
data, presented in Table 4 for the fir4 application,
shows that the majority of the energy consumed in
each design is from the datapath functional units. As
the ASIPs become more general purpose in nature, the
control and clock energy become increasingly more
significant, growing at a rate of 70% from the HC24
design to the HC77 design when running the fir4 pro-
gram. A 60% increase occurred moving from the
DSP11 to DSP19 design, but stayed at about the same
level moving to the DSP36 design for the same appli-
cation. Still, control logic never makes up more than
13% of the DSP design space and 35% of the HC
design space. The datapath energy consumption
increased by up to 40% in the same design space,
largely due to increased capacitance and spurious tran-
sitioning.

Summary
We found that instruction subsetting can be used

as an effective means of power reduction. However, its
effectiveness is dependent on the utilization of instruc-
tions available in the ASIP. Analyzing our five placed
and routed designs, we determined the logic required
to implement additional instructions is prohibitively
wasteful if the instructions are not used. This effect is
more prominent when executing computationally
intense algorithms (such a FIRs), than algorithms dom-
inated more by control and data movements (such as
FFTs). For the FIR applications, larger instruction set
designs (with correspondingly lower instruction set
utilizations) saw an average of almost 60% increases in
the power per datum and as much as a 400% increase
in energy consumption over the entire design space.
These results suggest that instruction set subsetting can
be a valuable technique for architecture exploration

during hardware/software codesign. 
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