Training Robust ML-based Raw-Binary Malware Detectors
in Hours, not Months

Keane Lucas
kjlucas@alumni.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Michael K. Reiter
michael.reiter@duke.edu
Duke University
Durham, North Carolina, USA

Abstract

Machine-learning (ML) classifiers are increasingly used to distin-
guish malware from benign binaries. Recent work has shown that
ML-based detectors can be evaded by adversarial examples, but also
that one may defend against such attacks via adversarial training.
However, adversarial training, and subsequent robustness evalu-
ation, is computationally expensive in the raw-binary malware-
detection domain because it requires producing many adversarial
examples for both training and evaluation. Prior work found
that Greedy-training, a faster robust training technique that forgoes
using adversarial examples, showed some promise in producing
robust malware detectors. However, Greedy-training was far less
effective in inducing robustness than the more expensive adversar-
ial training, and it also severely hurt natural accuracy (i.e., accuracy
on the original data). To faster train models, this work presents
GreedyBlock-training, an enhanced version of Greedy-training that
we empirically show achieves not only state-of-the-art robustness
in malware detectors, exceeding even adversarial training, but also
retains natural accuracy better than adversarial training. Further-
more, as it does not require creating adversarial (or functional)
examples, GreedyBlock-training is significantly faster than adver-
sarial training. Specifically, we show that GreedyBlock-training can
produce more robust (+54% on average), more naturally accurate
(+7% on average), and more efficiently trained (-91% average com-
putation) malware detectors than prior work. To faster evaluate
models, we also develop methods to faster gauge the robustness of
ML-based raw-binary malware detectors by introducing robustness
proxies, which can be used either to predict which models are likely
to be the most robust, thus helping prioritize which detectors to
evaluate with expensive attacks, or aiding in deciding which detec-
tors are worthwhile to continue training. Experimentally, we show
these proxy measures can find the most robust detector in a pool of
detectors while using only ~20-50% of the computation that would
otherwise be required.

@ @ This work is licensed under a Creative Commons Attribution-
BY NC ND NonCommercial-NoDerivs International 4.0 License.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690208

Weiran Lin
weiranl@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Lujo Bauer
Ibauer@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Mahmood Sharif
mahmoods@tauex.tau.ac.il
Tel Aviv University
Tel Aviv, Israel

CCS Concepts

« Security and privacy — Malware and its mitigation; - Com-
puting methodologies — Feature selection; Neural networks; Su-
pervised learning.

Keywords

machine learning, adversarial robustness, malware detection

ACM Reference Format:

Keane Lucas, Weiran Lin, Lujo Bauer, Michael K. Reiter, and Mahmood
Sharif. 2024. Training Robust ML-based Raw-Binary Malware Detectors in
Hours, not Months. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS "24), October 14-18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3690208

1 Introduction

ML-based malware detection is an important component of modern
cybersecurity systems. Unfortunately, previous work shows that
these detectors can be evaded by adversarial examples, regardless
of whether the input is expert-derived features or the raw bytes of
the binary [2, 13, 22, 26, 28, 40].

When using binaries’ raw bytes as input, recent work shows that
it is possible to defend against adversarial examples via adversarial
training (i.e., using adversarial examples as training data) to cre-
ate more robust malware-detection deep neural nets (DNNs) [27].
Unfortunately, adversarial training is costly: Many adversarial ex-
amples are needed both to train and to evaluate models, and in
previous work each adversarial example took between 5 and 4424
seconds to create. We estimate! that prior work’s training approach
would take between one and 40 million CPU-seconds (12-463 days)
per model, depending on the type of attack, how many iterations the
attack is optimized for, and how many batches are trained on. Train-
ing the best-performing model suggested by previous work, which
shows increased robustness to several types of attacks, would take
around 15 million CPU-seconds (174 days). Furthermore, the time
required to evaluate each model’s robustness would take another
40,000 to three million CPU-seconds (1-35 days).

Based on previous work’s description of how many adversarial examples were used

https://orcid.org/0000-0002-4705-3412
https://orcid.org/0009-0005-6759-6499
https://orcid.org/0000-0002-8209-6792
https://orcid.org/0000-0001-7007-8274
https://orcid.org/0000-0001-7661-2220
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3658644.3690208
https://doi.org/10.1145/3658644.3690208
https://doi.org/10.1145/3658644.3690208

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

In this paper we propose new, efficient methods for both train-
ing robust malware detectors and evaluating the resulting mod-
els. Regarding training, we enhance a previously ineffective data-
augmentation method (Greedy-training [27]) by addressing its ma-
jor weaknesses: (1) it significantly reduces the original model’s
natural accuracy (i.e., accuracy on original data), and (2) it produces
models that are less robust than adversarially trained models. We
address the harm to natural accuracy by reducing the distribution
shift between the original and augmented data and the low robust-
ness by better imitating the attacks used in adversarial training
and disincentivizing the model from putting too much weight on
a small number of bytes. We then comprehensively evaluate the
model’s performance in natural accuracy, the computation time
it took to create, and robustness to attacks via a hyperparameter
sweep. We also compare the resultant models to the state-of-the-art
(more expensive) adversarial training models [27]. We show that
GreedyBlock-training can produce more robust (+54% on average)
and more naturally accurate (+7% on average) malware detectors
than those reported in prior work [27], via a faster training process
(—91% average computation time)?.

Motivated by the need to evaluate a large number of models
when seeking to identify the best-performing one, we also con-
tribute a new method for more efficiently finding the most robust
raw-binary malware detectors. The method consists of robustness
proxy measures (or robustness proxies), along with processes for
using these robustness proxies to find the most robust detector in a
pool of detectors. The proposed robustness proxies allow efficient
and accurate prediction of malware detectors’ robustness. These
robustness proxies are designed to capture aspects of ML models
that have been shown in prior work to differ between robust and
non-robust models. We draw upon prior work’s findings that ro-
bust models generally have smoother, more interpretable decision
boundaries [12, 45]; that models robust to one type of attack in the
raw-binary malware detection domain are often also more robust to
other types of attacks [27]; and that conditions for attack success in
the raw-binary domain depend on the performance of the model on
the test set (e.g., the 0.1% FPR maliciousness threshold at which at-
tacks are evaluated in prior work [27, 28]). These findings motivate
our measurement of decision boundary smoothness by using the
Ly-norm, Leo-norm, and mean of a classifier’s gradients and attribu-
tions (i.e., explanations), along with measuring the smoothness of
the attributions themselves, across both neighboring bytes and the
whole binary. We also measure the attack success of simple and fast
raw-binary attacks [26], and the model’s performance on the test
set (e.g., test accuracy). These measures can then be used as features
in a predictor (e.g., linear regressor) to estimate the robustness of a
model without the need to execute computation-intensive attacks.

In Sec. 5, we outline processes for using these robustness proxies
to both predict individual detectors’ robustness and, given a pool of
detectors, rank them by their predicted robustness to quickly select
the most promising ones. Specifically, we first train a predictor to
use robustness proxies as features to predict a malware detector’s
robustness (i.e., 1—highest attack success rate (ASR)) using a pool

2This speed comparison excludes Kreuk- and Greedy-training, as they amount to
strawman solutions and are not competitive in robustness.

Keane Lucas, Weiran Lin, Lujo Bauer, Michael K. Reiter, & Mahmood Sharif

of malware detectors (also referred to as models) with associated ro-
bustness proxies and the (computationally expensive) ASR already
measured (i.e., training pool). To evaluate how well this process
works, we use that predictor to predict the ASR for a pool of un-
seen models (i.e., test pool) and compare the predicted ASR to the
models’ true ASR. We then demonstrate through three use cases
how this malware detector robustness prediction can allow us to
avoid expensive attack execution while still identifying the most
robust malware detectors.

Overall, we find that using these robustness proxies produces
robustness predictions (on unseen models) that are highly corre-
lated with the computationally expensive ASR-derived robustness
of the model (with Pearson’s correlation coefficient of r > 0.90),
which can eliminate the need to attack most models when search-
ing for the most robust model, reducing computational expense
by ~50-80%. Using these robustness proxies to predict robustness
has benefits beyond just time savings: reduced computation time
lowers monetary cost, as well as power consumption and carbon
emissions [6]. The ability to more quickly retrain a robust model
can also help keep it accurate on the latest binaries. This is impor-
tant, as previous work has shown that models trained on older data
can become less accurate over time due to data drift [10].

In summary, the contributions of this work are:

e We enhance Greedy-training [27] to develop GreedyBlock-
training, a significantly more effective process for creating
robust ML-based raw-binary malware detectors (Sec. 4.1).
Through comprehensive experiments, we show that Greedy-
Block-training can produce malware detectors that reduce
the strongest attack’s success from a worst case of 100% to
less than 20%, retain a natural accuracy of over 95% TPR
at 0.1% FPR, all while taking significantly less computation
than the previous methods on average (Sec. 4.2.2).

e We propose robustness proxies, which allow efficient and

accurate prediction of a raw-binary malware detector’s ro-

bustness, alleviating much of the computational burden of
the attacks used for evaluation. Using these measures with

a feature selection algorithm and predictor (Sec. 5.1), we

show high correlation of a model’s predicted robustness

to its computation-intensive ASR-derived robustness with

r > 0.90.

Finally, we demonstrate how robustness proxies can accel-

erate evaluation and training in three separate scenarios

(Sec. 5.2.2). Two scenarios provide experimental evidence

that robustness proxies can be used to identify a set of candi-

date models likely to be robust; evaluating only those models
with real attacks takes only 10% of the time it would take
to evaluate all models with real attacks. The third scenario
instead uses the predictions of robustness proxies as a filter
to decide whether to continue training a model based on its
current estimated robustness; this speeds up training by up
to 40% compared to training all models to completion while
still resulting in similarly robust models (Table 2).

We have provided code at https://doi.org/10.1184/R1/26322505.

https://doi.org/10.1184/R1/26322505

Training Robust ML-based Raw-Binary Malware Detectors
in Hours, not Months

2 Background and Related Work

This section introduces relevant background. We start with existing
ML techniques to detect malware (Sec. 2.1). Then, we elaborate on
attacks to evade ML classifiers, with a focus on malware detectors
(Sec. 2.2). Additionally, we present adversarial training, a defense
against evasion attacks, and its application in the raw-binary mal-
ware detection domain (Sec. 2.3). We then conclude by discussing
attributions of ML models and how they relate to known character-
istics of robust ML models (Sec. 2.5).

2.1 Malware Detection DNNs

Deep neural networks (DNNs) have been shown to be capable
of detecting malware by using the raw bytes of an executable as
input [3, 25, 34]. Compared to using expert-designed features which
are usually constructed via some pre-processing of a raw-binary and
therefore require time and effort to develop [3, 4, 15, 17, 21, 23, 35],
using ML classifiers to detect malware from the raw compiled bytes
of an executable empirically achieves similar performance [3, 25,
28, 34] and does not require expert feature engineering.

2.2 Evading Malware Detection DNN’s

ML classifiers in various domains have been shown to be vulner-
able to adversarial examples—slightly perturbed inputs that cause
misclassification [5, 7, 9, 18, 30, 43]. To find adversarial examples,
a common approach is to use the loss gradients to search for in-
puts that maximize the loss within some distance constraint from
the original (unperturbed) input, so as to ensure the perturbed
input remains recognizable to humans as the same class. A com-
mon distance metric used is an L, norm, which was designed to
mimic human imperceptibility of perturbations in the image do-
main [5, 7, 9, 18, 30]. The ability of models to resist being fooled by
adversarial examples is referred to as robustness.

Evasion attacks have most often been considered in the image
domain, but our concern here is evasion of raw-binary malware clas-
sifiers. Evasion attacks in the raw-binary domain differ markedly
from their counterparts in the image domain. In the image domain,
a slight perturbation to an image is still likely to be perceived as the
same image by humans. In contrast, as binaries are a long sequence
of discrete byte values that represent an underlying program, per-
turbing even a single byte’s value, even a random one, could change
the underlying functionality or simply make it no longer executable.
This obstacle is called the inverse feature-mapping problem [33].

Additionally, unlike images, binaries are less often perceived
visually by humans. Thus, instead of achieving human impercepti-
bility, evasion attacks in the raw-binary domain aim to maintain
samples’ functionality. After adding the perturbation, the binary
should behave as if there were no perturbations [24, 26, 31].

IPR, Disp, and Kreuk attacks. Existing works take different
approaches to preserve functionality when making changes to a
binary. One of these approaches is to add or modify bytes in non-
executable regions of binaries, (e.g., Kreuk attacks [26]). Another
approach is to replace instructions with equivalent alternatives
using existing functionality-preserving transformations (IPR at-
tacks [28, 31]). There is also previous work that moves locations
of instruction chunks and links them with jmp instructions (Disp

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

attacks [24]). The gaps left behind by moving these instructions can
then be filled with instructions that do nothing (no-op instructions)
but are optimized to be evasive to the targeted classifier [28].

A key aspect of these raw-binary evasion attacks relevant for this
work is that IPR and Disp attacks are computationally expensive to
generate, as they require detailed analysis of the underlying assem-
bly code to create candidate transformations that preserve function-
ality, and then a filtering process to keep only the transformations
that are evasive to the targeted classifier. In our experiments, we
found that IPR and Disp attacks take an average of 908 and 487 sec-
onds, respectively, to generate a single adversarial example when
using the same settings as prior work used for evaluation (i.e., up
to 200 iterations) [27, 28]. Kreuk perturbations, on the other hand,
are computationally much cheaper (~5 seconds) to generate, as
they require much less analysis of the underlying code, and instead
simply append non-executable bytes to the end of the binary. While
this makes Kreuk attacks easier to defend against [28], it also makes
them a good candidate for quickly figuring out if a model is robust
or not, as discussed in Sec. 5.1.

Our work aims to hinder these three attacks (IPR, Disp, and
Kreuk). Therefore, we also use them to evaluate the robustness of
malware classifiers, as recent works do [20, 27, 28].

2.3 Adversarial Training Raw-Binary Malware
Detectors

A common defense against evasion attacks is adversarial train-
ing [18, 29, 36, 48]. By training ML models on the adversarial ex-
amples generated to fool them, ML models can learn to be more
robust. However, this can sometimes come at the cost of correctly
classifying the original, unperturbed data (i.e., natural accuracy).
In the image domain, adversarial training is one of the most widely
used defenses against evasion attacks. Nonetheless, a key require-
ment of adversarial training is generation of many new adversarial
examples to train on [29, 36, 48]. Techniques for more efficient
adversarial training have been proposed that make more efficient
use of gradient calculations [36] or use weaker attacks [48], but
cannot be used in the raw-binary malware-detection domain due
to the inverse feature-mapping problem discussed in Sec. 2.2.
There has been some prior work on adversarially training mal-
ware detectors that rely on hand-crafted features [14, 17, 44]. How-
ever, as we introduced in Sec. 2.2, generating adversarial examples
against raw-binary malware detectors is computationally costly.
Thus, adversarially training these malware detectors is even more
costly. Prior work has relied on scale, code efficiency, and training
with weaker versions of attacks to accomplish adversarial training
with raw-binaries. However, this approach still required up to a
year of computation to train a single malware detector [27].
Another expense that is especially relevant in the raw-binary
malware detection domain is the cost to evaluate the robustness of
a model after it has been trained. As discussed in Sec. 2.2, generat-
ing adversarial examples against raw-binary malware detectors is
costly, and in order to measure the robustness of a model against
several attacks, we need to generate adversarial examples for many
binaries against the model for each attack. Moreover, Disp and
Kreuk attacks can be executed with different budgets, which deter-
mines how much the attacker can increase the size of the binary due

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

to the attack, leading to more variations that must be tested. Prior
work evaluated models by transforming 100 malicious binaries to
look benign using each attack and attack variant, repeating the
attack five times (to account for stochasticity), and repeating this
process for 39 different model checkpoints. This validation phase
amounts to an average of around 1.5 million seconds (~17 days) of
computation time per malware detector, a large part of the cost of
obtaining adversarially robust models.

In this paper, we show how to reduce the time cost for training
and evaluating robust raw-binary malware detectors.

2.4 Greedy-Training

Greedy-training is a technique that was introduced in prior work [27]
to reduce the computation cost of adversarial training for raw-
binary malware detectors. The technique is based on the observa-
tion that most of the computational cost of raw-binary adversarial
training comes from generating adversarial examples that are metic-
ulously transformed to be functionally identical and executable, and
that training with some types of attacks (i.e., Kreuk) can provide
some robustness to more expensive attacks (i.e., Disp).

Therefore, Greedy-training forgoes the requirement of training
with valid and executable adversarial examples, and instead sim-
ply trains with binary inputs where a random subset of selected
bytes have been perturbed to be the most evasive to the targeted
classifier. As a result, these inputs are no longer valid executables,
and this technique qualifies as a data augmentation, rather than
adversarial training. This technique was shown to be much faster
than adversarial training, but also much less effective in inducing
robustness [27], along with significantly hurting natural accuracy.
This work addresses these issues.

2.5 ML Attributions

Some of the tools we use in this paper are derived from ML-explanation
techniques. Generally, ML explanations attempt to explain the pre-
dictions of ML models, some by giving attribution scores to the
input features that represent how important the feature is to the
model’s prediction. Examples of techniques that provide attribution
scores include using the gradient of the input with respect to the
model’s prediction [38] and Integrated Gradients [42]. Another set
of techniques we use are built on top of these attribution scores,
originally developed for the purpose of evaluating how well an
attribution technique is performing [47]. These techniques, called
Necessity Ordering (N-Ord) and Sufficiency Ordering (S-Ord), or-
der the input features by their attribution scores, and then remove
(resp., add) the features one by one. The area under (resp., over)
the curve of how the model’s prediction changes as features are
removed (resp., added) is then used to compare attribution methods’
ability to explain the model’s prediction. We adapt these techniques
to instead measure a trained model’s tendency to change predic-
tions when important features (as determined by the attribution
method) are removed or added to the input. The averages of the
N-Ord or S-Ord scores using different attribution methods over
several binaries are used as a robustness proxy for the model’s
robustness to adversarial examples, discussed more in Sec. 5.1.
ML attributions have also been used to characterize robust DNNs.
In the image domain, robust DNNs have been found to have smoother

Keane Lucas, Weiran Lin, Lujo Bauer, Michael K. Reiter, & Mahmood Sharif

VTFeed ‘ Train Val. Test
Benign | 111,258 13,961 13,926
Malicious | 111,395 13,870 13,906

Table 1: VTFeed dataset from prior work [28].

decision boundaries and more accurate attributions (according to
human-created bounding boxes) than non-robust DNNs [12, 46].
For example, a robust model’s attributions may be more likely to
highlight the pixels representing the body of a dog in an image
as contributing to the classification of “dog”. In the feature-based
malware detection domain, attributions have been used to identify
malware detector input features that are more vulnerable to adver-
sarial manipulation [41]. We leverage these findings to construct
our robustness proxies (Sec. 5.1).

3 Threat Model and Dataset

As the purpose of our work is to improve upon the state of the art in
adversarially training raw-binary malware detectors [27], we adopt
the same threat model, dataset, and malware detection models.

3.1 Threat Model

We describe our threat model using the framework outlined in prior
work [8, 33]. We assume that the attacker’s goal is to evade being
detected by (or possibly erode trust in) the malware detector by
causing it to misclassify malware as benign, or vice versa. To achieve
this, the attacker has the capability to modify the input binary in
any functionality-preserving way, having full knowledge of the
model’s architecture and parameters (i.e., whitebox access). While
prior work has also shown that the ML attributions used by some of
our robustness proxies can be misled by an adversary [19, 50], our
work is unaffected as the attacker has no control over the training
data or training process in which ML attributions are used.

The raw-binary malware detector is a DNN that takes a binary
as input and outputs a prediction of whether the binary is malware
or benign. This method of detection is a form of static analysis,
and neither prior work’s attack or adversarial training, nor this
work’s enhanced data augmentation methods require the binary
to be executed. As the attacks of interest in this work require the
binary to be unpacked, we also assume that the binary is unpacked
before being fed into the detector.

3.2 Dataset and Malware Detection DNN's

We use the same dataset and DNN architectures as prior work [20,
25, 27, 28]: the VTFeed dataset [20, 27, 28] and the MalConv DNN ar-
chitecture [34]. We additionally conduct smaller-scale experiments
with the AvastNet architecture [25], which we report on in App. A.
VTFeed contains 278,316 32-bit Portable Executables (PEs) that are
less than 5MB in size (both DLLs and EXEs), with a roughly even
amount of benign and malicious binaries. Labeling is done by aggre-
gating the results of anti-virus engines (AVs) from VirusTotal [11].
If a binary is classified as malicious by 40+ AVs, then it is labeled as
malicious, and if it is classified as malicious by 0 AVs, it is labeled
as benign. Binaries labeled as malicious by 1-39 AVs are excluded.

Training Robust ML-based Raw-Binary Malware Detectors
in Hours, not Months

To evaluate model robustness, we execute attacks using the same
100 malicious binaries from VTFeed that prior work uses to compare
models and evaluate attack success [27, 28]. We use the same dataset
to ensure all comparisons with prior work are fair. These files were
selected to be less than 512 KB (to ensure any change in size of the
file would still fit within the model input size) and classified with
high confidence.?

4 GreedyBlock-training

To accelerate training of robust malware detectors, this section
introduces GreedyBlock, our proposed data augmentation that can
produce robust and naturally accurate detectors more efficiently
than the training methods reported in prior work [27]. First, we
detail the design of GreedyBlock and how we use it as part of the pro-
cess for training robust malware detectors (Sec. 4.1). Then, we com-
pare the performance of GreedyBlock-trained malware detectors
to the adversarially trained detectors described in previous work
and Greedy-trained detectors (Sec. 4.2), showing that the Greedy-
Block-trained detectors are more robust, more naturally accurate,
and faster to train than those prior work’s detectors [27].

4.1 GreedyBlock Technical Approach

Adversarially training a malware detector requires a large amount
of computation [27]. In an effort to significantly reduce the com-
putation required, we demonstrate a fast data-augmentation-based
method of training malware detectors by both training on specially
modified inputs and including dropout layers in the architecture.
We call this method GreedyBlock-training, as it is based on Greedy-
training (proposed in prior work) [27]. In Sec. 4.2, we show that this
new training method can train malware detectors to be more accu-
rate and more robust than detectors described in prior work [27]
while requiring an order of magnitude lower computation.

Greedy-training modified half of the inputs to the model during
training to include randomly placed evasive bytes. Overall, this
resulted in a slightly more robust model, but it also hurt the model’s
natural accuracy more than other training [27].

We enhance Greedy-training as follows:

(1) We modify the Greedy perturbation (described in Sec. 2.4)
to group evasive bytes together in one or more contiguous
blocks, rather than randomly distributing them throughout
the binary. This better mimics the behavior of Disp and Kreuk
attacks, in which evasive bytes also occur contiguously. We
hypothesize that this incentivizes DNNs to look for signs
of maliciousness or benign-ness based on larger portions
of the binary instead of placing too much significance on
individual bytes. This in turn may imply that attacks need
to change more bytes to affect classification, which has been
shown to make raw-binary malware detectors more robust
to attacks [20].

(2) We add dropout [39] to input and dense layers to further
disincentivize DNNs from relying on small numbers of bytes.
Dropout randomly sets a fraction of the input dimensions to
zero during training, which should help the DNN learn to
rely on more bytes in the binary to make decisions.

3 A binary is classified as malicious with high confidence if it receives a maliciousness
score greater than the 0.1% FPR threshold of the classifier on the VTFeed test set.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

(3) We augment only one example per batch, rather than aug-
menting half of the batch. Compared to Greedy-training,
this allows us to complete GreedyBlock-training over the
entire dataset (e.g., complete epochs) faster, decreases the
number of augmented examples required, and decreases the
likelihood of hurting natural accuracy (since the augmented
examples have less weight in the batch’s loss).

(4) Finally, to further protect natural accuracy, we also experi-
ment with lower budgets (i.e., fewer evasive bytes) and train
for more epochs (e.g., three instead of one as reported in
previous work [27]).

Algorithm 1: GreedyBlock augmentation

Input :binary, budget, num_blocks, target model
Output:augmented binary
1 num_bytes_to_perturb « budget X size(binary)

)

block_size «— num_bytes_to_perturb / num_blocks

w

integrated_gradients « getIG(binary); // byte attribution values

'S

top_n_block_indices «
chooseTopNBlockIndices(integrated_gradients, block_size,
num_blocks); // choose most important indices for classification

random_values «
initializeBlockIndices(top_n_block_indices);

@

// randomly
initialize the values at chosen block indices

setByteValues(top_n_block_indices, random_values)

a

for iteration in range(num_iterations) do
8 binary_embedding «
getEmbeddingValues(top_n_block_indices);

<

// get the
embedding values at block indices

9 loss_gradients <«
getLossGradients(top_n_block_indices, target_model);
// get loss gradients for block indices

10 perturbed_embedding « binary_embedding + ax
loss_gradients; // perturb embedding towards increasing loss
1 adversarial_byte_values « getClosestValidByteEmbed-

adversarial_byte_values)

Pseudocode for GreedyBlock-training is shown in Alg. 1. We
randomly choose the number of blocks (i.e., groups of contiguous
evasive bytes) to be between one and five, and we set the maximum
number of iterations (i.e., optimization steps to choose more eva-
sive byte values) to 10. We also implemented the same early-stop
threshold as described in prior work, which for malware (resp.,
benign) binaries is when the inferred maliciousness is below (resp.,
above) the 0.1% FPR threshold for the model being trained [27, 28].

GreedyBlock-trained model pool. To evaluate the performance
of GreedyBlock-trained models, we created a large pool of malware
detectors, each trained with a different hyperparameter configura-
tion. Specifically, we trained a model for each possible combination
of the following hyperparameter settings:

GreedyBlock budget: {0%,0.25%, 0.5%, 1%, 3%}
Dense-layer Dropout: {0%, 10%, 30%, 50%, 75%}
Input Dropout: {0%, 5%, 25%, 50%, 75%}
Number of epochs: {1,2,3}

ding(perturbed_embedding)setByteValues(top_n_block_indices,

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

This gave us a total of 5 X 5 X 5 X 3 = 375 models. These hyper-
parameter values were chosen to cover a broad possible range of
values, include a value in which the associated component has no
effect (e.g., 0%), and, for the budget4, include values that prior work
used [27, 28].

We also needed to attack these models with (computationally
expensive) IPR, Disp, and (inexpensive) Kreuk to find their attack
success rates and the robustness of each model, a process that took
several months. (We show in Sec. 5.2 how to significantly cut down
on evaluation time using robustness proxies.)

We next compare the performance of these GreedyBlock-trained
models to the adversarially trained models described in previous
work [27], showing that GreedyBlock-trained models are more ro-
bust, have higher natural accuracy, and are trained faster.

4.2 GreedyBlock Results

In this section, we compare the robustness, natural accuracy, and
training time of GreedyBlock-trained models to the state-of-the-
art models reported in prior work. Sec. 4.2.1 details how we mea-
sure robustness, natural accuracy, and training time for both the
GreedyBlock-trained models and the state-of-the-art. Sec. 4.2.2 then
empirically compares and discusses these measurements.

4.2.1 Evaluation Setup for Comparing Robust Models. To compare
the performance of adversarially trained models, we measure their
robustness, natural accuracy, and training time.

Robustness is measured as one minus the attack success rate
of the most successful attack (i.e., the attack with the highest at-
tack success rate), where the attacks used are IPR, Disp [28], and
Kreuk [26], the same attacks used in prior work [20, 27]. Disp and
Kreuk attacks are executed with budgets of 0.01, 0.03, and 0.05,
which also mirrors parameters used in prior work. This results in
seven attacks (1 IPR, 3 Disp, 3 Kreuk) targeting each model, each
trying to cause 100 malicious binaries misclassify as benign (as
mentioned in Sec. 3.2). For simplicity, we report (and predict) the
attack success for IPR and the mean attack success for Disp and
Kreuk attacks across all budgets unless specified otherwise.

Natural accuracy is measured as the true positive rate (TPR) at
a false positive rate (FPR) of 0.1% on the test set of VTFeed, mirroring
prior work [27, 28].

Training time is measured as the cumulative time taken to
train the model. For the baseline robust models described in prior
work [27], this is calculated by totaling the time taken to generate
the model-training attacks, as generating these attacks was the
reported bottleneck®. We disregard any computation time spent ac-
tually calculating the gradients and updating DNN weights, making
our estimates of computation time conservative for the previous
work’s models. Measuring the training time of GreedyBlock-trained
models is simpler, as GreedyBlock-training is executed in a single
process and does not require any attack generation. We use the
creation timestamps of the last 10 model checkpoints to estimate a
per-checkpoint training time and then multiply that per-checkpoint

4The budget is how many bytes (as percentage of the binary) that an attack can change
or add

SThese calculations are based off of numbers reported for average training adversarial
example creation time in the original work [27]. This work used 13 servers with 16 to
256 GB of RAM, and Intel {i7-2600, i78-117700K, i7-4770, Xeon E7-4850}, AMD {Opteron
6274, Ryzen Threadripper PRO 3975WX, Ryzen 9 3900X}.

Keane Lucas, Weiran Lin, Lujo Bauer, Michael K. Reiter, & Mahmood Sharif

time by the number of checkpoints leading to our evaluated model.
We only use the preceding 10 checkpoints because, in some cases,
training is paused between epochs of a model, and only using the
last 10 checkpoints guarantees exclusion of these pauses. We cal-
culate these training times on the same hardware as that used
for previous work. Supporting the fairness of this comparison, we
found that executing the IPR, Disp, and Kreuk attacks on this same
hardware roughly matched previous work’s reported timing.

4.2.2 Comparison with Prior Work Models. This section compares
the performance of GreedyBlock-trained models to the state of the
art robust models reported in previous work [27]. We find that the
best GreedyBlock-trained models outperform the state of the art in
most measures.

Fig. 1 shows the results of attacking GreedyBlock-trained models
compared to the state of the art [27]. The GreedyBlock-trained mod-
els can have higher or lower natural accuracy (TPR at 0.1% FPR)
or robustness. However, because of their faster training method,
almost all of the GreedyBlock models were trained in an order of
magnitude of time less than the state-of-the-art models. Note that
the time axis is logarithmic. The best GreedyBlock models, as shown
in Fig. 1, are gathered near the corners of each plot representing
ideal performance, showing that they simultaneously achieve high
robustness, high TPR, and low computation time (Sec. 5.2 demon-
strates that robustness proxies allow us to find the highly perform-
ing models and validate their robustness in a fraction of the time it
would take to attack all trained models).

For a comprehensive numerical comparison, Table 2 provides
the success rate of each attack executed for evaluation of the most
robust GreedyBlock-trained model and its natural accuracy as well
as the corresponding reported results (and our time estimations) for
the most robust of prior work’s reported models [27]. We label the
attack success of Disp and Kreuk attacks that use different budgets
with “-budget” following the attack name. For example, Disp-0.01 is
the attack success of Disp attacks with a budget of 0.01. In Table 2,
we group the attack success columns of different budgets of Disp
and Kreuk (i.e., Disp-0.01, -0.03, -0.05 is the same as Disp-0.01, Disp-
0.03, Disp-0.05).

Prior work’s reported models’ performance. The top half of
Table 2 shows the attack success against prior work’s reported most
robust models produced via adversarial training: training with IPR
attacks, Disp attacks, Kreuk attacks, or with all three at once. In
each case, the resultant model becomes more robust against that
attack compared. For example, the attack success of IPR attacks
against IPR-trained models is 0.07, which is lower than the IPR
attack success against all other models (including the combined
training of IPR-Disp-Kreuk).

GreedyBlock performance. As can be seen in the Best Greedy-
Block row of Table 2, the most robust GreedyBlock-trained model
has the highest overall robustness to IPR, Disp, and Kreuk attacks
compared to models that were adversarially trained with IPR, Disp,
and Kreuk attacks. Specifically, while the best IPR-trained model
is able to accomplish a lower IPR attack success rate (0.07) than
the best GreedyBlock model (0.1), the highest attack success rate
against the most robust IPR-trained model is 0.94, resulting in a
robustness of 0.06. In contrast, GreedyBlock achieves a remarkable

Training Robust ML-based Raw-Binary Malware Detectors
in Hours, not Months

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

0967 o ° Greedy-Block ®
% oo oo Best Greedy-Block
0941 ¢ o ° % o) 308
o () . ° ° . e Disp °
|9} |9}
o 0.92 .'. ° g 1074 e®e o0 g 1074 e Kreuk 00 oo
& ¢ ~ e 0o L ~ e |PR % o
X 0.90 o o QEJ ° o g e |PR-Disp-Kreuk o °
— ° s L = % o o ° = ° ® o
© 0.88 : é : o
@ ® 45‘ 6 0 o [] g 6 | [°
o 0.86 g 10 o 10
o
Fosa ° g 3 g o
-84 [(@) O
0.82 1 A ¢
0.80 10° 4 10°
0.0 02 04 06 08 0.0 02 04 06 08 0.800 0.825 0.850 0.875 0.900 0.925 0.950
Robustness Robustness TPR @ 0.1% FPR

Figure 1: These plots show the relationship between GreedyBlock-trained models and prior work’s models [27]. Robustness
=1 — [highest ASR]. The left plot shows that the best GreedyBlock-trained models have higher robustness than prior work at a
competitive natural accuracy (TPR at 0.1% FPR). The center plot shows that the best GreedyBlock-trained models have higher
robustness than prior work while taking less time to train. Finally, the right plot shows that the best GreedyBlock-trained
models retain competitive natural accuracy, while taking less time to train.

Most Robust Results Attack Success Rate (ASR)
for Training Approach IPR | { Disp-0.01| -0.03| -0.05] { Kreuk-0.01 | -0.03] -0.05] { Robustness T ‘ TPR T ‘ Time (s) |
Original | 0.26 | 0.78 094 099 | 065 090 095 | 0.01 | 0.9 | -
IPR-training | 0.07 0.57 0.77 0.88 070 093 0.94 0.06 | 0.96 29480K
Disp-training | 0.13 005 008 0.11 036 0.55 0.71 0.29 | 0.93 10100K
Kreuk-training | 0.19 0.50 0.66 0.80 019 037 050 0.20 | 0.87 500K
IPR-Disp-Kreuk-training | 0.13 0.10 0.12 0.21 0.09 0.21 0.33 0.67 0.91 14960K
Greedy-training | 0.30 0.55 069 079 049 064 070 021 | 076 200K
GreedyBlock-training | 0.10 | 0.05 0.10 0.16 | 008 015 017 | 0.83 | 0.96 | 929K

Table 2: Prior work’s best (i.e. most robust) models [27] vs. best GreedyBlock model. Robustness is 1 — highest ASR. Arrows

show if lower/higher is better.

robustness of 0.83, which is higher than the most robust of all of the
models described in prior work, IPR-Disp-Kreuk-training (0.67) [27].
The main takeaway is that the best GreedyBlock-trained model’s
decreased attack success rates are achieved simultaneously, whereas
the models described in previous work are primarily only robust to
the attack they were trained with [27].

This superior robustness is complemented by a superior natural
accuracy (measure described in Sec. 4.2.1). The second-to-last col-
umn of Table 2 shows that the best GreedyBlock-trained model has
a natural accuracy of 0.96 TPR, which is the same as prior work’s
most naturally accurate model (IPR-training) [27].

Regarding training time, Kreuk-training and Greedy-training
is faster than GreedyBlock-training on average, and GreedyBlock,
Greedy, and Kreuk-training are significantly faster than any other
prior work training. This is because Kreuk-training relies on cre-
ating Kreuk attacks, which only take around 5 seconds each, as
discussed in Sec. 2.2. Prior work’s Greedy-training similarly is fast
because Greedy augmentations can be generated faster and were
only trained for 1 epoch [27]. However, as shown in all of the other

columns concerning Kreuk and Greedy-training, the resultant mod-
els are not competitively robust or accurate with any of the models
described in prior work, and they fall well short of the robustness
and accuracy results of GreedyBlock-trained models [27].

As explained in Sec. 4.2.1, our estimation of prior work’s reported
model’s training time is conservative, as it only accounts for the
creation time of attacks, whereas GreedyBlock’s training time is
directly measured via timestamps. This means that the training
time of prior work’s described models is likely even longer than
we report, while the training time of GreedyBlock-trained models
has been more precisely measured. As shown in Fig. 1, GreedyBlock
training times vary from under 100K seconds to over 1M seconds.
This variability is revelaed due to our method of measuring training
time for GreedyBlock-training via the creation timestamps of model
checkpoints (Sec. 4.2.1), allowing greater precision than the models’
training-time estimates reported in prior work [27]. A primary
cause of this variability is that if a model is becoming more robust,
then the GreedyBlock augmentations often take longer to produce
(as the models are becoming harder to fool).

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

This section has shown that GreedyBlock can be used to train
more robust and accurate models than prior work, and that these
models can be trained faster. However, verifying the robustness of
these models by attacking all of them took considerable effort. The
next section demonstrates how we could have avoided a significant
portion of this effort by using robustness proxies to predict the
most robust models without attacking all of them.

5 Robustness Proxies

To accelerate the evaluation of robust malware detectors by al-
leviating the burden of running expensive attacks against every
detector, we propose creating and using robustness proxies. Sec. 5.1
details how we use ML explanation methods (see Sec. 2.5), train-
ing measures, and cheaper attacks to create robustness proxies for
estimating the robustness of a malware detector. In Sec. 5.2, we
evaluate the robustness proxies and measure the time savings they
can produce if used in training robust malware detectors.

1. Start with pool of unevaluated 2. Calculate robustness proxy (RobProx) values
models for all models (fast) and a small subset with

real attacks (slow)
M,’'s Observed ASRs
Malware Detector 2 (M. M,’s Observed ASRs

Malware Detector 3 (M)

Malware Detector N-1 (M)
M ,'s RobProx Values
Malware Detector N (M)
M 's RobProx Values
3. Choose and weight which A/4

Predict robustness of rest of the
pool, output estimated
(optionally, validate w/ real attacks)

M,'s RobProx Values

M,’s RobProx Values

- M 's RobProx Values

robustness proxies to use as
robustness predictor

M,’s RobProx Values

M.’s RobProx Values

M,,’s RobProx Values
M,,'s Predicted Robustness: 0.6]

Robustness
icdictel m M,,'s Predicted Robustness: 0.3]
- M,,,'s Predicted Robustness: 0.1]
Mg,

M,’s Predicted ASRs] z M,’s Observed ASRs]

M, ,'s Predicted Robustness: 0.9]

M,,,'s Predicted Robustness: 0.8]

278

M,’s Predicted ASRS] =2 | M,sObserved ASRs]

M,,’s Predicted ASRs] = | M,’sObserved ASRs]

Figure 2: The general process for using robustness proxies
to rank malware detectors and/or predict robustness of a
malware detector without executing expensive attacks.

5.1 Robustness Proxies Technical Approach

We next detail how we construct robustness proxies (Sec. 5.1.1)
and evaluate their ability to speed up the construction of robust
malware-detection models (Sec. 5.1.2).

5.1.1 Proxy Measures of Model Robustness. We use measures based
on ML attributions, simpler and faster raw-binary domain attacks,
and the model’s performance on the test set to estimate robustness.

Using ML attributions to estimate robustness. In domains
such as image classification, prior work has found that robust mod-
els give better explanations (i.e., are more interpretable, have more

Keane Lucas, Weiran Lin, Lujo Bauer, Michael K. Reiter, & Mahmood Sharif

robust attributions) and have smoother decision boundaries than
non-robust models [12, 46]. As the gradients with respect to the
input are used to construct these attributions, we hypothesized that
the aggregated statistics of these gradients and explanations (e.g.,
Ly-norm, Le,-norm) over many typical inputs could provide a proxy
measure for the robustness of a model.

Robustness | Description
Proxy

[grad|IG] | £ norm of the attributions of the model’s out-
_12_norm | put with respect to the input.
[grad|IG] | fs norm of the attributions of the model’s out-
_linf_norm | put with respect to the input.
[grad|IG] | N-Ord value. Area under the curve created by it-
_nord | eratively padding out the most important bytes
according to the attributions. A smaller num-
ber indicates it took fewer bytes padded out to
change the classification.
[grad|IG] | S-Ord value. Area under the curve created by
_sord | iteratively adding the most important bytes ac-
cording to the attributions. A smaller number
indicates it took fewer bytes added to a baseline
input to change the classification.
[grad|IG] | Mean of the attributions of the model’s output
_mean | with respect to the input.
[grad|IG] | Standard deviation of the attributions of the
_std | model’s output with respect to the input.

[grad|IG] | Average of the absolute value of the difference
_smoothness | between each byte’s attribution and its direct

neighbor’s attribution.
kreuke@1 | Kreuk attack success with attack budget = 0.01.
kreuke@e3 | Kreuk attack success with attack budget = 0.03.
kreuk@e5 | Kreuk attack success with attack budget = 0.05.
kreukmean | Mean Kreuk attack success with attack budgets

€ {0.01,0.03,0.05}.

thresh | Threshold for the model’s output at the 0.1%

false positive rate.
TPR | True positive rate at 0.1% false positive rate.

Table 3: Robustness proxies used to predict IPR success, Disp
success, and robustness (i.e., 1-highest attack success), sepa-
rated by those obtained using ML attributions, Kreuk attacks,
and test set performance.

The two attribution methods we use are the gradients with re-
spect to the input, and Integrated Gradients (IG) [42]. Each of these
attribution methods can be used to give each byte in a binary a
score on how important the byte is to the model’s prediction, and
toward which class (malware or benign) the byte was swaying the
model. We aggregate these scores in different ways to compute a
single score for the model.

The aggregation methods we use include:

Training Robust ML-based Raw-Binary Malware Detectors
in Hours, not Months

e Ly-norms (p = 2,00): a scalar value calculated by taking
the Ly-norm of the entire vector of attribution scores for all
bytes in the binary;

e statistical measures: the mean and standard deviation of the
attribution scores for all bytes in the binary;

e smoothness: the mean of the absolute value of the difference
between each byte and its direct neighbor;

o Necessity and Sufficiency Ordering (N-Ord and S-Ord [47]):
N-Ord is the area under (or over) the maliciousness curve
created when iteratively masking out the most important
bytes, as determined by the attribution score for each byte.
S-Ord works the same way, except byte values are iteratively
added to a baseline input instead of masked out.

Using simpler and faster attacks to estimate robustness. As
shown in previous work, a model robust to one type of attack (e.g.,
Disp) may also be robust to another type of attack (e.g, Kreuk) [27].
Because Kreuk attacks can be completed with much less computa-
tion, as it does not consider the validity of the executable bytes and
instead simply appends non-executable evasive bytes to the end of
the binary, we use Kreuk attack success as a robustness proxy to
estimate the robustness of a detector.

Using the model’s performance on the test set to estimate
robustness. Finally, we also use the model’s natural accuracy and
maliciousness threshold at 0.1% false positive rate as robustness
proxies. The full list of robustness proxy measures is in Table 3.

5.1.2 Predicting Robustness. First, we define how we calculate ro-
bustness. To simplify comparisons between models that could have
different levels of resistance to different types of attacks (e.g., Disp,
IPR, Kreuk) and to ensure robustness is a measure of how well a
model can withstand evasion attacks, we define the robustness of a
model as one minus the attack success rate of the most successful
attack against that model (as introduced in Sec. 4.2.1).

With this in mind, we attempt to predict this value using the
proxy measures described above. We first select the robustness
proxies that give us the best performance using a feature-selection
algorithm, Sequential Feature Selection [1]. This algorithm first
selects the one feature that provides the best performance when
used to predict robustness (i.e., when used by some predictor, like
a linear regressor), then adds the feature that provides the best
performance when used with the previously selected features, and
so on. This process continues until the performance of the robust-
ness predictor does not improve with the addition of any of the
remaining features. We use this algorithm to ensure that every
robustness proxy selected has a demonstrated positive effect on
prediction performance. Then, we train a predictor to predict the
robustness of a model given the selected robustness proxies.

To measure prediction performance, we use the standard Pear-
son r correlation coefficient [16]. In our case, r measures the linear
correlation between predicted robustness (or an attack’s success
rate) and the true robustness (or an attack’s success rate). We ex-
perimented with the best performing types of prediction models
for small datasets [16]. We decided to use linear regression because
it is simple and interpretable, and because it performed as well as
any other predictor type we tried. To train our linear regressor, we
use scikit-learn’s ElasticNetCV with default parameters [32].

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

This regressor is trained with both L; and Ly regularization, and
we use cross validation (across different splits of the training data)
to determine the best regularization parameters.

Using this methodology, we execute experiments to predict the
robustness of malware detectors given three scenarios in Sec. 5.2.

5.2 Robustness Proxies Results

As discussed in Sec. 5.1, robustness proxies allow us to predict the
robustness of a model without having to execute expensive attacks
against it. Sec. 5.2.1 describes how we measure the performance of
the robustness proxies in predicting robustness of, and IPR and Disp
attack success against, the GreedyBlock-trained models described in
Sec. 4.1.In Sec. 5.2.2, we then analyze three different ways, referred
to as scenarios, in which robustness proxies can be used to find the
most robust models in the pool, and we report the portion of the pool
we could avoid evaluating with (expensive) attacks if we stopped
evaluating models after finding the most robust GreedyBlock model
found in Sec. 4.

5.2.1 Evaluation Setup. The purpose of robustness proxies is to
predict the robustness of a model to IPR, Disp, and Kreuk attacks
without having to actually attack it with the expensive IPR and
Disp attacks. We use Pearson’s correlation coefficient to measure
the correlation between predicted robustness (by proxies) and the
measured robustness (against real attacks).

Without robustness proxies, all candidate models would have
to be evaluated by expensive attacks. With robustness proxies, the
models could be ordered according to their predicted robustness,
and then evaluated in descending order (i.e., the model predicted
to be most robust is evaluated first, etc.). We report the percentage
of models we could theoretically avoid evaluating with expensive
attacks if we stopped after finding the most robust model possible.
Albeit, we would not know if we had found the most robust model
without evaluating all models, but we provide this measure and
describe its practicality in Sec. 5.2.2.

For example, if there are 100 malware detectors to evaluate in a
pool, and if the predictor (derived from robustness proxies) predicts
the most robust possible model in the pool as the second to evaluate,
then we only needed to evaluate two models. Therefore, the portion
of the pool we avoided attacking is (100 — 2)/100 = 98%. We note
that there are other ways of measuring the benefits of a predictor,
but we chose this method as it can be directly related to how much
computation it is possible to save.

5.2.2 Finding Robust GreedyBlock-trained Models Using Robustness
Proxies. Now, we use several example scenarios to illustrate how
robustness proxies can be used to find and evaluate the most robust
models in a pool of trained models, created as described in Sec. 4.1.

To predict the robustness of a model, we need training data for
our predictor, which requires attacking at least some models. The
general process on how we do this is shown in Fig. 2. To illustrate
how a balance can be struck between time spent getting training
data and time saved using robustness proxies, we consider three
scenarios. We treat each scenario as an independent method of using
robustness proxies to evaluate a pool of malware detectors. Hence,
we select features and train and evaluate a predictor separately for
each scenario.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

©

L 100

o

(7]

©

5]

3 90

w

g

S 801

é —— Random
g 704 —— Scenario 1
X —— Scenario 2
?_ —— Scenario 3
° 60 : : : : :

X 0 5 10 15 20 25 30

% of Models Evaluated

Figure 3: This plot compares the fraction of the model pool
required to be evaluated to find the most robust model in each
scenario in Sec. 5.2 compared to the baseline of evaluating
all models in the pool in a random order.

Scenario 1: hyperparameter-sweep. The first scenario con-
siders a simple training data selection method where we choose
models trained with a subset of the hyperparameter values of the
overall pool of models. Specifically, we select three out of the five
hyperparameter values for each hyperparameter (enumerated in
Sec. 4.1), and use all models trained with those hyperparameters as
the predictor training set.

This gives us 3 X 3 X 3 X 3 = 81 models to train a predictor on.
We then use the trained predictor to estimate the robustness of the
remaining 375 — 81 = 294 models.

We now discuss the robustness prediction results on these re-
maining 294 test models. As part of measuring robustness, Fig. 4a
and Fig. 4b show how well the trained predictor predicts the suc-
cess of IPR and Disp® attacks, respectively. Fig. 4c shows that using
robustness proxies for robustness prediction successfully ranked
the most robust model within the top 10% most robust in the pool
(and therefore one of the first to evaluate). Fig. 4a and Fig. 4b fur-
ther show that robustness proxies can predict IPR and Disp attack
success.

Fig. 3 shows that, over 100 experiment trials (choosing different
training data each time), using robustness proxies to determine the
order of attacking models in scenario 1 resulted in finding the most
robust model after attacking less than 10% of the test models in the
pool.

Using the calculations described in Sec. 5.2.1, these results cor-
respond to the ability to avoid attacking 95.9% of the models in
the test pool in order to find the best possible model. The feature-
selection method selected different individual robustness proxies
to use in the predictors shown in each of the plots. The robustness
proxies selected for the predictors in Fig. 4 are shown in Table 5 in
App. B. Notably, some form of Kreuk attack success is chosen for
every predictor, indicating that Kreuk attacks are a good indicator
of IPR and Disp attack success, and of overall robustness.

©This Disp attack success is the mean of executing Disp attacks with budgets 0.01,
0.03, and 0.05, the same budgets previous work used [27, 28].

Keane Lucas, Weiran Lin, Lujo Bauer, Michael K. Reiter, & Mahmood Sharif

Scenario 2: admissibility. One issue with the hyperparameter-
sweep scenario is that it does not account for models that are
obviously inaccurate. For example, if the test accuracy of a model
is around 0.5 (which matches the base rate of the dataset), then
we know that the model has not learned anything useful. Not only
would it be a waste of time to attack such models, but including
them in the training data for predictors could be harmful, as these
bad classifiers’ gradients, attributions, etc. might not match the
trends of better classifiers.

Therefore, we can save time by disregarding these models. In
scenario 2, we define an admissibility criterion for models that we
consider to be competitive in accuracy with previous state-of-the-
art models [27]. Specifically, we consider a model to be admissible if
it has a natural accuracy of at least 80% TPR at 0.1% FPR. With this
criterion, only 46 of scenario 1’s 81 models that used for training
data would be admissible.

Out of the 375 models trained, we find that 246 are admissible.
We randomly select 20% of these to be used as training data for our
linear regressors, and predict the robustness of the remaining 80%
of models. This gives us 49 models (20%) to attack with the expen-
sive IPR and Disp attacks, and 197 models for which we estimate
robustness in order to determine the evaluation order.

As with scenario 1, the robustness proxies chosen to predict IPR
and Disp success and model robustness vary, as shown in Table 6.
As in Sec. 5.2.2, some version of Kreuk attacks was chosen for every
predictor.

Fig. 5 shows prediction results after training our linear regressor.
We calculate that using robustness proxies to predict the order in
which to evaluate models avoids attacking 98.9% of the models in
the pool to find the most robust possible model. Also, as can be seen
in Fig. 3, scenario 2 finds more robust models faster than scenario
1, likely because the admissibility criterion filters out obviously bad
models that would otherwise be included in the training data.

Scenario 3: adaptive training. In the previous two scenarios,
robustness proxies were used to determine the order of evaluating
models. In scenario 3, we use robustness proxies to also adapt how
we create the pool of malware detectors (originally described in
Sec. 5.2.1) to save time there, as well.

For this scenario, we combine the approaches of the previous
two scenarios: First, we select a subset of hyperparameter values
with which to train models. These resulting models are then used
to calculate robustness proxies. Because this subset makes up 27
out of the 125 total hyperparameter configurations (from choosing
three of the possible hyperparameter values for three different
hyperparameters, as done in scenario 1, so 3> = 27) we train for
scenarios 1 and 2, this pool creation costs % = 22% of the initial
malware detector pool creation cost of scenarios 1 and 2 (but the
same amount of attack time). Then, we train a predictor from this
training data and use it as an additional admissibility criterion to
guide the training of the models corresponding to the remaining
98 hyperparameter configurations (configurations first described
in scenario 1).

Specifically, we guide the training as follows. First, we train
models using the 98 remaining hyperparameter configurations to
only one epoch (rather than 3 epochs); we then decide whether
to continue training them only if (1) they meet the admissibility

Training Robust ML-based Raw-Binary Malware Detectors

in Hours, not Months

1.0

° g o
IN o ©

Predicted IPR Attack Success
o
N

Predicted Best ¥
* True Best L,

0.2 0.4 0.6 0.8 1.0
True IPR Attack Success

(a) IPR, r = 0.96

1.0

0.8

0.6

0.4+

0.2

Predicted Disp Attack Success

Predicted Best 4

* True Best

0.2 0.4 0.6 0.8 1.0
True Disp Attack Success

(b) Disp, r = 0.86

Predicted Robustness

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

1.0

o
©

e
o

o
IS

Predicted Best

* True Best)

0.4 0.6 0.8
True Robustness

(c) Robustness, r = 0.92

1.0

Figure 4: Scenario 1: Robustness proxy predictors can predict the attack success of IPR and Disp attacks and robustness of
a model when trained with evaluations of fewer models trained from a subset of hyperparameter values (Sec. 5.2.2). r is the
Pearson correlation coeflicient.

=
o

o o o
IN o ©

Predicted IPR Attack Success
o
N

Predicted Best »a
* True Best L,

02 04 06 08 1.0
True IPR Attack Success
(a) IPR, r = 0.81

1.0

Predicted Disp Attack Success

Predicted Best »a
* True Best -

02 04 06 08
True Disp Attack Success
(b) Disp, r =0.79

1.0

Predicted Robustness

1.0

o
©

o
o

o
»

o
N

Predicted Best
* True Best L

04 06 08
True Robustness
(c) Robustness, r = 0.91

1.0

Figure 5: Scenario 2: Robustness proxy linear regressors can predict the attack success of IPR and Disp attacks and robustness of
amodel when trained with evaluations of fewer models trained from a randomly selected subset of admissible models (Sec. 5.2.2).
When these predictions are combined with Kreuk attack success, overall robustness of a model can be more accurately predicted.

1.0

o o o
> o ©

Predicted Robustness

e
N

Predicted Best e
* True Best /’(
Discarded Models i
e Passing Models /"

0.2 0.4 0.6 1.0

True Robustness

0.8

(a) Epoch 1 Robustness, r = 0.86

1.0
n 0.84
wn
1]
c
=
3
206
[<]
24
°
9 0.4
L
° < Predicted Best
— P
Qg2 7 * True Best
ra Discarded Models
o e Passing Models
0.0+
0.0 0.2 0.4 0.6 0.8 1.0

True Robustness

(b) Epoch 2 Robustness, r = 0.64

Predicted Robustness

1.0

o
©

e
o

o
IS

e
N

0.0 0.2

Predicted Best
% True Best L,

0.4 0.6 0.8

True Robustness

(c) Epoch 3 Robustness, r = 0.06

1.0

Figure 6: Scenario 3: Robustness proxy linear regressors can be used to filter out a large portion of models that should not
be trained further (Sec. 5.2.2). This progression of plots shows the increasing true robustness of models that are chosen to be
trained further. Faded out green dots represent models discarded before training the next epoch. r is the correlation coefficient.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

criterion from scenario 2 (at least 80% TPR at 0.1% FPR as described
in Sec. 5.2.2), and (2) the robustness proxy predictor predicts the
model is in the top 50% of the models by robustness. In other words,
we stop training the less promising half of the candidate models
(as well as any that did not meet the scenario 2 criterion) after one
epoch. We repeat the filtering process after the second epoch, again
discarding at least 50% of the models. Finally, we use the predictor
to order models trained for 3 epochs by their predicted robustness.

Fig. 6 visualizes this process. Fig. 6a shows the first step of pre-
dicting the robustness of models after one epoch of training. The
faded green dots represent the models/configurations that were not
selected to be trained further based on the predictor’s robustness
estimation. 42 configurations were not selected for further training
because they did not meet scenario 2’s admissibility requirements
(TPR > 80% at 0.1% FPR). 28 of the original 98 models/configurations
survived the first round.

Fig. 6b shows the predicted and measured robustness of the
remaining models after they are trained for another epoch. Of
these, 12 models survived the next filtering step. Finally, Fig. 6c
shows the final prediction of the surviving models’ robustness after
three epochs of training. The blue star, representing the model
empirically measured (using real attacks) to be most robust in each
stage, easily makes the cut for further training, as shown in Fig. 6a
and Fig. 6b.

Similar to the previous scenarios, scenario 3 shows that substan-
tial effort can be saved by using robustness proxies to help identify
the most robust model. Moreover, this scenario shows that we can
save time not only when evaluating trained models but also by
training fewer models to begin with. Specifically, we trained 27
configurations to three epochs (for training data), 70 models to
one epoch (as they were discarded after the first stage (Fig. 6a)), 16
to two epochs (discarded after the second stage (Fig. 6b)), and the
remaining 12 configurations to three epochs. This amounts to a
total of 27X3+70X1+16X2+12x3 = 219 epochs of training, saving
~40% of the training time (375 epochs) compared to scenarios 1 and
2, even when accounting for the 27 initial models’ training time.

Unlike with scenarios 1 and 2, the same trained predictor was
used for each of the plots in Fig. 6. The robustness proxies chosen to
predict robustness included grad_12_norm, grad_nord, grad_mean,
IG_sord, kreuk@o1, kreuk@o5, thresh, and TPR.

Scenarios 1-3 show that robustness proxies can be used to avoid
attacking a substantial portion of the model pool when searching for
the most robust model. The next section compares these predicted-
to-be-robust models to the most robust possible model found in
Sec. 4, demonstrating that we can reduce the number of models
needed to be attacked and/or trained while retaining the ability to
find robust models.

Performance of GreedyBlock models predicted to be most
robust. Table 4 shows the robustness of the most robust model you
would find if you only attacked the top 10% of models predicted to be
most robust in each scenario. As shown in Fig. 3, the GreedyBlock-
trained models found in these scenarios match the robustness of
the best GreedyBlock model found in Sec. 4. In other words, this
means that in each scenario, we almost always find the best possible
model by only attacking the top 10% of models predicted to be most
robust. Additionally, Table 4 also quantifies how many fewer epochs

Keane Lucas, Weiran Lin, Lujo Bauer, Michael K. Reiter, & Mahmood Sharif

of GreedyBlock-training and how many fewer models need to be
attacked in each scenario to achieve these results.

Compute Required

Robustness Training Attacking
Search Method ~ Found T (# epochs)| (# models) |
Best possible 0.83 | 375 375
Scenario 1 0.83 375 110
Scenario 2 0.83 375 69
Scenario 3 0.83 219 50

Table 4: Robustness and compute requirements of finding
the best GreedyBlock model in entire pool (as done in Sec. 4)
vs the best model found in top 10% predicted robust models
in scenarios 1, 2, and 3 (almost always finds the best model).
Arrows show if lower/higher is better.

6 Discussion

This section discusses some benefits and limitations of our work.

6.1 Faster Training and Evaluation Benefits

Our results show that this work’s methods of training and eval-
uating robust malware detectors can save a significant amount
of computation. While this can be useful in speeding up a robust
model, there are other benefits to faster training and evaluation.
For example, reduced computation requirements lowers monetary
cost, power consumption, and carbon emissions [6]. Also, faster
retraining increases the practicality of staying accurate on the lat-
est binaries by keeping up with data drift, an issue identified in
previous work [10].

Additionally, the models described in prior work require a scaled-
out infrastructure to generate enough adversarial examples, which
is costly [27]. In fact, ML models are growing more expensive to
train across multiple domains in general [6]. In contrast, our train-
ing method can be completed on a single server with a CPU. This
significant reduction in hardware requirements and thus cost de-
mocratizes the ability to train robust raw-binary malware detectors
for use in companies, schools, and cases where there is a lack of
resources to train on a cluster of servers.

6.2 Limitations

While we put considerable effort into making our methods and
results strong and useful to the scientific community and cyberse-
curity practitioners, we acknowledge that there are limitations to
our work and findings.

While VTFeed is a dataset of binaries used in previous works [20,
27, 28] constructed from a direct feed of real-world binaries being
analyzed [11], it is still a single dataset, which brings into question
our results’ generalizability to other datasets. However, the results
reported in previous work [28], derived primarily using the VTFeed
dataset, were nearly the same as results reported in a previous ver-
sion of the work that used a different compiled binary dataset [37].
This implies these techniques and trends persist across different
compiled binary datasets. Moreover, some of the base techniques

Training Robust ML-based Raw-Binary Malware Detectors
in Hours, not Months

we used for GreedyBlock-training and the robustness proxies, such
as IG [42], N-Ord, S-Ord [47], selecting the most important places in
an input sample to modify [49], and selecting the most evasive byte
values to use in an attack [26], were all developed and tested on non-
VTFeed datasets and in different domains [42, 47, 49]. Therefore,
we expect these techniques to generalize to other datasets.

Furthermore, robustness proxies are not tied to any specific
attack types. Their weighting is adjusted during predictor training
to best predict the success of the specific attacks that are executed
during this process. In our experiments in Sec. 5.2.2, robustness
proxies are predicting robustness against a suite of attacks (IPR,
Disp, and Kreuk).

We also acknowledge there could be other robustness proxies
yet to be discovered that are more predictive than those we have
proposed. Additionally, there could be other methods of using ro-
bustness proxies to better select the most robust models or guide
the training process (e.g., pair-wise hypothesis tests). Neverthe-
less, we believe these would be complementary advances used in
conjunction with the ones proposed in this paper.

7 Conclusion

This paper has presented new methods for training and evaluating
raw-binary malware detectors robust to evasion attacks. We first
showed that our best GreedyBlock-trained model is more robust
to attacks, more accurate, and trained faster than the state of the
art adversarially trained models (Sec. 4.2). Then, in two separate
scenarios, we showed that robustness proxies can predict the ro-
bustness of a model, allowing us to avoid attacking over 90% of
unseen models when searching for the most robust model in a pool,
a marked improvement over attacking all unseen models. Finally,
in a third scenario, we showed that these robustness predictions
can also guide the training process, saving even more computation
without sacrificing the final models’ robustness (Sec. 5.2). We ex-
pect that these methods will help make robust raw-binary malware
detectors more accessible to the computer security community.

Acknowledgments

This work was supported in part by U.S. Army Research Office
under MURI grant W911NF2110317; by National Science Foun-
dation awards 2338301 and 2338302; by Intel with a Rising Star
Faculty Award; by a Maof prize for outstanding young scientists;
by the Ministry of Innovation, Science & Technology, Israel under
grant 0603870071; by the United States-Israel Binational Science
Foundation under grant 2023641; and by the Defence Science and
Technology Agency, Singapore.

References

[1] D. W. Aha and R. L. Bankert. A comparative evaluation of sequential feature
selection algorithms. In Proc. AISTATS, 1995.

[2] H.S. Anderson, A. Kharkar, B. Filar, and P. Roth. Evading machine learning
malware detection. Black Hat, 2017.

[3] H.S. Anderson and P. Roth. Ember: An open dataset for training static PE
malware machine learning models. arXiv preprint, 2018.

[4] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens.
Drebin: Effective and explainable detection of android malware in your pocket.
In Proc. NDSS, 2014.

[5] S.Baluja and I Fischer. Adversarial transformation networks: Learning to gener-
ate adversarial examples. In Proc. AAAI 2018.

[6] E.M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dangers of
stochastic parrots: Can language models be too big? In Proc. FAccT, 2021.

[7]

8

[10]

==
i

[14]

(15]

[16]

(17]

=
&

o
=

~
£,

@
&

[34

[35

(36]

[37

(38]

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢, P. Laskov, G. Giacinto,
and F. Roli. Evasion attacks against machine learning at test time. In Proc.
ECML/PKDD, 2013.

B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317-331, 2018.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks.
In Proc. IEEE S&P, 2017.

Y. Chen, Z. Ding, and D. Wagner. Continuous learning for android malware
detection. In Proc. USENIX Security, 2023.

Chronicle. Virustotal. https://www.virustotal.com/, 2004-. Accessed 6/17/2019.
A. Datta, M. Fredrikson, K. Leino, K. Lu, S. Sen, and Z. Wang. Machine learning
explainability and robustness: Connected at the hip. In Proc. KDD, 2021.

L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando. Explaining vul-
nerabilities of deep learning to adversarial malware binaries. In Proc. ITASEC,
2019.

B. G.Doan, S. Yang, P. Montague, O. De Vel, T. Abraham, S. Camtepe, S. S. Kanhere,
E. Abbasnejad, and D. C. Ranasinghe. Feature-space bayesian adversarial learning
improved malware detector robustness. In Proc. AAAI 2023.

A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab. A review on feature
selection in mobile malware detection. Digit. Investig., 13(C):22-37, Jun 2015.
M. Fernandez-Delgado, M. Sirsat, E. Cernadas, S. Alawadi, S. Barro, and
M. Febrero-Bande. An extensive experimental survey of regression methods.
Neural Networks, 111:11-34, 2019.

M. Galovi¢, B. Bosansky, and V. Lisy. Improving robustness of malware classifiers
using adversarial strings generated from perturbed latent representations. In
Proc. NeurIPSW, 2021.

L. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. In Proc. ICLR, 2015.

J. Heo, S. Joo, and T. Moon. Fooling neural network interpretations via adversarial
model manipulation. In Proc. NeurIPS, 2019.

Z. Huang, N. G. Marchant, K. Lucas, L. Bauer, O. Ohrimenko, and B. L. P. Rubin-
stein. Rs-del: Edit distance robustness certificates for sequence classifiers via
randomized deletion. In Proc. NeurIPS, 2023.

L Incer, M. Theodorides, S. Afroz, and D. Wagner. Adversarially robust malware
detection using monotonic classification. In Proc. IWSPA, 2018.

B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert, and F. Roli.
Adversarial malware binaries: Evading deep learning for malware detection in
executables. In Proc. EUSIPCO, 2018.

J. Z.Kolter and M. A. Maloof. Learning to detect and classify malicious executables
in the wild. Journal of Machine Learning Research, 2006.

H. Koo and M. Polychronakis. Juggling the gadgets: Binary-level code random-
ization using instruction displacement. In Proc. AsiaCCS, 2016.

M. Kréal, O. Svec, M. Balek, and O. Jasek. Deep convolutional malware classifiers
can learn from raw executables and labels only. In Proc. ICLRW, 2018.

F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet. Adversar-
ial examples on discrete sequences for beating whole-binary malware detection.
In Proc. NeurIPSW, 2018.

K. Lucas, S. Pai, W. Lin, L. Bauer, M. K. Reiter, and M. Sharif. Adversarial training
for raw-binary malware classifiers. In Proc. USENIX Security, 2023.

K. Lucas, M. Sharif, L. Bauer, M. K. Reiter, and S. Shintre. Malware makeover:
Breaking ML-based static analysis by modifying executable bytes. In Proc. Asi-
aCCsS, 2021.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep
learning models resistant to adversarial attacks. In Proc. ICLR, 2018.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The
limitations of deep learning in adversarial settings. In Proc. IEEE Euro S&P, 2016.
V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hin-
dering return-oriented programming using in-place code randomization. In Proc.
IEEE S&P, 2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intriguing properties
of adversarial ml attacks in the problem space. In Proc. IEEE S&P, 2020.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K. Nicholas.
Malware detection by eating a whole exe. In Proc. AAAIW, 2018.

M. Schultz, E. Eskin, F. Zadok, and S. Stolfo. Data mining methods for detection
of new malicious executables. In Proc. IEEE S&P, 2001.

A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor,
and T. Goldstein. Adversarial training for free! In Proc. NeurIPS, 2019.

M. Sharif, K. Lucas, L. Bauer, M. K. Reiter, and S. Shintre. Optimization-guided
binary diversification to mislead neural networks for malware detection. arXiv
preprint, 2019.

K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In Proc. ICLRW, 2014.

https://www.virustotal.com/

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

[39] N. Srivastava, G. Hinton, A. Krizhevsky, L. Sutskever, and R. Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. . Mach.
Learn. Res., 15(1):1929-1958, jan 2014.

[40] O. Suciu, S. E. Coull, and J. Johns. Exploring adversarial examples in malware
detection. In Proc. AAAIW, 2018.

[41] R. Sun, M. Xue, G. Tyson, T. Dong, S. Li, S. Wang, H. Zhu, S. Camtepe, and
S. Nepal. Mate! are you really aware? an explainability-guided testing framework
for robustness of malware detectors. In Proc. ESEC/FSE, 2023.

[42] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks.
Proc. ICML, 2017.

[43] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I.]. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. In Proc. ICLR, 2014.

[44] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik. Improving
robustness of ml classifiers against realizable evasion attacks using conserved
features. In Proc. USENIX Security, 2019.

[45] Z. Wang. On the Feature Alignment of Deep Vision Models: Explainability and
Robustness Connected At Hip. PhD thesis, Carnegie Mellon University, 2023.

[46] Z. Wang, M. Fredrikson, and A. Datta. Robust models are more interpretable
because attributions look normal. In Proc. ICML, 2021.

[47] Z. Wang, P. Mardziel, A. Datta, and M. Fredrikson. Interpreting interpretations:
Organizing attribution methods by criteria. In Proc. CVPRW, 2020.

[48] E. Wong, L. Rice, and J. Z. Kolter. Fast is better than free: Revisiting adversarial
training. In Proc. ICLR, 2020.

[49] P. Yang, J. Chen, C.-J. Hsieh, J.-L. Wang, and M. L Jordan. Greedy attack and
gumbel attack: Generating adversarial examples for discrete data. Journal of
Machine Learning Research, 21(43):1-36, 2020.

[50] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang. Interpretable deep
learning under fire. In Proc. USENIX Security, 2020.

A Performance on AvastNet

We conduct smaller-scale experiments to verify that our methods
work on another malware detector architecture, AvastNet [25].

A.1 GreedyBlock Performance on AvastNet

To verify GreedyBlock-training worked on other malware detec-
tor architectures, we also trained a smaller pool of models using
the AvastNet architecture [25], where GreedyBlock-training also
outperformed adversarial training.

As shown in Table 7, using GreedyBlock-training on AvastNet [25]
as the base model can produce malware detectors with higher ro-
bustness and natural accuracy than adversarially trained models
that used IPR and Disp attacks reported in prior work [27]. Specifi-
cally, GreedyBlock-training, applied in the same way as discussed
earlier in this section produced a model with a robustness of 0.71
and a natural accuracy of 0.96 TPR at 0.1% FPR, while the most
robust adversarially trained model had a robustness of 0.01 (due to
being vulnerable to Kreuk attacks) and a natural accuracy of 0.91
TPR at 0.1% FPR.

A.2 Robustness Proxies on AvastNet

We also evaluated the performance of the robustness proxies on
the AvastNet [25] architecture via a smaller-scale experiment. The
results are as strong as for MalConv—-the AvastNet model predicted
as the most robust by proxies was also the most robust against IPR
and Disp attacks. We trained with GreedyBlock and IPR- and Disp-
attacked 101 AvastNet detectors, and tested robustness proxies with
scenario 2 (i.e., admissibility criteria removes low-performing mod-
els, predictor trained on 20% subset, robustness predicted for the
rest-Sec. 5.2.2). As shown in Fig. 9, robustness proxies’ predictions
achieved a correlation coefficient of 0.83 with the observed robust-
ness, and the model predicted as most robust was also identified as
such by attacks against all models.

Keane Lucas, Weiran Lin, Lujo Bauer, Michael K. Reiter, & Mahmood Sharif

Robustness Proxy | IPR Disp Robustness

grad_linf_norm v v
grad_nord v
grad_sord Vv
grad_mean

IG_12_norm
IG_linf_norm
IG_nord
IG_sord
kreukoo1
kreukoo3s
kreukoo5
kreukmean v
thresh v

TPR v

NN N N
N NN

SNENENEN

SN NN SENEN

v

v

Table 5: Robustness proxies selected to predict IPR success,
Disp success, and robustness in Sec. 5.2.2.

Robustness Proxy ‘ IPR Disp Robustness

grad_12_norm V4
grad_linf_norm
grad_nord
grad_sord
grad_mean
I1G_12_norm v
IG_linf_norm v
IG_nord
IG_sord
IG_mean
kreukoo1 v
kreukoo3s
kreukoo5
kreukmean
thresh v
TPR v v

Table 6: Robustness proxies selected to predict IPR success,
Disp success, and robustness in Sec. 5.2.2.

SNEN

SN NN NENENEN

NN NENENEN
<

B Robustness Proxies Selected

This section outlines which robustness proxies were selected to
predict IPR attack success, Disp attack success, and robustness in
scenarios 1 and 2 described in Sec. 5.2. Scenario 1’s selected proxies
are shown in Table 5, while scenario 2’s are shown in Table 6.

C Few-byte Attacks

Because GreedyBlock-training augmented binaries by adding blocks
of multiple evasive bytes, we ensured that this did not inadvertently
make the models more vulnerable to attacks that only modify a
few bytes. To do this, we attacked both the original model and best
GreedyBlock model with binaries in which the most important 1
to 5 bytes (according to Integrated Gradients [42]) were changed

Training Robust ML-based Raw-Binary Malware Detectors
in Hours, not Months

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

Attack Success Rate (ASR)

Training Approach ’ IPR | { Disp-0.01| -0.03] -0.05] { Kreuk-0.01 | -0.03] -0.05] { Robustness T ‘ TPR T ‘ Time (s) |

Original | 0.47 | 089 096 098 | 0.98 1.00 1.00 | 0.00 | 0.95 | -
IPR-training | 0.09 082 0.88 094 097 098 1.0 0.00 0.95 13920K
Disp-training | 0.26 012 010 0.12 087 096 0.99 0.01 0.91 6060K

Best GreedyBlock | 0.08 | 0.05 009 0.08 | 007 010 0.12 | 088 | 096 | 3213K

Table 7: Comparison of prior work’s trained models on AvastNet [25, 27] vs. the best GreedyBlock-trained models in attack
success, robustness, and training time. Column title arrows show if lower or higher is better.

Input/Dense Dropout vs Robustness

075 { @) 0 o o
0.5
5 05-@ o)) o o
g 8
g 0.4 GCJ
O 034@ ° ¢} ¢} ° i
(] 039
8 o
o o
2 o1de [S) o) o) e 0.2
0.1
0.01@) o) o) e
T T T T T
o % % % o
N O oY Q)

Input Dropout

Figure 8: This plot shows the relationship between dropout
rate in GreedyBlock training and the resultant robustness.

1.0

Predicted Best e
* True Best .

o
©

o
o

0.4+

Predicted Robustness

0.0 0.2 0.4 0.6 0.8 1.0
True Robustness

Figure 9: AvastNet model robustness prediction using sce-
nario 2: robustness proxies can predict model robustness
when trained with evaluations of fewer randomly selected
admissible models (Sec. 5.2.2); r = 0.83.

to the most evasive byte values (to the targeted detector). Of 214
such attacks, 1 evaded the original model, and none evaded the
GreedyBlock-trained model. Based on these results, we conclude
that GreedyBlock-training does not make the model more vulnerable
to few-byte attacks.

D GreedyBlock Parameter Analysis

To identify whether some parameter values tended to produce more
robust models, we plotted the robustness of our models trained with
different GreedyBlock parameters in Fig. 7 and Fig. 8. Overall, the
most notable trends are that models trained with a Disp budget of
0.0 have a low robustness (as expected as this is equivalent to no
GreedyBlock-training), and that large values of input dropout tend
to result in lower robustness.

Disp Budget/Num Epochs vs Robustness

Z23e o o) e o %%y
S 2
C
f24e o o o O||Fostg
E S
21-e o o o o 2

T T T T T

o ° o & o

N Q.ngf 090 Q.Q Q.Q
Disp Budget

Figure 7: This plot shows the relationship between Disp
budget and number of epochs in GreedyBlock training and
the resultant robustness.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Malware Detection DNNs
	2.2 Evading Malware Detection DNNs
	2.3 Adversarial Training Raw-Binary Malware Detectors
	2.4 Greedy-Training
	2.5 mL Attributions

	3 Threat Model and Dataset
	3.1 Threat Model
	3.2 Dataset and Malware Detection DNNs

	4 GreedyBlock-training
	4.1 GreedyBlock Technical Approach
	4.2 GreedyBlock Results

	5 Robustness Proxies
	5.1 Robustness Proxies Technical Approach
	5.2 Robustness Proxies Results

	6 Discussion
	6.1 Faster Training and Evaluation Benefits
	6.2 Limitations

	7 Conclusion
	Acknowledgments
	References
	A Performance on AvastNet
	A.1 GreedyBlock Performance on AvastNet
	A.2 Robustness Proxies on AvastNet

	B Robustness Proxies Selected
	C Few-byte Attacks
	D GreedyBlock Parameter Analysis

