
PARA-SNORT : A MULTI-THREAD SNORT ON MULTI-CORE IA
PLATFORM

Xinming Chen1,2, Yiyao Wu1,2, Lianghong Xu1,2, Yibo Xue2,3 and Jun Li2,3

1Dept. Automation, Tsinghua University, Beijing, China
2Research Institute of Information Technology (RIIT), Tsinghua University, Beijing, China

3Tsinghua National Lab for Information Science and Technology, Beijing, China
chen-xm09@mails.tsinghua.edu.cn, {wuyiyao, xulianghong05}@gmail.com, {yiboxue, junl}@tsinghua.edu.cn

ABSTRACT
As security threats and network bandwidth increase in a
very fast pace, there is a growing interest in designing high-
performance network intrusion detection system (NIDS).
This paper presents a parallelization strategy for the pop-
ular open-source Snort to build a high performance NIDS
on multi-core IA platform. A modular design of parallel
NIDS based on Snort is proposed in this paper. Named
Para-Snort, it enables flexible and easy module design.

This paper also analyzed the performance impact of
load balancing and multi-pattern matching. Modified-JSQ
and AC-WM algorithms are implemented in order to re-
solve the bottlenecks and improve the performance of the
system.

Experimental results show that Para-Snort achieves
significant speedup of 4 to 6 times for various traces with a
7-thread parallelizing test setup.

KEY WORDS
Network Security, Snort, Multi-core

1 Introduction

Network intrusion detection system (NIDS) analyzes net-
work traffic and reports malicious activities that intend to
compromise computer and network security. Nowadays the
species and quantities of attacks on Internet have increased
exponentially, and the ruleset of NIDS is becoming larger
and larger [1], which makes the computational burden of
NIDS continuously increasing. At the same time, prolifer-
ation of the Internet coverage and applications fuels rapid
bandwidth increase that demands high-performance NIDS
an urgent need.

Although some NIDS products based on ASICs or
FPGA can achieve quite high processing speed, their flex-
ibility can hardly meet the evolving structure complexity
and the increasing ruleset size of NIDS. Besides, they are
usually quite expensive for the edge network. IA (Intel Ar-
chitecture, often generically called x86, or x64 for IA-64)
platform is more compatible to enterprise application, has
the advantage of low price and high flexibility compare to
ASIC or FPGA solutions. On the other hand, performance
improvement on single processor platform has been sig-
nificant, but insufficient to fulfill the performance require-

ments of a high speed edge NIDS. This paper studies the
strategy of parallel processing implementation for a high-
performance NIDS on IA platform.

Multi-core IA platforms is leading the trends of
higher processor computation power, but to take advan-
tage of the multi-core platform, software must have a par-
allel structure to fully utilize the processing capability of
the multi-core architecture. This multi-core parallelism has
been rarely leveraged in existing NIDS, mainly because of
the complexity of NIDS. Some functionality in NIDS, such
as multi-pattern matching and preprocessing, can cost ma-
jority of overall processing time. Parallel implementation
of NIDS may also introduce new bottlenecks, such as the
load balancing and replicated memory usage. Modular de-
sign is also required for better scalability, which presents
another major challenge to a parallel processing NIDS.

In this paper, a new parallel structure of NIDS is pro-
posed. Compared to the previous work on parallelization,
this structure has a clean-cut modular design, along with
optimized core algorithms. Section 2 describes the appli-
cation background of this work, and summarizes related
work. In Section 3, the modular design of the proposed
parallel structure is described in details. Section 4 de-
scribes optimization methods to resolve the performance
bottlenecks, where Modified-JSQ algorithm is used to in-
crease the performance of the load balancer, and AC-WM
algorithm is used to break the bottleneck of multi-pattern
matching. A prototype is developed for performance eval-
uation; experimental results are discussed in Section 5. As
a summary, in Section 6, we state our conclusion.

2 Background and Related Work

2.1 Overview of NIDS

Unlike firewalls, which inspect packet headers according
to user policy to make network access decisions, a NIDS
looks into both header and payload of packets to identify
intrusion, and this full packet content inspection requires
much more computational ability. NIDS can be imple-
mented based on ASIC, FPGA, network processors, or IA
platform, which is discussed in this paper. There are a lot
of popular NIDSes on IA platform, such as Snort [1] and
Bro [2]. They all have similar structures. Here we take

Figure 1. Snort 2.x processing loop [4]

Snort as an example to explain the common structure of
NIDSes, and how we design a parallel NIDS based on this
single-thread structure.

Snort is so far the most popular open source NIDS on
IA platform, currently maintained by Sourcefire Inc. The
latest stable release is Snort 2.8.4. Figure 1 depicts the
processing flow used by Snort 2.x. Firstly, Snort performs
data acquisition through libpcap [3] or other libraries, and
then it decodes the packets to fill the data structure used by
Snort. After that, Snort uses preprocessors to modify or an-
alyze packets before detection, and the detection engine is
employed to do pattern matching for packet payload with
compiled ruleset. If attacks are found during the procedure,
Snort sends alert to the administrator.

The Snort 2.x uses single-thread processing. There is
only one CPU core used during the process on multi-core
processors. It is unable to utilize the full computer ability
of multi-core platforms.

To build a parallel structure for a system, we must first
find the bottlenecks in its serial implementation. Derek L.
Schuff from Purdue University has studied the execution
time of each components of Snort. He proved that detection
component occupies an average of 51.90 % of execution
time, and preprocessing occupies an average of 18.02 %
[5]. Therefore, this work focuses on the parallelization of
the preprocessor and detection engine.

It is worth mentioning that Sourcefire Inc. released a
new platform named SnortSP in 2008, the current version
is 3.0.0 beta 3, and no stable release version now. SnortSP’s
approach is similar to ours and its code base meets our de-
mands well, so we leveraged on the code of SnortSP during
the development of our prototype system.

2.2 Previous Work on NIDS Parallelization

2.2.1 Supra-linear Packet Processing

Supra-linear Packet Processing [6] is an achievement made
by Intel Corporation in 2006. It is based on Snort 2.x. Fig-
ure 2 shows its structure.

The data acquisition component of Supra-linear is
separated and other components are duplicated. A Packet
classification hash module is added to dispatch the pack-

Packet capture

Packet classification hash

Thread 1

Packet decoder

Preprocessors

Detection engine

Output plug-in

Packet decoder

Preprocessors

Detection engine

Output plug-in
Thread 2 Thread 4 .

Figure 2. Structure of Supra-linear Packet Processing [6]

ets into processing threads. Data acquisition and dispatch
component is in one thread, and each processing compo-
nent is a separated thread. Each processing thread executes
the same code to go through a flow from decode to output,
and they don’t communicate with each other.

Supra-linear is a simple implementation. But the pro-
cessing threads have a problem of replicated memory us-
age. Some data which is read-only during the processing
should be shared, such as compiled ruleset. When compil-
ing the whole ruleset with AC algorithm, the size of com-
piled ruleset in one thread is about 1.5 GB. On most of IA
platforms, it is difficult to allocate so much memory for
several threads.

2.2.2 MultiSnort

MultiSnort [5] is a multi-thread Snort presented by Derek
L. Schuff, Purdue University. It is based on Snort 2.6.
Compared with Supra-linear Packet Processing, MultiSnort
only executes multiple instants of original Snort in parallel,
and it proposed a strategy of memory sharing. Figure 3
shows its structure.

MultiSnort has a load balancer that uses distributed
task queues to dispatch traffics. After the load balancer,
each processing thread does the job such as decode, pre-
process, and detect. Alert is then generated by a unified
output module.

MultiSnort is modified from original Snort 2.6. Each
component of Snort 2.x, such as data acquisition compo-
nent or decoder, is tightly coupled with others. It is not
easy to insert new data sources or processing modules. As
an experimental system, MultiSnort reads packets from a
large in-memory buffer instead of network interfaces, so it
cannot be deployed in real network environment yet.

3 Para-Snort: A Modular Design of Parallel
NIDS

An ideal parallel NIDS needs the following features. First
of all, a clean-cut modular structure is needed for better ex-
tension ability. It should be easy to insert new modules, and

Minimal Decode

Queue assignment

Full Decode

Preprocessors

Detection engine

Output Module

Packet Capture

Distributed task queues

Full Decode

Preprocessors

Detection engine
Shared
Data

... ...

Figure 3. Structure of MultiSnort [5]

Load Balance Module

Output Module

Data Source Module

Packet Queue

Processing ModuleShared
Data

Packet Queue

Processing Module

Core 1

Core 2 Core 8

... ...

Figure 4. The structure of Para-Snort

even allow replacing some modules with hardware acceler-
ation modules. The bottlenecks, such as the pattern match-
ing and the load balancing, should be cleared, too. At last,
an ideal parallel NIDS should be easy to be deployed and
tested.

Based on the above demands, we designed a paral-
lel structure for high-performance NIDS. As shown in Fig-
ure 4, the new structure named Para-Snort contains a data
source module, one or more load balance module, multiple
processing modules, and an output module.

3.1 Data Source Module

As illustrated in Figure 4, data acquisition and decoder are
merged into a data source module. This module ensures the
processing modules to receive packet data in a unified data
structure even if they are from different interfaces (Ether-
net, 802.11x, files, and so on), and thus it is not coupled
with the other modules. Several methods can be used to
build a special data source module, such as NFQueue [7]
that implements inline mode, or even a hardware capture.

3.2 Load Balance Module

After the data source module gets packets, the load bal-
ance module dispatches them to processing modules. The

Order 1

Order 2

Order 3

Processing
Module A

Processing
Module A

Processing
Module B

Processing
Module B

dispatch

Processing
Module C

Processing
Module C

dispatch

dispatch

Figure 5. Multi-staged load balancer

load balance module has a multi-staged feature that can dis-
patch packets more than one time. So it is possible for the
packets to be processed several times by different types of
processing modules. For example, some applications re-
quires its traffic to pass through both intrusion detection
and anti-virus processing modules. These two kinds of pro-
cessing modules can be arranged in two stages. Figure 5
represents a situation of multi-staged processing modules
arrangement. Processing modules with the same function-
ality are grouped in the same satge for parallel processing.
Every time before packets enter a stage of processing mod-
ules, a load balance module dispatches the packets again
to make sure every processing module at the same stage
gets balanced load. This kind of load balanceing can meet
the dynamic security filtering and inspection demand flexi-
bly. The numbers of processing modules at different stages
can be different, such as a stage of 7 intrusion detection
modules followed by a stage of 4 anti-virus modules. The
stages of processing modules implement parallelization in
pipeline.

Load balance algorithm can be optimized according
to the traffic composition, which will be analyzed in section
4.1.

3.3 Processing Module

Each processing module is implemented as a single thread,
while data source module and load balance module share
one thread. These threads are mapped to certain CPU
cores to avoid costs on thread scheduling. Processing mod-
ules get packets from the load balance module via several
queues. Each processing module has a dedicated queue.
Load balance module fetches packets from data source
module actively. It is possible that the data source may
miss some packets during the capture if it is not inline, and
the packet lose rate depends on the NIDS processing speed.

Processing modules is built with the preprocessors
and detection engine from Snort 2.x. It is made easy to
develop processing modules with other functions. For ex-
ample, Para-Snort has a processing module built with the
anti-virus engine from ClamAV [8], and this scales Para-

Packet
Anti-virus Processing Module

Level 7 Parser Writing file to
ramdisk

Scan file with
clamav API

Figure 6. The design of anti-virus processing module

Snort into an integrated solution of NIDS and anti-virus.
As shown in Figure 6, after getting packets from a load
balance module, the anti-virus processing module uses a
7-layer parser to analyze packets with HTTP and SMTP
protocol, rebuilds files on a RAMDisk, then calls ClamAV
API to scan for virus, and alarms, if any, are sent to output
module to report viruses found.

4 Breaking the Bottlenecks

As described in Section 1, there are performance bottle-
necks about load balancing, multi-pattern matching, and
replicated memory usage. Para-Snort addressed each of
these issues carefully to better leverage the advantage of
parallel processing power of multi-core platform without
introducing new show stoppers.

4.1 Optimize Load Balancing

Generally, there are two kinds of load balancing schemes:
packet-level and flow-level. However, for NIDS, due to
some special requirement (for example, detecting inter-
packet attack signatures), packets from the same flow
should be assigned to the same processing module. As a
result, Para-Snort requires flow-level load balance.

The current load balancing scheme provided by
SnortSP 3.0 is an IP hash algorithm, which generates a hash
key from source and destination IP addresses. Although
this algorithm efficiently reduces the inter-communications
among processing modules, the network load assigned to
each of the modules are not very uniform and thus results
poor system performnace.

5-tuple hash is a dispatching algorithm naturally de-
rived from IP hash. Fully exploiting the 5-tuple informa-
tion in packet headers (source IP, destination IP, source
port, destination port, protocol), this algorithm is expected
to achieve better distributing performance than IP hash in
most cases. However, 5-tuple hash is unable to detect port
scan attack, because it dispatches packets of different port
to different processing modules. But detecting port scan
can be done with front-end devices, this disadvantage is
acceptable.

An inherent limitation of the two hash algorithms,
however, is that they are both static distributing schemes,
so that the destination module of each and every packet
under processing is fixed without being adjusted accord-
ing to the real-time situation. A dynamic load balancing
scheme named JSQ (Join-the-Shortest-Queue) is proposed

in this paper for Para-Snort, which assigns every new flow
to the least busy processing module, that is, the processing
module with the shortest buffer queue. JSQ is a local opti-
mum yet not perfect method. The possibility exists that one
processing module has too many active flows while others
have very few, because the binding relationship between a
flow and the corresponding processing module is perma-
nent once established. Therefore, a more effective mecha-
nism is desired to allow flow reassignment with minimum
loss in security.

Modified-JSQ (M-JSQ) is proposed in this paper as an
improvement of JSQ in terms of dispatching granularity, in
which a flow is able to be reassigned when the number of
interval packets between two adjacent packets belonging to
this flow is larger than a given threshold. When the thresh-
old is positive infinity, M-JSQ reduce to JSQ. The introduc-
tion of reassignment threshold seldom decreases detection
accuracy because its value is usually much larger than the
length of the flow reassembly buffer in Snort. Implemented
in Para-Snort, M-JSQ is a more fine-grained load balancing
scheme than JSQ, however, we should note that the for-
mer is not always better than the latter in terms of system
throughput due to the overhead of counting the number of
every incoming packet and reassigning flows to different
analyzers.

4.2 Optimize Multi-pattern Matching

As mentioned in Section 2.1, multi-pattern matching costs
majority of NIDS computational capacity. In this section,
AC-WM, an algorithm combines the advantages of both
classic AC and WM algorithms, is proposed to improve
multi-pattern matching performance.

AC algorithm is based on deterministic finite au-
tomata (DFA) where all the key patterns are compiled into
a specific DFA table. During the scanning process, DFA
records the current state. As soon as an input character is
received, AC finds the current state in the DFA table, and
index to the next state it should jump to according to the
ASCII code value of the input character. Generally speak-
ing, the size of a DFA is in direct proportion to the number
of characters of all the patterns (about 1 KB per character),
indicating a huge memory cost.

WM is a shift algorithm based on suffix matching. In
the pre-compiling, all the patterns are left aligned and the
prefix of each pattern is obtained with a length that is the
length of the shortest pattern. We take the prefixes as the
useful patterns. Then, for each 2 character sub-string in the
useful patterns, a shift value (number of characters to skip)
is calculated according to the shortest distance between the
2 character sub-string and the end of the useful patterns
among all the patterns that the 2 character sub-string ap-
pears. All the shift values are saved in a shift table. For
every 2 character sub-string whose shift value is zero, the
prefix of the pattern whose suffix is the 2 character sub-
string will be linked to the 2 characters in another table. In
the scanning process, when 2 input characters are received,

WM can usually skip several characters according to the
value in the shift table. If the 2 character array doesnt ap-
pear in any of the key patterns, the shift value will be the
length of the shortest key pattern. If the input string is a
suffix of a useful pattern, the whole pattern linked to the
suffix would be examined. From the pre-compiling process
we can see that the length of the shortest pattern greatly
influence the shift length and the scanning speed.

In normal network flow, few states in DFA of AC al-
gorithm are frequently visited. So the data structure that
AC generates is utilized with a very high cache locality.
That is to say, at most of the time, further memory access
is not necessary. However, when the rate of states that hav-
ing been visited during the scan process raise to a certain
level due to the change of network flow, we come to a rela-
tive low cache locality. So the scanning speed slows down
rapidly. At the same time, the performance of WM algo-
rithm is limited by the length of the shortest pattern.

Based on the above observation, AC-WM algorithm
is designed to employ AC algorithm to compile and check
against the short patterns, while utilize WM algorithms take
care of the long ones. On one hand, we minimize the size
of data structure that AC algorithm compiles by minimiz-
ing the total state numbers to increase cache hit rate pro-
viding fixed cache size; On the other hand, the WM al-
gorithm performs gains higher average shift value by in-
creasing the shortest pattern length. As the results of the
AC-WM, firstly, because DFA of AC algorithm cost most
of the memory resource, the total size would be reduced
greatly by 50% – 70% when the size of DFA reduces to
20% – 40% of the original one; secondly, AC-WM keeps
the system oscillating in a small bound when the network
flows changes violently. In another word, we build a robust
system which is insensitive to the content of network flows.
It should be noted that in the worst case which is unlikely to
happen, the scanning speed of the AC-WM algorithm will
be a bit slower than AC algorithm.

4.3 Reduce Replicated Memory Usage

Processing modules at the same stage are usually instants
of the same program, and thus they usually share the same
ruleset while performing the same processing on different
data, a typical SPMD (Single Program Multiple Data) case
of parallel processing. The same ruleset can be shared
rather than replicated, as it is read-only during the process-
ing. A mechanism is developed in this paper and deployed
in Para-Snort to share ruleset in processing modules. Now
the Snort compiled intrusion fingerprint for intrusion de-
tection and the ClamAV compiled virus signatures for anti-
virus are shared by their associate processing modules at
each of the two stages, respectively. This reduces redun-
dant memory storage significantly. While one-thread al-
locates 1.5 GB of memory, seven-thread requires only 1.7
GB of memory. If the memory is not shared, 10.5 GB of
memory is needed, which IA platforms can seldom afford
nowadays.

Table 1. Property of packet traces

Trace
Name

LL1 LL2 CERNET http

Source Lincoln
Lab

Lincoln
Lab

NSLab
RIIT

Random
generated

Date 4/01/99 4/09/99 5/05/08 -
Size
(MB)

519 970 700 -

Packets 2356503 2651589 889957 -
Average
Size(B)

159 272 664 792

HTTP
packets

51.5% 88.4% 5.8% 100%

Alerts 308 623 1505 random

In addition, the share of ruleset can lead to higher
cache locality. According to our experiments, only less
than 0.5% of states or about 100KB state information are
frequently accessed. With the memory share for SPMD, it
is more likely for them to stay in L2 cache of the CPU. On
IA platform, it is much faster to access L2 cache than to
access DRAM on board, so sharing memory can make the
processing speed faster.

5 Performance Evaluation

5.1 Development Platform and Test Environments

The following experiments are running on a 1U server with
two quad-core Xeons E5335 at 2.00GHz (8 processors in
total). The system has 4 GB of DRAM and runs Linux
kernel version 2.6.24 in Ubuntu 8.04 32-bit distribution.
The NIDS platform and the testing machines are networked
with gigabit network interface cards.

The prototype system developed in this work is based
on SnortSP 3.0 beta, downloadable from www.snort.org.
The configuration of Snort includes all important prepro-
cessors such as Stream 5, HTTP Inspect. The multi-pattern
matching algorithm is AC-full. All the 10000 released rules
are used. We have both NIDS and anti-virus processing
modules working here. One NIDS processing module is in
one-to-one correspondence with one anti-virus processing
module.

We have three types of testing flow here. The first
type of packet traces come from the 1998-1999 DARPA
intrusion detection evaluation at MIT Lincoln Lab [9]. The
Lincoln Lab (LL) traces are widely used for NIDS testing
and are downloadable from Internet [10]. Here we use two
traces from fourth and fifth week in the 1999 test. The
second type of packet traces is captured from CERNET by
our lab in May 2008. These packets contain full payload, so
they can reflect the real condition of network flow. These

Testing
Server

NIDS platform

Http data

Testing machine

TCPreplay

eth0

NIDS platform

Testing
Client

Para-Snort

eth0
LL,CERNET traces

eth1
Forwarding

Para-Snort

Figure 7. The testing environments

two types of traces are sent to the network card of NIDS
platform using tcpreplay [11]. The third type of trace is
generated by two testing machines; NIDS platform bridges
them together with its two network card interfaces. The two
testing machines create several sessions to translate random
data with HTTP protocol at the speed of about 600Mbps.
Our NIDS captures and analyzes these flows. The source
and destination IP addresses of the sessions are arranged
to meet the IP hash algorithm, so the flows are ensured to
dispatched equally to the processing modules when using
IP hash load balancer.

Every test will be taken three times for a reasonable
result. The final result is the mean of three values. In fact,
the testing environment is almost fixed, so the difference
between the three values is less than 10 Mbps for most of
the tests.

5.2 Performance of Para-Snort

Figure 8 shows the performance of different threads on dif-
ferent traces. Figure 9 shows the parallel speedup achieved
by the scheme we mentioned above. We choose M-JSQ as
the load balancer algorithm and the flow-splitting thresh-
old is 2000. Processing speed is stated from one thread to
seven. We choose 7 as the maximum number of processing
threads because there are 8 CPU cores and load balancer
needs to take up one thread.

The processing speed of each trace is affected by
many factors. Higher percentage of HTTP packets can
leads to slower speed, because Snort has more HTTP rules
than any else protocols. Unknown TCP/UDP-based Proto-
cols make up 93.1 % in CERNET trace, and Snort does not
have many rules for these packets. So CERNET trace gets
a top speed of 843 Mbps. The packet length can also af-
fect the processing speed. Too short payloads do not have
much contribution for throughput. LL1 and LL2 trace have
shorter average packet size, so the processing speed for
them is much slower.

Some curves, such as LL1 and CERNET, have a
flatten top. This is because some bottlenecks other than
processing modules have limited the system performance,
such as network card performance, memory access time
and cache size. When the processing speed reaches a lim-

1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

Processing Engine Threads

P
ro

ce
ss

in
g

 S
p

ee
d

 (
M

b
p

s)

LL1
LL2
CERNET
http

Figure 8. The processing speed

1 2 3 4 5 6 7
1

2

3

4

5

6

7

Processing Engine Threads

S
p

ee
d

u
p

LL1
LL2
CERNET
http

Figure 9. The speedup under different traces

itation, increasing the number of processing modules can
no longer increase the processing speed. So the top of the
curves turns flat.

Test on Lincoln Lab traces have a speedup of 5.6 and
6.4 with 7 threads, and are almost linear. In contrast, Mul-
tiSnort only has about a speed up of 3.5 under LL traces.
From the result we can see that parallel NIDS has a good
speed up. CERNET traffic has a lower speedup of about
3.6 and 4.0. It is because CERNET has faster processing
speed for single thread, and reaches some bottlenecks such
as memory access for 7 threads.

5.3 Performance of Different Load Balancers

We compared four load balancer algorithms — IP hash, 5-
tuple hash , JSQ and Modified-JSQ (MJSQ), and stat their
processing speed with different traces. The threshold for

IP hash 5−tuple hash JSQ MJSQ−100000MJSQ−10000 MJSQ−2000
0

100

200

300

400

500

600

700

800

900

Different Load Balancer config

7−
th

re
ad

 P
ro

ce
ss

in
g

 S
p

ee
d

 (
M

b
p

s)

LL1
LL2
CERNET
http

Figure 10. The performance of different load balancers

Modified-JSQ algorithm is 100000, 10000 and 2000. Fig-
ure 10 shows that they are mostly increasing from left to
right. Modified-JSQ with threshold 2000 has the best per-
formance for most cases, nearly 1.5 times as much as IP
hash. From the result we can see Modified-JSQ algorithm
has the smallest disparity, which means packets are well-
distributed and each processing thread has a balanced load.
As mentioned above, the http traces are generated with a
equal IP hash value for the 7 processing modules. So for
the http traces, IP hash has almost the same performance as
JSQ and M-JSQ, and better than 5-tuple hash. Under these
special traces, the throughput using IP hash can be seemed
as the maximum throughput.

5.4 Performance of Different Pattern Matching

We divide the ruleset into several groups according to the
port of each rule. Snort compiles each group and the mem-
ory usage of DFA is shown in Figure 11. AC-WM algo-
rithm has much smaller size of DFA than AC algorithm.
This will effectively avoid memory explosion on some spe-
cial rules. We also compared the performance of the two
algorithms. Figure 12 shows the performance comparison
between AC and AC-WM algorithms. The testing envi-
ronment is 7-thread processing. In most cases, the perfor-
mance of AC-WM is a bit worse than AC algorithm, for
LL traces the performance turns much worse. But AC-WM
algorithm decreases memory usage a lot. In our test we use
only AC algorithm. It is because AC algorithm has bet-
ter performance in most of situations, and our platform is
not sensitive about memory usage. However, if users need
Para-Snort running on some embedded devices, which have
limited memory, then AC-WM algorithm is an efficient
choice. Users can choose the pattern matching algorithm
according to their platforms.

80/any any/139 any/21 any/445 any/80 any/1521
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Different port groups (src port / dst port)

M
em

o
ry

 u
sa

g
e

(K
B

)

AC
AC−WM

Figure 11. Memory usage of AC and AC-WM

LL1 LL2 CERNET http
0

100

200

300

400

500

600

700

800

900

Different traces

7−
th

re
ad

 P
ro

ce
ss

in
g

 S
p

ee
d

 (
M

b
p

s)

AC
AC−WM

Figure 12. The performance of AC and AC-WM

6 Conclusions

In this paper, we present Para-Snort, a structure of multi-
thread Snort for high-performance NIDS and anti-virus on
multi-core IA.

A modular design of parallel Snort is proposed, it’s
flexible and easy to scale with new modules, even enables
to replace some modules with hardware acceleration.

Efforts are made to break the bottlenecks of parallel
Snort in load balancing and multi-pattern matching. Exper-
imental results show that there is a significant speedup of
about 4 to 6 for various traces.

In future work, we plan to further improve the perfor-
mance of Para-Snort processing engine; there is still much
head room because the CPU occupancy rate is only on the
average of 70 %. We expect the gain will mostly from fine-
tuning algorithms and optimize the code.

Future work also includes the implementation of in-
line mode data source module, based on NFQueue, so that
the system can act as NIPS (Network Intrusion Prevention
System), an inline device, without the trouble of dropping
packets.

7 Acknowledgements

This work is supported by the National High-Tech
R&D Program (863 Program) of China under grant
No.2007AA01Z468. The authors would like to thanks Yax-
uan Qi, Baohua Yang, and other colleagues in Network Se-
curity Lab of Tsinghua University, for their suggestions.

References

[1] M. Roesch. Snort − lightweight intrusion detection for net-
works. In the 13th USENIX Conference on System Admin-
istration, 1999.

[2] V. Paxon. Bro: A system for detecting network intruders
in real-time. In Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, USA, January 1988.

[3] V. Jacobson, C. Leres, and S. McCanne. Libpcap.
HTTP://www.tcpdump.org/, June 1994.

[4] M. Roesch. Snort 3.0. In CanSecWest 2009, 2009.
[5] D. L. Schuff, Y. R. Choe, and V. S. Pai. Conservative vs. op-

timistic parallelization of stateful network intrusion detec-
tion. In the 12th ACM SIGPLAN symposium on Principles
and practice of parallel programming, 2007.

[6] Supra-linear packet processing performance with intel
multi-core processors white paper. Intel Corporation, 2006.

[7] H. Welte. libnetfilter queue project. HTTP://www.netfilter
.org/projects/libnetfilter queue/index.html, June 2008.

[8] Sourcefire. Clam antivirus 0.95.2 user manual.
HTTP://www.clamav.com/, 2008.

[9] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and
K. Das. The 1999 darpa off−line intrusion detection evalu-
ation, 2001.

[10] L. Laboratory. Darpa intrusion detection data sets.
HTTP://www.ll.mit.edu/mission/communications/ist/
corpora/ideval/data/index.html.

[11] A. Turner. Tcpreplay. HTTP://tcpreplay.synfin.net/trac/.

