
CoCoT: Collaborative Contact Tracing
Trevor Kann
tkann@cmu.edu

Carnegie Mellon University

Lujo Bauer
lbauer@cmu.edu

Carnegie Mellon University

Robert K. Cunningham
robertkcunningham@pitt.edu

University of Pittsburgh

ABSTRACT
Contact tracing can limit the spread of infectious diseases by notify-
ing people of potential exposure to disease. Manual contact tracing
is resource-intensive, but much of it can be automated using mobile
phones, which are ubiquitous and can detect and record nearby
contacts. Two major problems arise with automated contact tracing
(ACT): preventing abuse for mass surveillance and accurately deter-
mining contacts. For example, the most widely adopted solution—
Google and Apple’s Exposure Notification (GAEN)—protects user
privacy but suffers from inaccurate distance measurements that
result in poor risk assessments. We propose to use collaboration
among nearby devices to increase distance estimation accuracy,
and therefore risk assessment accuracy, while minimizing the loss
of user privacy. Our protocol, CoCoT, extends GAEN, a proximity-
based, distributed ACT protocol, by adding an additional broadcast
to share locally-derived distance estimates. To evaluate CoCoT,
we develop a method for merging phone sensor datasets with hu-
man interaction datasets to approximate realistic scenarios and test
our protocol. CoCoT improves distance estimate accuracy by 28%
over the current best distance estimators and we analytically show
impact on privacy, security, and battery consumption are minimal.
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computing→ Health care information systems; • Security and
privacy→ Privacy-preserving protocols; Distributed systems
security; • Human-centered computing→ Smartphones.

KEYWORDS
Automatic Contact Tracing, Distributed Optimization, Network
Localization, Smartphone Privacy

ACM Reference Format:
Trevor Kann , Lujo Bauer , and Robert K. Cunningham . 2024. CoCoT:
Collaborative Contact Tracing. In Proceedings of the Fourteenth ACM Con-
ference on Data and Application Security and Privacy (CODASPY ’24), June
19–21, 2024, Porto, Portugal. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3626232.3653254

1 INTRODUCTION
Manual contact tracing (MCT) has proven useful for slowing disease
spread. When an infected person is identified—the index case—their
recent contacts are located, isolated, and tested. If any test positive,
they become new index cases and the process repeats [46].
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MCT comes with several challenges [7], including: the long time
required for trained professionals to thoroughly investigate, the
availability of said professionals, and the accuracy of index cases’
recollections. These problems are exacerbated when cases increase
and diseases are more infectious, making MCT difficult to scale.

During the COVID-19 pandemic, many recognized that these
shortcomings could be ameliorated by leveraging the prevalence
of smartphones to implement Automatic Contact Tracing (ACT).
ACT can identify proximate devices and notify users if a recent
contact tests positive, after which they could self-isolate and test
themselves. ACT does not aim to replace MCT, but to assist health
workers by automating much of the contact tracing process [48].

Early ACT implementations could be abused for mass surveil-
lance [27]. Several solutions were proposed that better preserve
user privacy [4, 10, 23, 29, 38, 55]. Currently, Google and Apple’s
Exposure Notification (GAEN) [23, 29] is the most widely adopted
ACT protocol in the USA and Europe [45]. GAEN is a decentralized,
privacy-preserving protocol that uses proximity to record contacts.

One challenge with GAEN is that proximity is derived from
Bluetooth Low Energy’s (BLE) received signal strength indicator
(RSSI), a notoriously bad distance estimator, impacting GAEN’s ac-
curacy [62]. RSSI is an unreliable indicator of distance because BLE
signals are reflected off materials common in urban environments,
such as glass and metal. Several approaches were proposed to im-
prove distance-estimation accuracy, but all come with significant
drawbacks to privacy, battery life, or contact-tracing utility. Broadly,
approaches to improve distance estimates fit into three categories:
using additional on-phone sensors (e.g., accelerometers [49]), aug-
menting physical infrastructure (e.g., wireless beacons to localize
devices [63]), or collaboration between devices (e.g., sharing infor-
mation with others [24]). We focus on collaboration and how it can
be practically used to increase ACT’s distance-estimation accuracy.

In this paper, we offer an addition to theGAENprotocol—CoCoT—
to improve distance estimates and we evaluate its benefits. CoCoT
adds a single additional communication between phones to collab-
oratively localize themselves among proximate phones, improving
distance estimates. CoCoT trades off a small amount of privacy,
security, and battery life for a significant increase in accuracy.

To test our collaborative algorithms, we need a dataset con-
taining both locations of people and pairwise BLE measurements
between them. However, at this time, no such dataset exists. To
overcome this challenge, we created a dataset by combining two
existing datasets containing either locations or BLE measurements
but not both. We developed a simulation that combines locations
from a cocktail-party location dataset [1] and simulates pairwise
BLE measurements based on a BLE dataset [36]. Using this con-
structed dataset, we show the benefits of collaboration are signifi-
cant: distance estimate errors can be reduced by up to 28% and false
positives/negatives by 21%. We also demonstrate that the losses of
privacy, security, and battery life are small.
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Some proposals to improve distance estimates [49] only indicate
whether two phones are within 6 feet of each other; in contrast, Co-
CoT outputs precise distance estimates between devices, allowing
for more flexibility with risk assessment than approaches that only
estimate if phones are within a pre-specified cutoff distance [49].
This makes our protocol potentially more useful, since guidelines
about safe distances sometimes change with better disease under-
standing or epidemiological landscape changes [20].

2 RELATEDWORK
We first briefly discuss the history, design choices, and trade-offs of
different ACT solutions (Section 2.1). We focus on proximity based
ACT—specifically GAEN, a widely adopted standard—and one of
its key technical challenges: accurately estimating inter-personal
distances. We present work in network positioning and optimiza-
tion that tackles similar problems (Section 2.2) and then discuss
improvements that have and could be applied to ACT (Section 2.3).

2.1 Automated Contact Tracing
Multiple ACT designs have been developed and deployed, differing
based on local requirements and preferences. Some of their main
design choices and their trade-offs are summarized in Table 1. Most
ACT implementations can be categorized as either location or prox-
imity based, and either centralized or distributed. For comparisons
beyond our summary, see PURE [14].

2.1.1 Location Based ACT. One approach uses a Central Author-
ity to determine contacts based on absolute locations of phones
collected with GPS [27]. Phones regularly collect and upload their
location to a central authority. When a new index case is found,
the central authority examines the index case’s location history to
identify other nearby users, then alerts them of potential exposure.

2.1.2 Proximity Based ACT. Some ACT designs improve privacy
by using proximity instead of location. One of these, BlueTrace,
uses BLE to identify other nearby phones [4]. The central authority
gives phones unique IDs that are broadcast frequently (chirps) for
other, nearby phones to record. When an index case is found, their
phone uploads a list of recorded chirps to the central authority. The
central authority identifies which phones broadcast these chirps
and informs their users of potential exposure. With this design, an
honest but curious central authority is unable to learn the locations
of users. However, it still learns which users are near each other,
possibly revealing private information about user’s contacts.

To further increase user privacy, decentralized approaches such
as Decentralized Privacy-Preserving Proximity Tracing (DP-3T) [55]
were proposed. These also use BLE chirps to identify proximate
phones, but locally determine contacts to prevent the central au-
thority from knowing whom users were near. When a new index
case is found, their phone uploads its previously broadcast chirps
to the central authority. Other phones download a list of chirps
belonging to index cases daily and determine locally if any were
proximate, potentially exposing the user to illness. The most widely
adopted of these decentralized solutions is GAEN [44, 45].

Other recently proposed solutions (e.g., [10]) focus on further
increasing user privacy. Our paper is concerned with the distance

estimates between devices and could be integrated with these more
privacy-focused solutions. Due to its prevalence, we focus on GAEN.

Google Apple Exposure Notification (GAEN). GAEN’s features are
built in to recent Android and iOS OSs. To perform GAEN [23, 29],
phones create a cryptographically random Temporary Exposure Key
(TEK) at the start of each day. This TEK is used to derive a rolling
proximity identifier (RPI ) roughly every 10 minutes. Phones contin-
uously chirp (BLE broadcast) these RPIs every 200-270 ms. Other
nearby phones record these RPIs alongside an estimated separation
distance and timestamp. Later, phones download a list of infected
users’ TEKs and determine if any sensed RPIs originated from them.
If a match is found and considered a significant risk (based on dis-
tance), the user is notified to self-isolate and test themselves.

Determining contacts locally and anonymously uploading TEKs
makes it impossible for an honest but curious central authority to
learn anything more than the number of reported index cases. The
protocol’s cryptographymakes it difficult for users to de-anonymize
index cases or generate false positives by broadcasting random RPIs.

GAEN defines significant risk using several parameters chosen
per implementation, including proximity (distance apart) [18, 23,
29]. Proximity is currently estimated via BLE RSSI, but BLE RSSI is
a notoriously bad distance estimator [62]. This makes measuring
proximity, and therefore risk, a key technical challenge for GAEN.
Furthermore, researchers have identified that GAEN’s perceived
accuracy is a key factor for user adoption [37] and high adoption-
rates are critical for any ACT solution’s success [26]. However, the
same study identified that any ACT solution must also balance
battery consumption, and user privacy and security [37].

2.2 Network Positioning
Distributed networks historically solved similar problems: given
noisy, unreliable distance estimates between devices, compute a
most-likely network layout [24]. Also similar to ACT, (most) de-
vices lack sensors to obtain their absolute location (e.g., GPS) and
must rely on external information gathered through the network to
position themselves within the network. While some assumptions
conflict, these algorithms can act as inspiration to improve ACT.

Generally, network positioning algorithms are centralized or
distributed. Centralized algorithms attempt to gather sufficient in-
formation for a single (powerful) device to position every other
device [8, 61]. Acquiring this information can be difficult if the
device lacks easy communication channels to every other device.
Alternatively, distributed, iterative algorithms can achieve posi-
tioning consensus over time across most or all devices [24]. These
gossip-like algorithms slowly come to consensus, requiring many
communications, often on the order of the number of devices in the
network [9]. We elaborate on algorithmic specifics in Section 3.3.

2.3 Improvements to ACT Distance Estimates
ACT uses BLE RSSI to detect contacts (Section 2.1.2) however BLE
RSSI alone is insufficient for use as a distance estimator [39, 62]. Net-
work positioning algorithms demonstrate the usefulness of using
additional information to improve distance estimates, which ACT
might be able to utilize. Unfortunately, GAEN cannot directly use
centralized or decentralized network positioning algorithms (Sec-
tion 2.2) due to conflicting requirements: Centralized algorithms
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Design Aspect Options Tradeoffs Examples
Positioning Location: GPS, cell towers; Location vs. privacy; Israeli Contact Tracing [27]

Proximity: Bluetooth, audio also accuracy vs. BlueTrace [4]
Architecture Centralized vs. Distributed Simplicity/utility BlueTrace [4] vs. DP-3T [55]

vs. privacy (to central authority)
Primary beneficiary Society vs. Individual Societal hotspots South Korea’s health alerts [32]

vs. individual cases vs. GAEN [23, 29]
Installation Mandatory vs. voluntary Forced enrollment Hong Kong’s LeaveHomeSave[28]

vs. individual control vs. NOVID [38]
Table 1: ACT design choices and implications. Different countries selected different approaches, appropriate for their societies.

require sending potentially private information to a central au-
thority for accurate positioning and/or contact tracing, something
GAEN explicitly avoids. Distributed solutions typically rely on
fixed-position devices that can use several rounds of communica-
tion to locate an object [24]. Since ACT is built for people moving
with their phones, these algorithms are not generally applicable.

Additional information for use in distance estimation can come
from either local or remote sources, and either from humans or
devices. We categorize information sources into three categories:
local cases we categorize as local sources (Section 2.3.1), additional
remote devices as infrastructure (Section 2.3.2), and remote humans
as collaboration (Section 2.3.3).

2.3.1 Local Sensors. Modern phones are equipped with several sen-
sors that can accurately sense their environment and be leveraged
to better estimate distances between users. Sensor measurements
can supplement BLE RSSI to improve local distance estimates and
then be forgotten, helping preserve users’ privacy.

One example of how additional sensors can be used has been
showcased by NIST’s Too Close for Too Long (TC4TL) challenge [49].
TC4TL tasked competitors to produce a model to best estimate
interpersonal distances given BLE RSSI readings alongside other
phone sensors, like accelerometers and gyroscopes. Competitors
found the accuracy of BLE-RSSI-based distance estimates were
significantly improved by additional sensors [2, 25, 51].

A limitation is that phone sensors can only measure their own
environment. For example: two variables affecting BLE-based dis-
tance estimates are whether phones are indoors or outdoors [58],
and the phone’s pose (e.g., held in a hand vs. in a pocket) [3, 25]. If a
phone determines it is outdoors, other nearby phones are likely also
outdoors and with similar BLE profiles, where nearby is defined
as within radio range. However, if it determines that it is held in a
hand, it has little understanding of other, nearby phone poses.

As another alternative, phones could rely on users as additional
information sources, asking them about details of recent contacts to
assist in assessing risk. Examples include asking if someone is wear-
ing a mask or behind a wall. Acquiring this information requires
the user to be an active and accurate participant; misremembering
critical information may lead to inaccuracies.

2.3.2 Additional Infrastructure. Additional external infrastructure
could be developed to facilitate accurate contact tracing. For exam-
ple, BLE beacons could act as an indoor GPS alternative [40, 63]. In
crowded areas, several beacon devices could be positioned to accu-
rately triangulate phones, providing them with relative distances

to nearby devices, even those unsensed by BLE [22]. Beacons might
also broadcast environmental statistics, like air quality measure-
ments andwhether the beacon is indoors or outdoors, to better asses
risk between users [5, 59]. This approach could provide phones with
additional information without using significant battery power.

One drawback is that deploying such infrastructure would be
costly in both time and money. Also, allowing beacons to accurately
position or detect users might incur privacy issues. For example, if
a beacon with a known location detects a phone, a central authority
with beacon access could learn that user’s absolute location. Privacy
preserving workarounds may exist, but beacons controlled by a
central authority intrinsically pose a privacy and security risk, since
users cannot verify the devices are honest and well-behaved.

2.3.3 Proximate Phone Collaboration. Another way for a phone
to collect additional information is by collaborating with nearby
phones. As previously mentioned, it is difficult for a phone to locally
estimate another phone’s pose (e.g., in a hand vs. a pocket); however,
each phone can accurately estimate its own pose [3, 25] and share
this information with nearby devices. Examples of other similarly
shareable information include device characterization, indoor vs.
outdoor estimates [58], or distance estimates (which we use). Exist-
ing ACT protocols can readily use collaboration, making deploying
it more economical than expanding physical infrastructure.

Collaboration’s drawbacks include potential privacy risks, disin-
formation attacks, and additional battery consumption. For privacy,
naïvely broadcasting information might reveal private informa-
tion. For security, malicious users may broadcast intentionally false
information [34], making honest users’ results less accurate, pos-
sibly worse than if they had never collaborated. Finally, any extra
broadcasts from the device will inherently use power.

In this paper, we use collaboration to improve ACT, while mini-
mizing risks to privacy, security, and additional power usage.

3 PROPOSAL: IMPROVE DISTANCE
ESTIMATES BY COLLABORATION

In this section, we first describe our threat model, including how it
relates to existing ACT and network-positioning threat models (Sec-
tion 3.1), followed by our notation definitions (Section 3.2). Then,
we describe the core contribution of our paper: several methods
to improve distance-estimation accuracy in ACT by sharing initial
distance estimates among neighbors (Section 3.3). We call these
algorithms CoCoT, for collaborative contact tracing.
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3.1 CoCoT’s Threat Model
Like GAEN, we wish to accurately notify at-risk contacts of index
cases while minimizing private information leakage. The trade-
off between privacy and utility has been a primary focus of ACT
literature [4, 10, 15, 23, 29, 38, 39], and we continue that work here.

Also like GAEN, adversaries are assumed to have full knowledge
of CoCoT and control some nearby commercially available BLE-
enabled devices (like smartphones) to eavesdrop on BLE packets or
broadcast custom-made packets. However, adversaries are unable
to alter the way their radio fundamentally behaves. Adversaries are
also assumed to have access to the central authority’s information.
Adversaries’ goals may include degrading user privacy or decreas-
ing the algorithm’s accuracy and utility. To date, attacks on GAEN
exploited compromised BLE-enabled applications to eavesdrop on
GAEN’s BLE transmissions [17]. These vulnerabilities have since
been fixed [41]: currently, the information sent and received by
GAEN is accessible only by the privileged OS (apps still interface
with the OS to perform GAEN); an adversary would need to have
access to the OS’s BLE software/drivers to mount this attack.

Information that we consider private is user identity, infection
status, current and past location and contacts. GAEN makes this
information difficult to determine, but collaboratively sharing in-
formation may make this information easier to obtain. We quantify
how much information an adversary can learn in Section 6.

Decreasing the accuracy of nearby phones’ risk assessments
could make users over or under-cautious with higher rates of false-
positives or false-negatives, respectively. Doing so may decrease the
utility of CoCoT and decrease users’ trust in the system, lowering
adoption rates [37]. With GAEN, this requires adversaries modify-
ing how their BLE transceiver behaves, but with collaboration this
could be done by reporting dis-information [34]. We demonstrate
how CoCoT performs against this attack in Section 7.

3.2 Notation
Assume a set of 𝑁 phones P = {𝑝1, 𝑝2, ..., 𝑝𝑁 }. For notational
simplicity, 𝑝𝑖 and 𝑖 are used interchangeably. Algorithms are shown
from the perspective of phone 𝑝𝑖 but run identically on each phone.
Each phone 𝑝𝑖 ∈ P has a two-dimensional coordinate x𝑖 ∈ R2
(representing their position) and a sensing range 𝑟𝑖 (within which
they can detect and communicate with all phones), both unknown
to the phone. Phones symmetrically in sensing range of each other
are called neighbors, and we define the set of 𝑝𝑖 ’s neighbors as:

N(𝑝𝑖 ) = {𝑝 𝑗 ∈ P : ∥x𝑖 − x𝑗 ∥2 ≤ min{𝑟𝑖 , 𝑟 𝑗 }} (1)

Using the GAEN protocol, each phone 𝑝𝑖 computes a noisy distance
estimate to each of its neighbors 𝑝 𝑗 :

𝛿𝑖, 𝑗 = ∥x𝑖 − x𝑗 ∥2 + 𝜀 (2)

where 𝜀 is measurement noise.
Honest phones share the goal of estimating distances 𝑑𝑖, 𝑗 to each

of their neighbors 𝑝 𝑗 ∈ N (𝑝𝑖 ) as accurately as possible, where 𝛿𝑖, 𝑗
is the initial measurement, 𝑑𝑖, 𝑗 is the final distance guess. Phones
can broadcast any information they chose to accomplish this goal,
but anything shared is broadcast to all neighbors within range.

Some algorithms also produce a relative position estimate vector
X𝑖, 𝑗 ∈ R2 locally on 𝑝𝑖 ’s device to each neighbor 𝑝 𝑗 . These vectors
correspond to 𝑝𝑖 ’s guess of 𝑝 𝑗 ’s position relative to itself: X𝑖, 𝑗 ≈

x𝑖 − x𝑗 , as if 𝑝𝑖 had a 2-dimensional mapping of its surroundings.
From these vectors, 𝑝𝑖 can calculate the distance between two
estimates using the euclidean distance 𝑑𝑙, 𝑗 = ∥X𝑖,𝑙 − X𝑖, 𝑗 ∥2. Due to
privacy concerns, we do not broadcast the estimates 𝑑𝑖, 𝑗 or position
vectors X𝑖, 𝑗 , unlike network positioning algorithms [9, 16, 24].

3.3 Candidate CoCoT Algorithms
CoCoT’s addition to GAEN is a protocol for refining the initial, BLE-
RSSI-derived distance estimates. In particular, after each phone 𝑝𝑖
estimates its distance to any neighbor 𝑝 𝑗 , it broadcasts that estimate,
𝛿𝑖, 𝑗 , to all its neighbors. Each phone subsequently uses the received
distance estimates to calculate more accurate distance estimates to
each of its neighbors.

We propose three algorithms that could be used to collabora-
tively improve distance estimates between phones, starting with
the simplest algorithm and progressing to more complex and ac-
curate algorithms. All algorithms only broadcast initial distance
estimates to their neighbors, they do not broadcast any other infor-
mation. First, we define the Average algorithm, which averages the
two distances measurements between users. Then, we define two
graph-theoretic algorithms—Graph Drawing and Spring-Mass—that
take advantage of the topology defined by their neighbors to yet
more accurately estimate distances.

I think I wo For analysis, we assume that phones are synchro-
nized with instantaneous, reliable communication. In practice, col-
laborative distance estimates only need to be made soon enough
after 𝛿 is recorded so that the relative positions of each phone
have not changed much. We discuss these assumptions and other
practical considerations in Section 8.

3.3.1 Average. The Average algorithm reduces measurement noise
by averaging the two distance estimates between the phone 𝑝𝑖 and
its neighbors. 𝑝𝑖 gathers its neighbors’ initial distance estimates to
itself and outputs an updated estimate 𝑑𝑖, 𝑗 ← 1

2 (𝛿𝑖, 𝑗 + 𝛿 𝑗,𝑖 ).

3.3.2 Graph Drawing. We observe that public interactions usu-
ally include more than two people, all standing on relatively flat
ground. Recall that phones broadcast to all their neighbors so, when
𝑝𝑖 broadcasts its distance estimates, it shares an entire list of its
neighbors and their associated distance estimates, defining a graph
(or topology). Graph Drawing leverages the topology defined by its
neighbors to improve individual distance estimates to each of its
neighbors. The improvement is because, intuitively, a topology of
neighbors provides more measurements, or constraints, than only
a single edge (used by Average). These additional constraints can
reduce noise and provide relational information.

Graph Drawing uses multi-dimensional scaling (MDS) [8] to
estimate relative position vectors X𝑖, 𝑗 ∈ R2 to all neighbors that
best preserve distance estimates. MDS is traditionally used to map
higher-dimensional data to lower-dimensional spaces while pre-
serving relative distances between data points but is also useful for
finding layouts of points when only pairwise distances are known.
MDS requires distance measurements between every point; how-
ever, in our case, some of a phone’s neighbors will not detect each
other, especially if they are at opposite ends of the phone’s sensing
area (Average did not require a dense graph; it only needed distance
estimates from its neighbors to itself). To account for these missing
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distances, Graph Drawing borrows the missing-distance-estimation
scheme from the As Rigid As Possible (ARAP) algorithm [61], de-
scribed below. We chose ARAP for its simplicity and because it
does not require additional information or communication; it can
be performed entirely locally. Once missing distances are estimated,
MDS generates position vectors X𝑖, 𝑗 for 𝑝𝑖 ’s neighbors, which are
used to compute improved relative distances 𝑑𝑖, 𝑗 .

ARAP estimates distances between two nearby phones that do
not sense each other but share a neighbor. First, ARAP bounds miss-
ing distances from below and above: suppose phone 𝑝𝑖 is neighbors
with 𝑝 𝑗 and 𝑝𝑘 , but 𝑝 𝑗 is not a neighbor of 𝑝𝑘 . 𝑝𝑖 knows that if 𝑝 𝑗 and
𝑝𝑘 were within each other’s sensing range they would be neighbors,
so they must be further apart than either 𝑟 𝑗 or 𝑟𝑘 ; their distance is at
least: min{𝑟 𝑗 , 𝑟𝑘 } ≤ ∥x𝑗 −x𝑘 ∥2. None of the phones know the value
of either range 𝑟 , so it too can be bounded by the furthest neighbor:
max𝑝𝑙 ∈N(𝑝 𝑗 ) {𝛿 𝑗,𝑙 } ≤ 𝑟 𝑗 ; and similarly for 𝑟𝑘 . 𝑝𝑖 also knows that the
furthest apart 𝑝 𝑗 and 𝑝𝑘 could be is if they were co-linear with 𝑝𝑖 ,
upper-bounding their distance. Generalizing, the triangle inequality
tells us 𝑝 𝑗 and 𝑝𝑘 can be no further apart than the shortest two-hop
path between them: ∥x𝑗 − x𝑘 ∥2 ≤ min𝑝𝑙 ∈N(𝑝 𝑗 )∩N(𝑝𝑘 )

(
𝛿𝑖,𝑙 + 𝛿𝑙,𝑘

)
.

In summary, the missing distance is bounded by:

𝑚𝑖𝑛{𝑟 𝑗 , 𝑟𝑘 } ≤ ∥x𝑗 − x𝑘 ∥2 ≤ min
𝑝𝑙

(
𝛿𝑖,𝑙 + 𝛿𝑙,𝑘

)
(3)

The missing distance estimate is approximated as the distance
halfway between the bounds:

𝛿 𝑗,𝑘 ←
1
2

(
𝑚𝑖𝑛{𝑟 𝑗 , 𝑟𝑘 } +min

𝑝𝑙

(
𝛿𝑖,𝑙 + 𝛿𝑙,𝑘

) )
(4)

This estimate is repeated for any neighbors of 𝑝𝑖 that are not them-
selves neighbors, making N(𝑝 𝑗 ) a complete graph. Then, as men-
tioned above, MDS is used to estimate position vectors X𝑖, 𝑗 to each
neighbor. Neither the estimated missing distances nor the position
vectors are shared to other phones.

3.3.3 Spring-Mass. Finally, we propose a custom-weighted spring-
mass stress minimization algorithm: Spring-Mass. Graph-based al-
gorithms like Graph Drawing position phones relative to each other
in a dense graph with nearby measurements affecting one another,
pushing and pulling other measurements into configurations where
the measurements agree more. If the initial measurements have
relatively little noise, Graph Drawing improves their accuracy us-
ing the additional information provided by the graph. However,
Graph Drawing treats every measurement with equal weighting,
even though not all measurements are equally accurate (see Sec-
tion 4.2). Hence, a few highly inaccurate measurements can make
Graph Drawing’s accuracy much worse than if Graph Drawing was
not used at all; the Spring-Mass algorithm fixes this by assigning
different weights to each measurement to rely more heavily on
accurate measurements than inaccurate ones.

To estimate the accuracy of a measurement (and hence to assign
the appropriate weight to that measurement), we consider two
factors: the separation of (i.e., distance between) the two phones
and the discrepancy between their measurements of this distance.
When two phones are farther apart, their distance estimates are
statistically less likely to be accurate (see Section 4.2). Additionally,
further apart phones have less topological information in common,
since their sensing areas overlap less, and they should impact each

other’s estimates about other phones less. Hence, as the separation
of phones increases, the influence of their initial distance estimate
on the computed topology should decrease.

For the discrepancy, if two measurements of the same quantity
are not equal, then at least one must be incorrect. The greater the
discrepancy between the two measurements, the more likely it
is that the measurements are not an accurate representation of
the distance between two phones. Hence, as discrepancy between
measurements increases, themeasurements’ impact on the topology
decreases too. Separation is used in previous work on network
positioning [24], but discrepancy is a novel contribution of ours.

Spring-Mass runs after Graph Drawing and utilizes Graph Draw-
ing’s missing distance and position estimates as initial inputs. To
make some measurements more impactful than others, Spring-Mass
uses a classic physics optimization problem: the spring mass sys-
tem; specifically, a network positioning variant [24]. Phone 𝑝𝑖 simu-
lates a spring between every pair of phones in N(𝑝𝑖 ). The spring’s
resting length is the measured distance between the two phones.
Each spring’s stiffness is defined by a spring constant 𝑘 that esti-
mates measurement accuracy. Spring-Mass then updates position
estimates to minimize the total potential energy of the springs.

Stiffer springs (larger 𝑘) impact the positioning of phones in a
neighborhood more than weaker springs. Ideally, measurements
with more accuracy will be relied on more or, equivalently, have the
largest spring constants 𝑘 . We calculate 𝑘 using a positive function
𝑓 of the separation, discrepancy, and a bias term that adjusts how
much the separation and discrepancy terms impact 𝑘 . Specifically,
the input to 𝑓 is a weighted sum of a constant (bias) and the separa-
tion and discrepancy terms of the measurements. The weightings
are tunable hyperparameters: 𝑤𝑏 , 𝑤𝛿 , and 𝑤𝑑 for the bias, sepa-
ration, and discrepancy, respectively. We calculate discrepancy as
either Δ𝑙, 𝑗 = |𝛿𝑙, 𝑗 − 𝛿 𝑗,𝑙 | or

���𝛿𝑙,𝑗−𝛿 𝑗,𝑙

𝛿𝑙,𝑗+𝛿 𝑗,𝑙

���, the choice of which is also
a hyperparameter. For the bias to produce a non-constant change
in 𝑘 , 𝑓 needs to be non-linear, such as 𝑓 (𝑥) = 𝑒−𝑥 . Finally, 𝑘 is
calculated between every phone 𝑝𝑙 and 𝑝 𝑗 :

𝑘𝑙, 𝑗 = 𝑓

(
𝑤𝑏 +𝑤𝛿

𝛿𝑙, 𝑗 + 𝛿 𝑗,𝑙
2

+𝑤𝑑Δ𝑙, 𝑗

)
(5)

To select the best hyperparameter values, we performed a grid
search; details can be found in our technical report [31]. With 𝑘

computed, we iteratively update the positional estimates X to find
a layout that minimizes the stress of the system, which is defined
as the total sum of potential energies of the springs:

stress =
∑︁∑︁

𝑝 𝑗 ,𝑝𝑙 ∈N(𝑝𝑖 )
𝑘𝑙, 𝑗

����𝛿𝑙, 𝑗 + 𝛿 𝑗,𝑙2
− 𝑑𝑙, 𝑗

����2 (6)

where 𝑑𝑙, 𝑗 = ∥X𝑖,𝑙 − X𝑖, 𝑗 ∥2, as shown before in Section 3.2. We
minimize stress in the same way as Gotsman and Koren [24].

4 EVALUATION METHODOLOGY
To test our algorithms, we need a dataset containing both human
positions (or topology) and BLE-RSSI-derived distance estimates
between them. Presently, no such dataset exists. Therefore, to cre-
ate the necessary dataset, we contribute a method to combine
human-interaction datasets and BLE RSSI datasets. First, we discuss
the human-interaction datasets (Section 4.1) and the phone sensor
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dataset (Section 4.2) we used. Then, we discuss how we combined
the two datasets to create a new, joint dataset to test our proposed
algorithms using a simulation (Section 4.3). Finally, we describe
how we quantitatively compare each algorithm (Section 4.4).

4.1 Positioning Datasets
To realistically sample inter-personal distances, we require a realis-
tic distribution of human locations during regular interactions. We
use both a real, measured human-interaction dataset as well as a
hand-made, synthetic dataset to test our algorithms’ performances
across a variety of circumstances. From these human interaction
datasets, we can extract positions of people over time.

For our real, measured dataset we use the cocktail-party half
of the SALSA dataset [1], which records participants moving and
interacting over 30 minutes. Among human-interaction datasets,
SALSA has a uniquely large participant count (𝑁 = 18) with sig-
nificant movement between social groups throughout the study.
Alternative datasets lack high participant count, are too static, too
dispersed, or contain scripted interactions [35, 53, 57, 60].

To test our algorithms’ generalizability and because other human-
interaction data is scarce, we hand-made several additional test
scenarios. These scenarios are modeled on a cafeteria, a conference
room, and a banquet hall. The cafeteria has two rows of three
rectangular tables of 6 feet × 2.5 feet, seating six people each; the
conference room has four of the same rectangular tables in one
row with one extra person at each end; and the banquet hall has
two rows of round tables, 5 feet in diameter, sitting eight people
each. We also have a sparse version of each setting: for the cafeteria
and banquet-hall,we remove all but the two most distant tables; for
the conference-room, we remove every other person. We describe
these scenarios more precisely in our technical report [31].

4.2 BLE RSSI Dataset & Distance-Estimation
Model

Given the location and true distances between people, we need
to sample realistic distance estimates between them. We use the
dataset provided in NIST’s TC4TL competition [49] for approximat-
ing the distributions of distance estimates using a machine learning
model. We use this dataset because of its use of additional on-phone
sensors, giving us a state of the art RSSI-to-distance models.

NIST used the MIT Lincoln Laboratory procedure [15] to col-
lect BLE RSSIs along with other phone sensors’ data to create a
dataset for the TC4TL challenge [49]. The dataset contains data
from 28 smartphone models recorded from different positions on
user’s bodies (in hand, pant pocket, etc.) and in both indoor and
outdoor environments [48]. At 3, 4, 5, 6, 8, 9, 10, 12, and 15 feet
apart, phones measured and recorded BLE RSSIs between them
and other local sensor values1. The data comes in a log-file format
containing BLE/sensor samples at different sample rates, appearing
sequentially with time stamps; each log file is labeled with a true
separation distance. From the provided datasets, we use the MITRE
Range-Angle dataset [36], as it has the most realistic interactions2.
1Sensor data includes accelerometer, gyroscope, attitude sensor, gravity sensor, altime-
ter, and magnetic field sensors; the estimated current heading and activity; and BLE
RSSI. Data also includes true distance apart, transmitting and receiving devices’ model
and user pose, and transmitting power.
2Other datasets were artificially noiseless, such as in an anechoic chamber

4.2.1 Training the Distance Estimation Model. The TC4TL compe-
tition showed that using additional sensors could make BLE-RSSI-
derived distance estimates more accurate. We train our baseline
neural network model on the TC4TL dataset, building on the expe-
riences of of TC4TL competitors [2, 25, 51]. We preprocess TC4TL
data by converting each BLE interaction sample to a sequence of
vectors. To get a uniform sampling rate across sensors, we up-
sample slower sensors to the fastest sampling rate by copying their
most recent reading whenever the fastest sensor records a new
sample. For more detail, see our technical report [31].

In total, we obtained 3600 transformed samples. These samples
were split into a validation set (1000 samples) and a training set
(2600 samples) that we used to train a recurrent neural network to
estimate separation distances. We tested several machine-learning
architectures and hyperparameters to find a combination that best
predicted the separation distances in the validation set. We initially
used mean squared error for the loss function, but this model pro-
duced outliers, which decreased the accuracy of the collaborative
algorithms. Mean fourth error proved to be a better loss metric:
loss = |estimate − reference |4 because it more strongly discouraged
outliers. When searching different model parameters, we stopped
training when cross-validation loss began to plateau. A shallow
GRU-based model [13] proved best. The model had 220 GRU cells
that fed into a dense linear layer, with a single output estimating
the separation in feet. Finally, we evaluated the validation set on
this model and recorded the outputs binned by reference distance.

TC4TL competitors found that discrete models (only predicting
within 6 feet or not) achieved the best scores. However, our col-
laborative algorithms required continuous distances to function.
Nevertheless, we can compare our model’s score to theirs. Our con-
tinuous model’s leaderboard test score was 0.49, while the TC4TL
competitors scores ranged from 0.41 to 0.60 (lower is better) [42].
Because our scores were similar to other competitors, we believe
our model approximates a state-of-the-art distance estimator.

4.2.2 Extending Distance Estimate Dataset. The size of the BLE
dataset is significantly smaller than the human interaction datasets3.
To avoid repeatedly using the same, few BLE datapoints when com-
bining datasets, we extrapolated the finite BLE datapoints into a con-
tinuous distribution that can be sampled infinitely. We approximate
the BLE dataset’s distance-estimate distribution by performing a
density estimate (Gaussian kernel, 𝜎 = 0.5ft) on the BLE datapoints
binned by true distance apart. Density estimates are integrated
and normalized to create a cumulative density function (CDF) of
distance-estimate distributions that we can efficiently sample from
when combining datasets.

4.3 Combining Datasets
To combine the datasets, we construct a discrete-time, agent-based
simulation. Simulated people are positioned based on the human-
dataset, then BLE-RSSI-derived distance estimates are sampled
based on proximity. At the start of the simulation, each agent’s
broadcast/detection range 𝑟 is set to 15 feet, matching the BLE
dataset [36]. At each time step, agents are positioned in a two-
dimensional field based on the human-interaction data (Section 4.1).
3The BLE dataset is only 3600 datapoints, the SALSA dataset has roughly 500 timesteps,
with 18 participants requiring 18 × 17 = 306 samples per timestep
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Then, each agent 𝑖 determines its neighbors 𝑗 within range and lo-
cally estimates distances to each, drawn from the distance estimate
CDFs (Section 4.2.2), and records it as 𝛿𝑖, 𝑗 . Once all initial, local
distance estimates have been made, agents share these estimates
with their neighbors. Agents evaluate each algorithm to generate
an updated, collaborative distance estimate 𝑑 to each neighbor per
algorithm. These𝑑s are stored to evaluate our algorithms (discussed
below in Section 4.4). Once agents run every algorithm, the sim-
ulation proceeds to the next time step. Due to our simulation’s
randomness, every experiment is run 15 times using the same set
of seeds. We made our tool and sample datasets publicly available.4

4.4 Metrics
To determine the best of the candidate algorithms (Section 3.3),
we measure the mean absolute error and standard deviation of
estimate errors, as well as NIST’s nDCF score [49]; lower is better
in every metric. Mean error measures how far from the truth our
algorithm’s estimates are, but can be misleading if under-estimates
are equally incorrect as over-estimates; measuring absolute error
accounts for this. The nDCF score gives a different sense of how
often our algorithms are incorrect by measuring how often false
positives/negatives are recorded. We record metrics for both the
real and synthetic human-interaction datasets, but optimize for the
real dataset and test for generalization on the synthetic datasets.

The nDCF score is defined as

nDCFcutoff =
P[false positive] + P[false negative]

2
(7)

Where cutoff is evaluated at 3, 6 (default), or 10 feet to obtain nDCF3 ,
nDCF6 , and nDCF10 scores, respectively. nDCF scores are slightly
misleading, however, as our human interaction dataset has many
interactions close to 6 feet. This means small errors in updated
distance estimates can lead to higher (worse) nDCF6 scores despite
being more accurate measurements on average. For this reason, we
optimize for mean absolute error instead of nDCF scores.

5 EVALUATION RESULTS
Here, we compare the baseline, non-collaborative local estimates
to our collaborative algorithms and show that collaborative algo-
rithms perform better (Section 5.1). Then, we demonstrate the best
performing algorithm, Spring-Mass, generalizes well (Section 5.2).

5.1 Spring-Mass Algorithm Performs Best
All three algorithms and the baseline local estimates were tested
in a benign environment; the results are summarized in Table 2,
with the best results in bold. The nDCF scores displayed are on the
simulated dataset, not the TC4TL dataset; they cannot be directly
compared with the nDCF scores from the TC4TL competition and
serve only as a metric to compare between our tested algorithms.

All collaborative algorithms outperformed local estimates except
for Average’s 𝑛𝐷𝐶𝐹3 score. Algorithms other than Spring-Mass did
not significantly affect 𝑛𝐷𝐶𝐹 scores. Spring-Mass, notably, reduced
mean absolute error by 28%, standard deviation by 24%, as well as
reduced 𝑛𝐷𝐶𝐹 scores, reducing false positives/negatives by 21%.
A one-tailed paired T-test shows the improvement is statistically

4https://github.com/pwwl/CoCoTsimulator

significant: we reject the null-hypothesis that the mean absolute
error of the collaborative estimates is equal to or greater than local
estimates (𝑡 = −20.1, 𝑝 < 0.001).

The overall trend in our results is expected, as each consecutive
algorithm increases in ability to reduce measurement errors. Some-
what unexpected is that the Graph Drawing algorithm does not
reduce errors more than the Average algorithm. However, this is
because measurements with significant error have a strong effect
on all neighbors, impacting the accuracy of the entire neighborhood
instead of just between the two phones, as explained in Section
3.3.3. Reducing the impact of these distance estimates by using
weaker springs allows the Spring-Mass algorithm to perform best.

5.2 Spring-Mass Generalizes Well
To see if our best algorithm, Spring-Mass, generalizes well we also
evaluate it on several synthetic scenarios. Note, we optimized the
hyperparameters of Spring-Mass exclusively on the recorded SALSA
dataset. Table 3 shows the results of running Spring-Mass on these
new topologies. For interactions with low average distance be-
tween users, Spring-Mass performs similarly well as on our real
dataset, with up to 30% improvement in mean absolute error and
31% improvement in standard deviation. Improvement tapers off as
the interaction distances grow larger. This trend is expected since
Spring-Mass benefits most from dense, nearby connections and will
eventually perform the same as GAEN as interactions grow sparser.

6 PRIVACY ANALYSIS
CoCoT uses the same infrastructure as GAEN and only affects the
way phones broadcast, so attacks that exploit GAEN’s infrastruc-
ture or initial broadcasts are unaffected by CoCoT but discussed
nonetheless (Section 6.1). Sharing information does have novel pri-
vacy implications, however, and can benefit nearby adversaries.
We discuss how sharing information might help adversaries recon-
struct a topology (Section 6.2) and briefly discuss how CoCoT also
increases sensing area (Section 6.3).

6.1 Privacy Risks Inherited from GAEN
While GAEN was designed to be privacy preserving for users, some
attacks still exist [17]. To learn private information (Section 3.1)
about nearby users, an attacker must first receive a victim’s RPI (s)
and match that RPI (s) with the victim’s identity [17]. For example,

Algorithm MAE SD nDCF3 nDCF6 nDCF10

local estimate 3.07 4.03 0.88 0.67 0.74
Average Out 2.61 3.30 0.93 0.63 0.73
Graph Drawing 2.75 3.52 0.84 0.66 0.72
Spring-Mass 2.21 3.05 0.75 0.53 0.65

Table 2: Spring-Mass performed best of the tested algorithms
by all metrics. Mean absolute error (MAE) and standard devi-
ation (SD) measure how close to truth our algorithms’ pre-
dictions are; nDCF, measures false positive/negative rates for
determining if phones are within a cutoff distance of 3, 6, or
10 feet, respectively. Lower is better in all metrics.
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a malicious phone 𝑝𝑎 may capture some of honest 𝑝ℎ ’s broadcast
RPIs and associate them with 𝑝ℎ ’s owner. Later, the attacker could
check the central authority to see if any of the uploaded TEKs
generate the captured RPIs, informing the attacker that 𝑝ℎ ’s owner
is infected. RPI matching is critical to learn any of the private
attributes mentioned in Section 3.1 for both GAEN and CoCoT.

To match users with their RPIs, attackers must have some knowl-
edge of nearby users’ location and identity. For this analysis, we
assume the attacker can (visually) see the nearby users, and so iden-
tify them and ascertain their relative positions (i.e., the physical
topology). Other methods of sensing users’ locations and identities
could be used instead, and are equivalent for this analysis.

With GAEN, this information permits matching nearby users
with their RPI if and only if they are a unique distance to the at-
tacker(s). If there are multiple users that are equidistant to the
attacker, then the attacker cannot distinguish between them. In Fig-
ure 1, for example, a GAEN attacker could not distinguish between
the two blue phones (𝑝1 & 𝑝2) because they are equidistant.

6.2 Privacy Risks of Topology Reconstruction
Sometimes, CoCoT makes matching users to their RPIs easier. The
previously mentioned physical topology, which is based on what at-
tackers can visually observe, includes information about user identi-
ties (to the extent these are known to the attacker) and users’ physi-
cal positions.With CoCoT, and particularlywhen using Spring-Mass,
attackers learn pairwise distances between neighboring phones.
These can be used to construct another topology, which we call the

Configuration People Per % Improvement

Square Foot MAE SD

SALSA 0.06 28.01 24.32
Cafeteria 0.15 28.17 30.05
Conference 0.16 30.56 31.66
Banquet Hall 0.11 11.50 17.31
Sparse Cafeteria 0.06 10.44 15.45
Sparse Conference 0.08 13.95 14.79
Sparse Banquet Hall 0.04 13.70 18.80

Table 3: CoCoT performs best on datasets where people are
close together. SALSA has a particularly high score because
our hyper-parameters are optimized for it. Shown is percent
improvement of mean absolute error (MAE) and of standard
deviation (SD) by Spring-Mass.
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Figure 1: In some cases, CoCoT’s information sharing pro-
vides weaker privacy compared to GAEN. Using GAEN, an
attacker 𝑝𝑎 cannot distinguish between phones 𝑝1 and 𝑝2
because they are equidistant to 𝑝𝑎 . Using CoCoT, 𝑝𝑎 can dis-
tinguish them because of 𝑝2’s unique proximity to 𝑝3.

CoCoT topology. If attackers can overlay the CoCoT topology and
the physical topology, they can match nearby users with their RPIs.

Overlaying topologies will not always succeed: CoCoT only
knows pairwise distances between neighbors, which could produce
a topology consistent with a rotated or mirrored physical topology.
The CoCoT topology is always constrained translationally relative
to the physical topology because the attacker knows where they
themselves are in the topology. But, the CoCoT topology is not
constrained rotationally nor reflectively by default. If the topology
is asymmetric, the attacker can find phones in the topology to
further constrain it rotationally and reflectively. Figure 1 shows an
example: 𝑝3 is a unique distance away from the attacker, 𝑝𝑎 , so the
topology is rotationally constrained. The attacker can physically
observe that 𝑝2 is a close neighbor of 𝑝3, constraining the topology
reflectively. Now, the attacker can match all nearby users’ RPIs to
their identities because the topology is asymmetric. If the topology
is symmetric, CoCoT would offer no advantage over GAEN to an
attacker. We next delineate under what circumstances CoCoT’s
topology benefits an adversary; we summarize in Table 4. We also
provide additional examples in our technical report [31].

Non-Stationary Topology. If the topology changes over time, then
an adversary can almost always5 match all nearby users with their
RPI from moving relative to them. Monitoring the topology as it
moves over time effectively makes every user’s distance to the
adversary unique. For example, if two phones are equidistant to the
attacker, like in Figure 1, moving closer to either of the two phones
would cause one’s signal strength to increase more than the other,
allowing the adversary to distinguish phones. Recording distances
over time is sufficient to make the topology asymmetric, making
most boxes in Table 4’s mobile attacker columns gray. In general,
whenever users are all not-equidistant, all users can be matched
to their RPI regardless of CoCoT. CoCoT provides no benefit over
GAEN to an attacker that can move.

The remainder of this analysis therefore assumes an entirely sta-
tionary topology. A stationary topology might occur if an attacker
only captures a single moment in time. While this is unrealistic, we
explore it to understand privacy implications.

Three or More Receivers. If the adversary has three or more re-
ceivers, they can triangulate users using traditional techniques,
since every point in the plane is a unique distance to the three re-
ceivers. Similarly to why a single malicious phone produces a trans-
lationally constrained topology, three malicious phones produce a
topology that is further constrained rotationally and reflectively,
since the attacker can distinguish where their own phones are in
the topology. Thus, in Table 4’s “3+ receivers” columns, rows which
are symmetric or equidistant/mixed are gray. CoCoT provides no
benefit over GAEN to attackers with three or more receivers.

Two Receivers. Usually, two receivers can also triangulate users
in the same way three receivers can, with one exception. Two
receivers cannot triangulate users in the same way three receivers
can if other users are positioned reflectively symmetric about the
reflective axis. In this case, the entire topology is symmetric and
CoCoT offers attackers no benefit over GAEN. If any sensed users
are not positioned reflectively symmetrically then an attacker could
5See our companion technical report [31] for edge-case analyses.
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use CoCoT’s topology to match every user to their RPI . If some, but
not all, users are pairwise symmetric, then CoCoT gives an attacker
an advantage over GAEN.

Single Receiver. CoCoT provides the most benefit over GAEN to
an attackerwith a single, stationary receiver. As before, the topology
needs to be asymmetric for attackers to use CoCoT’s topology to
match nearby users with their identity. In this case, CoCoT gives
attackers an advantage over GAEN when at least some users are
equidistant to the attacker’s receiver; GAEN cannot distinguish
between them but CoCoT can. An example is seen in Figure 1.

Summary. CoCoT can provide an advantage to a stationary at-
tacker with fewer than three receivers. We argue that an attacker
could get these advantages without CoCoT by using more pow-
erful receivers, more receivers, or moving relative to their envi-
ronment/recording over time. Additionally, in reality, it is unlikely
multiple users would be stationary, equidistant from an adversary.
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Table 4: Yellow≈ denotes no loss of privacy (beyond increased
awareness of nearby phones via shared distances), red ↓ de-
notes a loss of privacy, and gray boxes denote combinations
that cannot occur. Only a few scenarios give a privacy at-
tacker an advantage using CoCoT over GAEN.

6.3 Increased Sensing Range from
Rebroadcasting

CoCoT increases the distance at which an attacker can sense an-
other phone. If a phone is outside an attacker’s immediate sensing
range (i.e., the reach of their BLE radio) but the two phones share a
mutual neighbor, that neighbor will share information about the
unsensed phone to the attacker, effectively increasing the attacker’s
area of awareness by that of the attacker’s neighbors.

7 DISINFORMATION ATTACKS
An ACT attacker may wish to decrease the utility provided to users
by increasing the number of false positives or negatives, causing
others to conservatively waste resources or act in a way that may
put more people at risk of infection, respectively. Similarly to pri-
vacy attacks, CoCoT only affects the way phones broadcast, and
therefore it does not protect from GAEN’s disinformation attacks,
but we discuss them nonetheless (Section 7.1). CoCoT’s rebroadcast-
ing does create a novel attack surface for disinformation attacks.
We discuss these and potential mitigations (Section 7.2).

7.1 Disinformation Risks Inherited from GAEN
While GAEN was designed to be secure, primarily through cryp-
tography, some attacks still exist [17]. To trigger false-positive
alerts on GAEN (and consequently CoCoT), an attacker can falsely
(re)broadcast RPIs from infectious reporting TEKs. Guessing these
is considered cryptographically infeasible but other methods exist.
For example, an adversary could record RPIs from known-infectious
users (possibly at a hospital) then rebroadcast these RPIs in real-
time from another device in a critical area (possibly a vaccine pro-
duction plant). Conversely, the best known way to trigger false
negatives is to prevent users from receiving BLE chirps or upload-
ing their TEKs when infected. For additional attacks against GAEN
that CoCoT inherits, see Dehaye and Reardon’s work [17].

7.2 Disinformation Risks of Rebroadcasting
Collaboration enables a new attack vector: malicious actors spread-
ing disinformation about their environment to make risk assess-
ments less accurate. Unlike the aforementioned attacks on GAEN,
disinformation attacks on CoCoT can be done entirely locally (not
requiring a remote corroborator) and can increase the rate of false
negatives without noticeably denying service by carefully altering
the information rebroadcast. To test the effect of this attack, we ran
simulations where some phones adversarially reported disinforma-
tion to nearby phones. We tested several strategies and number of
phones disreporting then evaluated the accuracy of CoCoT. We first
show how CoCoT is affected by this disinformation (Section 7.2.1)
then discuss detection and mitigation strategies (Section 7.2.2).

7.2.1 Attack Effectiveness. We tested three methods for how at-
tackers might disreport information using CoCoT. Two passive
strategies—under-reporting and over-reporting—that always report
0 or 15 feet, respectively, and an active strategy—cutoff-reporting—
where adversaries wait to receive all honest broadcasts then respond
with a distance calculated so the averaged distance between the
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devices results in a false positive/negative using the 6 ft criteria6.
We varied the number of devices disreporting from 1 to 16, ran-
domly selected from the 18 total devices in the SALSA dataset [1],
and measured the accuracy between honest users. We compare
the percent increase in mean absolute error from CoCoT to GAEN
(since GAEN is unaffected by the attack) in Figure 2. For simplic-
ity, we do not discuss malicious sybil identities since they do not
significantly strengthen the attack, see our technical report for de-
tails [31]. We show the under-reporting attack, since it decreased
CoCoT’s accuracy most of the three strategies.

When malicious users number fewer than 9 of 18 total, CoCoT’s
collaborative estimates still outperform local estimates. Spring-Mass
algorithm’s inclusion of a discrepancy term makes the algorithm
less prone to disinformation attacks.

7.2.2 Detecting Disinformation. Spring-Mass’s stress can detect dis-
information attacks. Distances estimated between devices will have
some expected error distribution, resulting in some expected stress
value. When adversaries disreport, stress deviates from its expected
value, shown in Figure 2. Honest phones can define a stress-based
threshold to detect when enough attackers are nearby to reduce
CoCoT’s accuracy to worse than GAEN’s, at which point they stop
using CoCoT. Figure 2’s “Stress Thresholded” shows this strategy.

8 CoCoT PRACTICAL CONSIDERATIONS
We now enumerate potential challenges to deploying CoCoT and
propose solutions. First, we discuss how devices running the Co-
CoT protocol will communicate (Section 8.1); then we discuss how
asynchronicity affects CoCoT (Section 8.2); and, finally, we discuss
CoCoT’s battery consumption (Section 8.3).

8.1 BLE Communication
CoCoT, like GAEN, uses BLE data advertisements, each containing
up to 31 bytes, to broadcast data to nearby phones. CoCoT broad-
casts the same MAC GAEN broadcasts so devices can be identified
without re-broadcasting their RPI. Additionally, we hash the RPI

6For example, an honest user’s report of 5 ft might receive 7.1 ft in response, so the
average is over 6 ft.

Change in
Log(stress)

Figure 2: An increase in the number of nearby attackers
decreases CoCoT’s percent improvement over local estimates
(left axis, higher is worse). Adversaries must control 9 of the
18 devices present to cause naïve collaboration’s accuracy
(blue) to be worse than local estimates. Stress (magenta, right
axis) can be used to detect disreporting devices, allowing for
counter-measures to be used (orange).

of each neighbor to a 3-byte digest to also avoid re-broadcasting
neighbor’s RPIs. Distances to neighbors are shared using 1 byte.

In total, we can describe each neighbor in 4 bytes. CoCoT tiles
these descriptors into the 31-byte advertisement, describing up
to 7 neighbors per broadcast. We use the remaining 3 bytes for
versioning and hash-collision detection. If phones have more than
7 neighbors, CoCoT broadcasts additional advertisements.

Because RPIs are hashed, hash collisions are possible. In a dense
crowd, e.g., a crowded sports arena, there can be as many as 2 people
per square meter, or 0.186 people per square foot [47]. This means
approximately 132 other people can be within a 15 foot radius of
a phone. In this case, the probability of two nearby devices’ RPIs
producing the same digest is:

P[hash collision] = 1 − 28×3𝑃132
(28×3)132

≈ 5.2 × 10−4 (8)

where 𝑛𝑃𝑘 is the number of 𝑘-sized permutations of 𝑛 objects with-
out replacement. The numerator is the number of ways to order 132
choices of 3 bytes without replacement and the denominator the
number of ways to order them with replacement. Hash collisions
are handled by using the un-hashed first 3 bytes of the higher collid-
ing RPI instead of the hash digest. A flag in the data advertisement
signals that a hash collision occurred and for which digest. The full
BLE packet layout is detailed in our technical report [31].

8.2 Synchronization
We previously assumed that all phones communicated instantly,
synchronously, and reliably. We now explore these assumptions.

In reality, multiple phones will sometimes broadcast simultane-
ously, causing packets to collide and be dropped. Broadcasting more
frequently does not solve this problem, as it increases the likelihood
of devices broadcasting simultaneously and colliding, especially
as crowds grow. A tradeoff must be made between sending data
quickly enough so other device have up-to-date information and
slowly enough to minimize packet collisions.

Assume that phones broadcast at a uniform random time within
the broadcast interval. The collision probability between two de-
vices can be modeled as [30]:

P[broadcast collision] = 2 × broadcast time
broadcast interval

(9)

Assume these collisions are all independent. In a given time interval
𝑇 , each phone will broadcast 𝑏 = 𝑇 /(broadcast interval) times.
With 𝑁 phones all nearby, a phone will broadcast at least one
non-colliding broadcast within time 𝑇 with probability

P[phone heard in 𝑇 ] = (1 − P[broadcast collision])𝑁𝑏 (10)

The probability 𝑁 phones each transmit at least one non-colliding
broadcast within time 𝑇 is

P[𝑁 phones heard in 𝑇 ] = (1 − P[broadcast collision])2𝑁𝑏 (11)

CoCoT will broadcast up to 3 extra packets detailing the device’s
nearest 21 neighbors. In a dense crowd [47], at most 19 people will
be in a 6 foot radius of the phone, so this will capture everyone
deemed at risk by the CDC [19]. BLE can transmit one full data ad-
vertisement packet in 350 𝜇𝑠 [6]. If phones broadcast GAEN packets
every 235ms and CoCoT packets every second, 21 nearby devices
will detect each other with probability ≥0.99 within 9 seconds.
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Within the 270ms that a device records a GAEN packet, estimates
a distance, and rebroadcasts it, a fast walking person can travel
1.6 feet [43]. The distance traveled is made greater if the person is
running. However, these interactions do not pose significant risk,
especially if the users pass by each other at higher speeds [18, 50].
The interactions we most care about is when users are nearby for
several minutes and relative motion is minimal between devices,
making synchronization easier.

These decisions are made to be backwards compatible with BLE
4.0, a design decision also made by GAEN7. However, most phones
built since 2017 support BLE 5.0, enabling access to extended data
advertisements that transmit with twice the bit rate, have lower
collision rates , and have packet sizes up to 256 bytes. Implementing
CoCoT with BLE 5.0 would improve its ability to scale.

8.3 Battery Consumption
We next show the impact of CoCoT onmodern devices should be un-
observable by users by analyzing computation and communication
cost on battery consumption.

Computation. When GAEN receives an RPI from a nearby device,
it computes a distance estimate. Once per day, GAEN will down-
load a list of TEKs of all infectious-reporting users in the health
jurisdiction. GAEN hashes and encrypts each downloaded TEK
and compares the result against every BLE-received RPI [23, 29].
This is unchanged by CoCoT. If a phone observes at most 𝑝 phones
within a 10-minute interval8, for an average of 𝑑 10-minute in-
tervals (𝑑 ≤ 144), and 𝑖 infected users are reported sick in the
jurisdiction, then GAEN’s battery consumption, 𝐶GAEN , scales at
worst proportionately to O(𝑝 × 𝑑 × 𝑖).

CoCoT adds computations to improve the GAEN-calculated dis-
tance estimates. These calculations are equivalent to Jacobi iter-
ations [56, 61] on matrices no larger than 22 × 22 (21 neighbors
+ 1 self, limited by BLE 4.0); the computational complexity scales
quadratically with matrix size. Hence, CoCoT’s additional battery
consumption,𝐶CoCoT , scales at worst proportionately to O(𝑝2 ×𝑑),
where 𝑝 ≤ 22.

The number of infectious-reporting people, 𝑖 , easily overwhelms
the other terms, with 7-day averages often in the tens-of-thousands
for large states like New York [11, 12]. Hence, when 𝑖 is high, Co-
CoT’s added battery consumption, 𝐶CoCoT , is negligible. When 𝑖

is low, the combined battery consumption 𝐶CoCoT +𝐶GAEN is still
much lower than 𝐶GAEN alone with large 𝑖 . For example, with
𝑝 = 22 (max), 𝑑 = 144, and 𝑖 ≈ 100, which is low even for small
states like Wyoming, CoCoT’s battery consumption is lower than
GAEN by about 5×.

Communication. GAEN’s communication consists of broadcast-
ing periodic chirps, receiving nearby users’ chirps, and upload-
ing/downloading TEKs from the central authority. CoCoT adds
a single communication round between nearby devices, sharing
recorded distance estimates. To estimate BLE power consumption,
we use the Texas Instruments’ BLE power consumption calcula-
tor [54]. We estimate GAEN uses 2.4mAh per day , consistent with

7BLE is the main synchronization bottleneck. Computing a round of CoCoT’s updated
distance estimates takes only 14ms on a Google Pixel3 with a Snapdragon 845 processor
810 minutes is used here due to GAEN’s refreshing RPIs every 10 minutes.

other estimates [33]. CoCoT would add 32.4mAh in the worst case,
if communicating constantly with 21 neighbors.

To contextualize this, we examine the impact on the battery con-
sumption on an iPhone4, the oldest Apple device supporting GAEN,
with a much smaller battery (1420mAh) than new devices [21]. As-
suming the battery lasts for 24 hours, GAEN’s BLE power usage
would increase battery consumption by 0.17%9, and CoCoT’s added
BLE usage would further increase it by 2.3% at worst. Following
similar reasoning, on newer phones such as the iPhone 14 Plus
(4325mAh) and the Pixel 7 (4355mAH) [52], CoCoT would, in the
worst case, increase battery consumption by ≈ 0.75%.

Summary. Besides the computation and BLE communication
discussed, GAEN performs other actions that remain unaffected by
CoCoT, such as uploading and downloading TEKs. The impact of
these on battery consumption is more difficult to calculate. However,
the total battery consumption of GAEN, including on older devices
with smaller batteries, is reported to be less than 5% [33].

Hence, although CoCoT requires additional BLE communication
and computation, we show above that it would add only a small
fraction to the battery consumption of GAEN as it is deployed now.

9 CONCLUSION
ACT has the potential to slow the spread of infectious diseases
and to reduce the number of deaths caused by pandemics. While
someACT software and hardware infrastructure has now been built,
much remains to be done to enable widespread adoption and realize
ACT’s full potential. In this paper, we demonstrate a method to im-
prove ACT by addressing a key technical problem: making distance
estimation more accurate to reduce incorrect risk assessments. Our
solution, CoCoT, requires only limited additional communication
and has limited impact on the privacy of the system’s users while
decreasing the false positive/negative rates for COVID-19 assess-
ments by 21%. CoCoT is flexible: it provides accurate, continuous
estimates which can be useful for detecting diseases that differ in
transmission distances and can be readily integrated with other
ACT solutions. CoCoT does not require additional infrastructure to
be deployed and is compatible with those that do. It may also be
useful in other application domains such as autonomous vehicles,
where it could be undesirable or impossible to localize via a central
authority but local ranging to nearby devices is still required.
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