
Investigating Advertisers’ Domain-changing Behaviors and Their
Impacts on Ad-blocker Filter Lists

Su-Chin Lin∗
Kai-Hsiang Chou∗

National Taiwan University
Taiwan

{r07922067,b07705022}@ntu.edu.tw

Yen Chen
National Taiwan University

Taiwan
b06902047@ntu.edu.tw

Hsu-Chun Hsiao
National Taiwan University

Academia Sinica
Taiwan

hchsiao@csie.ntu.edu.tw

Darion Cassel
Carnegie Mellon University

United States
darioncassel@cmu.edu

Lujo Bauer
Carnegie Mellon University

United States
lbauer@cmu.edu

Limin Jia
Carnegie Mellon University

United States
liminjia@cmu.edu

ABSTRACT
Ad blockers heavily rely on filter lists to block ad domains, which
can serve advertisements and trackers. However, recent research
has reported that some advertisers keep registering replica ad do-
mains (RAD domains)—new domains that serve the same purpose
as the original ones—which tend to slip through ad-blocker filter
lists. Although this phenomenon might negatively affect ad block-
ers’ effectiveness, no study to date has thoroughly investigated its
prevalence and the issues caused by RAD domains. In this work, we
proposed methods to discover RAD domains and categorized their
change patterns. From a crawl of 50,000 websites, we identified
1,748 unique RAD domains, 1,096 of which survived for an average
of 410.5 days before they were blocked; the rest have not been
blocked as of February 2021. Notably, we found that non-blocked
RAD domains could extend the timespan of ad or tracker distri-
bution by more than two years. Our analysis further revealed a
taxonomy of four techniques used to create RAD domains, includ-
ing two less-studied ones. Additionally, we discovered that the RAD
domains affected 10.2% of the websites we crawled, and 23.7% of the
RAD domains exhibiting privacy-intrusive behaviors, undermining
ad blockers’ privacy protection.

CCS CONCEPTS
• Security and privacy → Browser security; Web application
security.

KEYWORDS
domain-changing behavior, replica ad domain, filter list, ad blocking

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512218

ACM Reference Format:
Su-Chin Lin, Kai-Hsiang Chou, Yen Chen, Hsu-Chun Hsiao, Darion Cassel,
Lujo Bauer, and Limin Jia. 2022. InvestigatingAdvertisers’ Domain-changing
Behaviors and Their Impacts on Ad-blocker Filter Lists. In Proceedings of
the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,
Lyon, France. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3485447.3512218

1 INTRODUCTION
Ad blockers are software programs designed to block advertise-
ments and trackers from websites. Using ad blockers can improve
user experience during web browsing, such as reducing unwanted
information and accelerate page loading time, and protect users’
privacy, such as hiding device fingerprints or blocking tracking
scripts. Currently, many ad blockers use filter lists [7], which are
lists of rules that cover known ad domains1, to identify advertise-
ments and trackers. For example, EasyList and EasyPrivacy [25] are
two filter lists used by many popular ad blockers such as Adblock
Plus, uBlock Origin, and Brave. [26] Compared with advanced tech-
niques that dynamically detect advertisements [13, 37, 38, 42] or
tracking scripts [16, 33, 41], filter-list-based ad blockers are widely
adopted and well maintained, and can alleviate browsers from the
burden of runtime analysis.

However, the static rules in filter lists certainly cannot cover all
newly registered ad domains. Recent research and actual observa-
tions have discovered that some advertisers keep registering new
domains to serve the same advertisements or trackers over time. In
this paper, we call these kinds of domains replica ad domains (RAD
domains). For example, Yalvi, Propellerads, and PopAds are known
to create new RAD domains using Domain Generation Algorithms
(DGA) [3, 11]. Intentionally or not, RAD domains produced by
such domain-changing behaviors often slip through the rules of ad
blockers’ filter lists. Although this phenomenon might negatively
affect the effectiveness of ad blockers, to the best of our knowledge,
no prior study has systematically investigated its influence on the
widely used ad-blocker filter lists. Several previous studies [11, 56]
were limited to analyzing those that have already been identified

1For ease of presentation, because most ad blockers block both advertisements and
trackers, we use ad domains to refer to domains serving advertisements, tracking
scripts, or both.

https://doi.org/10.1145/3485447.3512218
https://doi.org/10.1145/3485447.3512218
https://doi.org/10.1145/3485447.3512218

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lin, Chou, et al.

by filter lists instead of those newly changed domains. A few re-
searchers noted the existence of advertisers’ domain-changing be-
haviors [11, 15, 36, 56], but they did not present a thorough analysis.

To understand the impacts of advertisers’ domain-changing be-
haviors on ad-blocker filter lists, we present our research that an-
swers the following research questions:

• RQ1: What are the common patterns of domain-changing
behaviors performed by the advertisers?

• RQ2: What are the RAD domains’ prevalence and survival
time before being added to filter lists?

• RQ3: Among the RAD domains we discovered, how many
of them exhibit privacy-intrusive behaviors?

To address those limitations of existing approaches, this paper
explores methods to search for RAD domains in the wild, rather
than within known ad domains. It proceeds from the observation
that, an advertiser exhibiting the domain-changing behavior may
control two domains A and B that serve similar advertising or
tracking content, and change from a blocked domain A to another
domain B that has not been blocked. In such cases, we refer to B as
a RAD domain for A, and A is a related ad domain for B. Because
they share the same owner and have similar functionality, a RAD
domain may leave linkable traces to its related ad domain. More
precisely, we determine whether two domains have the same owner
via DNS records and TLS certificates, and determine whether they
have similar functionality via URL paths and their content.

Among the 252,601 unique domains that we encountered while
crawling 50,000 websites, we identified 1,748 RAD domains; 1,096
of them were known ad domains as of February 2021, and we manu-
ally validated the remaining. Our analysis revealed several common
domain-changing patterns, including moving to first-party subdo-
mains (17.4%), using revolving domains (12.7%), changing subdo-
mains (35.9%), and using CDN domains (9.6%). We further discussed
whether ad blockers could effectively identify and block each of
these patterns. For example, by reviewing EasyList forum discus-
sions, we found cases suggesting that filter-list operators favor
specific rules for blocking individual subdomains over “wildcard”
rules blocking entire domains to avoid false positives. The EasyList
policy also explicitly states that this service is lenient about first-
party ad domains [27]. Thus, we speculate that advertisers take
advantage of such attitudes and policies when circumventing ad
blockers. Moreover, because using first-party subdomains to proxy
ads essentially abuses users’ trust in the first-party websites, this
may severely affect users’ security and privacy if the ad domain is
malicious or compromised.

Our analysis showed that these RAD domains affected 10.2%
of the websites we crawled. It took 424.2 days on average for a
RAD domains to be found and blocked since their first appearances,
and non-blocked RAD domains extended the timespan of ad or
tracker distribution by more than two years. Additionally, about
23.7% of the RAD domains exhibited privacy-intrusive behaviors,
according to the Tracker Radar [23]. These findings suggest that
RAD domains can severely harm users’ privacy because users can
still be tracked even with ad blockers enabled.

We also discussed possible reasons behind the use of RAD do-
mains. Besides ad-blocker circumvention, we presented cases whose
primary purposes seem to be for client isolation, localization, or
infrastructure upgrades.

This work makes the following contributions:
• We proposed methods for discovering RAD domains in the
wild and confirmed that the ad-blocker filter lists did not
block a substantial number of them as of February 2021.

• We presented a taxonomy of common domain-changing
patterns, which could help the community develop counter-
measures and improve filter rules.

• We revealed that the RAD domains affected 10.2% of the web-
sites we crawled, and 23.7% of them were privacy-intrusive.

• We discussed possible reasons behind the use of RAD do-
mains.

• Our dataset and analysis scripts will be published to help
future researchers and the filter-list community.2

2 METHODOLOGY
This section presents ourmethods to investigate advertisers’ domain-
changing practices, including how we discovered domain-changing
events (§2.1), what data and how they were collected (§2.2), and
our analysis methods (§2.3). The limitations of our methodology
are discussed in Appendix A.

2.1 Domain-changing events
At a high level, to discover domain-changing events, we searched
for and analyzed RAD domains of known ad domains. A domain
B is a RAD domain of an ad domain A if they have the same
owner and similar functionalities, and we say A is a related ad
domain of B. We utilized the DNS records and TLS certificates to
discover the same-owner relationships, and URL paths and served
files to discover similar-functionality relationships. Additionally, as
all RAD domains by definition should be ad domains, we manually
validated and removed non-ad domains to reduce false positives.
We also excluded domains that were blocked at the time of their first
encounter because they would not have been seen by ad-blocker
users and have no impact on ad-blocker users’ browsing experience
and privacy. That is, all RAD domains in our analysis are ad domains
that once successfully bypassed the ad-blockers.

2.1.1 Identification of same-owner domains. An intuitive approach
to inferring a domain’s owner is to retrieve registrant information
from the WHOIS database. However, we did not use WHOIS to
recover the domain owner because the WHOIS database contains
only TLD+1, and many domains hide their registrant information
for privacy reasons, especially following the implementation of the
General Data Protection Regulation [6, 35]. Therefore, instead of
trying to discover the domain owner, we looked for other evidence
of whether two domains were owned by the same entity. For this
purpose, a pair of domains was considered to have the same owner
if linked by either DNS records or TLS certificates. As Appendix B.1
confirms, both methods complement each other, as each led to some
discoveries of RAD domains that the other did not.

DNS records. DNS is a hierarchical system for associating a
domain name to an IP address. Only the domain owner, as regis-
tered with a registrar, can modify its own DNS records. In most
cases, a domain owner configures an A or AAAA record resolved
to the IP address of its own machine, or a CNAME record mapping
2The full list of RAD domains and the analysis scripts can be access at https://github.c
om/csienslab/RAD-domain-analysis/.

https://github.com/csienslab/RAD-domain-analysis/
https://github.com/csienslab/RAD-domain-analysis/

Investigating Advertisers’ Domain-changing Behaviors and Their Impacts on Ad-blocker Filter Lists WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

the domain to an alias name. If two domains are hosted on the
same machine, their DNS records will be resolved to the same IP
eventually. Since an IP is typically controlled by a single owner
who is the only entity able to modify its DNS records, we can in-
fer whether two domains have the same owner from their DNS
records. (Exceptions, such as CDN and cloud hosting, are discussed
in Appendix A.1.) It is possible to link two domains to each other
via the three above-mentioned types of DNS records, i.e., CNAME,
A, and AAAA. A CNAME record points to an alias domain, and A
and AAAA records represent IPv4 and IPv6 addresses, respectively.
We therefore deemed domains A and B to have the same owner if
(1) both had an identical CNAME, A, or AAAA record, or (2) one
domain’s CNAME record pointed to the other.

TLS certificates. A TLS certificate is a signed document that
binds a public key to one or more domains. To obtain a valid certifi-
cate, a domain owner has to prove the ownership of all the domains
listed in the Common Name (CN) and Subject Alternative Name
(SAN) fields in the certificate. Thus, if two domains appear on the
same certificate, they likely have the same owner. Our approach of
using TLS certificates was inspired by Cassel et al. [15].

2.1.2 Identification of similar-functionality domains. To find do-
mains with similar functionality, we used (1) URL paths to link
domains having similar endpoints or (1) served files to link domains
serving a similar set of files. If either one was satisfied, we inferred
that the two domains have similar functionality.

URL paths. To link domains having similar endpoints, we quan-
tified the closeness between two request URL paths 𝑃B and 𝑃A us-
ing a SIM function, defined as: 𝑆𝐼𝑀 (𝑃A , 𝑃B) = 𝐼𝑃𝐹 (𝐿𝐶𝑃 (𝑃A , 𝑃B)).
The function 𝐿𝐶𝑃 (𝑃A , 𝑃B) returns the longest common path for
𝑃A and 𝑃B . For example, 𝐿𝐶𝑃 (/𝑓 𝑜𝑜/𝑏𝑎𝑟, /𝑓 𝑜𝑜/𝑏𝑎𝑧) is evaluated to
/𝑓 𝑜𝑜 . Similar to Inverse Document Frequency, the 𝐼𝑃𝐹 (𝑝) function,
which stands for Inverse Path Frequency, computes the logarithmi-
cally scaled inverse fraction of unique domains that have the URL
path. Our approach to doing so was similar to Kargaran et al.’s [42]
use of Inverse Document Frequency metric [40, 60], but we assign
a higher weight to a less-visited path [62]. For instance, common
paths like /js and /static (visited by 23,830 and 8,524 domains,
respectively) carry little information compared with /site_media
(visited by just 28 domains) because they are more common seen
among all collected domains.

We considered that A and B have similar functionalities if
they satisfy the following inequality: ∃ 𝑃A , 𝑃B , 𝑆𝐼𝑀 (𝑃A , 𝑃B) ≥ 𝛼 ,
where 𝑃A and 𝑃B are URL paths of A and B, respectively. Ad-
ditionally, 𝑃A and 𝑃B should not contain words typically used
for directory brute-forcing [61], thereby excluding paths that are
common but seldom visited, such as /wp-admin. The choice of the
threshold 𝛼 is discussed in Appendix D.1.

Served files.We inferred that two domains have similar func-
tionality if they served more than a threshold of identical resources.
We set the threshold to avoid falsely linking two domains that serve
an identical file (e.g., a well-known JavaScript library) by coinci-
dence, in contrast to Snyder et al. [56]’s method, which links two
domains sharing at least one identical file. Specifically, we compared
non-script files via their hashes. For script files, inspired by Chen
et al.’s method [16], we performed code analysis by generating the
abstract syntax tree (AST) using Esprima [2] and extracting the

node types. Then, if two files shared the same AST, or one AST
was the subtree of another, we consider them the same script. By
this method, our analysis is resilient to trivial changes, such as
renaming variable or combining multiple scripts into one file [16].

We compared the files served by A and B and filtered out 1KB
or smaller files to prevent trivially identical contents. In the end, we
consideredA and B to have similar functionality if the Jaccard sim-
ilarity between their sets of served files was higher than 0.7. These
parameters were selected based on our small-scale experiment that
showed that most tracking pixels and trivial content, such as error
messages, are smaller than 1KB, while scripts and visible images
are often larger. We empirically set a Jaccard similarity threshold
so that domains serving widely used scripts are not linked. The
further justification is in Appendix D.2.

2.1.3 Manual validation. After identifying same-owner and similar-
functionality domains, we obtained a set of potential RAD domains,
but some might be false positives. One common cause of false posi-
tives is domain parking: When an ad domain expires and is parked,
it will have the same DNS records and served files as all other
parked domains, and thus be linked together. As all RAD domains
by definition should be ad domains, we removed non-ad domains
to reduce false positives. We manually validated the potential RAD
domains that were not on our ad-domain dataset (i.e., were not
blocked by the end of February 2021), following EasyList’s policy.
In most cases, the verification was trivial. For example, identical
ad-related script files or multimedia files served, some keywords
(e.g., the advertisers’ name) appeared in the scripts, or the scripts
contained suspicious fingerprinting APIs. In some cases, we made
our best effort to verify by visiting the first-party websites (or the
corresponding snapshots) and examining the requests and con-
tent [24].

2.2 Data collection
We created a domain dataset containing 252,601 unique domains
and an ad-domain dataset of 61,824 known ad domains. For each
domain in these two datasets, we collected their DNS records, TLS
certificates, served files, and URL paths. The latter two were ob-
tained at the same time as we crawled the domain datasets, and
thus this subsection only describes the collection of domain dataset,
ad-domain dataset, DNS records, and TLS certificates.

Domain dataset. Our domain dataset is effectively a “pool” of
domains within which we searched for RAD domains. To increase
the odds that this dataset would contain RAD domains of known ad
domains, we crawled historical snapshots of websites and collected
all the unique domains encountered during crawling.

We created a list of 50,000 websites comprising (1) Tranco’s top
20,000 and (2) another 30,000 randomly sampled from among those
ranked 20,001st to 1,000,000th by Tranco [43]. This approach al-
lowed us to include lesser-known websites in our dataset. We then
crawled the historical snapshots of each of these 50,000 websites
using Wayback Machine [34]. We stored one snapshot per web-
site per month for the period from March 2015 to February 2021,
inclusive.

Ad-domain dataset. We collected 61,824 unique known ad do-
mains from four sources of filter lists used by two popular adblock-
ers, AdGuard AdBlocker and uBlock Origin. These four sources of

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lin, Chou, et al.

filter lists are EasyList [28], EasyPrivacy [28], AdGuard [9], and
Peter-Lowe’s Blocklist [49].

DNS records. We collected the DNS records in May and June
2021 because we were not aware of any affordable and reliable
services that would have allowed us to query such historical records
for more than 100,000 domains. We collected 648,128 DNS records
for 254,689 domains by querying Google Public DNS [30].

TLS certificates. We retrieved the certificates used by each
domain in both our datasets betweenMarch 2015 and February 2021
from crt.sh [53]. For each certificate, we extracted the domains
listed in the CN and SAN fields for later analysis. This process
resulted in us collecting 217,979 certificates in all.

2.3 Analysis methods
2.3.1 Timestamp reconstruction. To assess filter lists’ effectiveness
against RAD domains, we defined two time-based metrics, survival
time and additional survival time. A domain’s survival time is de-
fined as the time passes between its appearing time and blocked
time. The survival time indicates how fast the filter list maintainers
find and block the RAD domain. A domain’s additional survival
time is defined as the time elapsed between B’s appearing time or
A’s blocked time (whichever is later) and B’s blocked time. The
additional survival time indicates how much the advertisers extend
the timespan of ads distributions by utilizing RAD domains.

To compute these metrics, we need to estimate each domain’s
appearing time and blocked time. We estimated each domain’s ap-
pearing time by its earliest snapshot available onWayback Machine.
However, that time-point does not necessarily equate to the mo-
ment a site was brought online; i.e., Wayback Machine might or
might not snapshot a site as soon as it is available, resulting in the
estimated time of appearance later than the actual one. In other
words, the actual (additional) survival time could be longer, imply-
ing that our findings may be more conservative than the reality.

We estimated each one’s blocked time based on the four lists’
historical versions from March 2015 to February 2021, as obtained
from their official GitHub repositories and websites. To simplify our
analysis, in case where a domain was added, removed, and added
again, we used the first time it was added as its blocked time.

2.3.2 Ad-domain clusters. If an advertiser changes its ad domains
multiple times, we would like to be able to group them into an
ad-domain cluster for further analysis, as the size of the ad-domain
clusters can provide insights into the characteristics and usages of
RAD domains. For example, an advertiser that keeps changing its
domains will likely result in a larger cluster. To cluster ad domains
(including all known ad domains and the new ones we found in
this study), we constructed a graph in which nodes are ad domains,
and a directed edge from node 𝑥 to 𝑦 means that 𝑦 is a RAD domain
of 𝑥 , i.e., changing from 𝑥 to 𝑦. An ad-domain cluster is a weakly
connected component on the graph.

3 RESULTS
Our Wayback Machine crawler yielded 2,165,106 snapshots of
50,000 websites, with 252,601 unique domains visited, of which
49,490 were known ad domains. We identified 1,748 RAD domains
from all domains visited using our proposed methods. Among them,

1,096 were blocked as of February 2021, and 652 of them were not
blocked but labeled as ad domains after manual validation.

3.1 Common domain-changing patterns
Examining the relationships among RAD domains, their related
ad domains, the ad-domain clusters they belong to, and their first
parties, we categorized four common patterns among the 1,748 RAD
domains, where the last two are relatively less-studied previously,
as summarized below.

• Moving to first-party subdomains: 305 RAD domains
were hosted on their first-party subdomains. Among them,
175 were linked to third-party ad domains by CNAME, some-
times referred to as CNAME cloaking [19];

• Using revolving domains: 222 RAD domains were gener-
ated using DGA by advertisers known to constantly create
new domains for evasion, known as revolving domains [1];

• Changing subdomains: 627 RAD domains shared parent
domains with their related ad domains;

• Using CDN domains: 167 RAD domains were hosted on
known CDN domains.

We present each pattern in turn and discuss the challenges of
blocking them using ad-blocker filter lists. We provide general and
pattern-specific recommendations in Section 4.2.

3.1.1 Moving to first-party subdomains. Among the 1,748 RAD
domains, we found 309 located under their first-party websites.

For instance, dynamic-js.compass.com was a RAD domain of
a known ad domain tracking.keywee.co , and only appeared on
its first-party domain compass.com. While the first party is a real
estate platform, this subdomain is under control by Keywee Inc.,
a marketing company. This is strong evidence that the first-party
domain delegates its subdomains to proxy ads.

To further understand this pattern, we surveyed several adver-
tiser and tracker websites [17, 48, 50, 52, 54], and found detailed
tutorials explaining how to configure a first-party custom proxy
to delegate ads, thus bypassing ad-blocker filter lists. For example,
Paradot [48] (a tracker service) and Plausible [50] (a website an-
alytics provider) explained how to delegate ads using first-party
subdomains. To check whether any websites had followed Paradot’s
advice, we searched within the DNS records we had collected
and found 35 first-party subdomains containing a CNAME record
go.pardot.com. Similarly, four websites followed Plausible’s ad-
vice and moved their domains to first-party subdomains.

We speculate that some advertisers exploit EasyList’s leniency
regarding first-party ad domains. According to EasyList’s policy [24,
27], “the subscription’s policy is slightly more lenient with first-
party tracking, specifying that items should be blocked only if they
“collect a significant amount of personal data.” Thus, a first-party ad
domain may be blocked only when it performs fingerprinting [27]
and collects large amounts of user information, such as IP address,
user agent, screen resolution, time zone, and language.

A major concern of using first-party subdomains is that, it blurs
the trust boundary between the first- and third-party entities, es-
sentially abusing users’ trust in the first-party website. Another
concern is that if the third party is malicious or compromised, it may
severely affect users’ security and privacy, given that it operates in
the context of the first-party website.

Investigating Advertisers’ Domain-changing Behaviors and Their Impacts on Ad-blocker Filter Lists WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 1: RAD domains in Clickadu’s ad-domain cluster.
RAD domain Appearing date Blocked date Survival time (days)

sghehllds.com 2019-06-21 2019-07-25 33
drjgjngf.com 2019-06-22 2019-07-15 22
qumagee.com 2019-07-16 2019-10-04 79
xineday.com 2019-08-18 2019-09-05 17
mrzikj.com 2019-08-26 2019-10-09 43
tibacta.com 2019-09-01 2019-09-07 5

CNAME cloaking. CNAME cloaking [8, 10, 20, 51, 56] is a
technique that create a first-party subdomain and assigns a DNS
CNAME record pointing to the blocked ad domain. Prior work [20,
51] has observed that advertisers leverage CNAME cloaking to
evade ad blockers. Among the 305 RAD domains hosted on first-
party websites, we observed 175 (57.4%) utilizing this technique, and
106 of which were not blocked as of February 2021, confirming that
CNAME cloaking poses challenges to ad-blocking via filter-lists.

It is difficult for ad blockers to detect CNAME cloaking be-
cause most browsers limit ad-blocker plugins from accessing re-
solved DNS records. In other words, these plugins only know
the requested domain and have insufficient information to de-
tect CNAME cloaking. Among mainstream desktop browsers (i.e.,
Chrome, Edge, Firefox, Opera, and Safari), only Firefox and Safari
have the ability to detect CNAME cloaking. Firefox 60+ (released in
January 2018) supports DNS API [45] allowing plugins to retrieve
resolved DNS records. Starting from version 14 (released in Septem-
ber 2020), Safari’s built-in Intelligent Tracking Prevention (ITP) can
detect CNAME cloaking, and restrict cookies from the first-party
subdomains using CNAME cloaking as if they are third-party re-
sources [39]. However, Firefox’s and Safari’s small market share
(in 2020, 7.3% for Firefox and 3.7% for Safari [47]) means that the
majority of users are vulnerable to CNAME cloaking as an evasion
technique.

3.1.2 Using revolving domains. Some advertisers are known to
serve ads by constantly creating DGA-generated domains. The Ea-
sylist community called these revolving domains [1]. Yalvi [3] is one
of the earliest advertisers using this technique, then Propellerads
and PopAds also use similar methods [11].

By manual inspecting the ad domain clusters whose domains
were all DGA-like, we found 222 revolving domains from 15 ad-
vertisers, affecting 294 first parties. The advertisers with the most
revolving domains were LuckyAds (36 domains), Clickadu (35), and
AdSpyGlass (27). Moreover, there was a cluster with 51 revolving
domains of which we could not confirm the owner. Some revolving
domains from Clickadu are presented in Table 1.

The countermeasure the EasyList community took was to block
all third-party requests on the websites that were known to be using
Yalvi [3], which later expanded to all ad networks deploying revolv-
ing domains. This method, however, may break the functionality of
the websites, and it relies on the comprehensive list of the websites
deploying revolving domains. As far as we know, this policy is
still in effect. Another route the EasyList community took is to
automatically discover new revolving domains by monitoring the
websites known to be using them [5]. This method has two defects.
First, the default expired time of EasyList is four days, which means
that even if the new revolving domain is discovered immediately
after its deployment, it remains accessible to users for four days in
the worst case. Also, by delivering different ad domains to different
first parties, the advertisers can serve ads without being noticed

by the automation tools. Our data suggest that there were pools of
revolving domains being served concurrently to different first par-
ties. For example, in August 2020, there were 20 revolving domains
served by AdSpyGlass at the same time, ten of which appeared on
distinct first-parties. Although this was merely a circumstantial
proof of the evasion attempt, the strategy is technically possible.

To shed light on the efficiency of EasyList policy, we analyzed the
additional survival time of the revolving domains. We reconstructed
the appearance sequence of revolving domains by sorting them by
their time of the first appearance, and considered the adjacent two to
be pairs of the related ad domain and the RAD domain. The median
of the additional survival time was 34 days, and the average was 80
days, which was longer than expected. We suspect that it might be
due to the selection bias of our method, as we only considered the
ad domains that bypassed the filter lists. To validate our claim, we
found that 214 revolving domains were already blocked when we
first encountered them, indicating that the filter-list maintainers
reacted fast to nearly half of the revolving domains we encountered.
Still, our findings show that the filter lists may sometimes miss
revolving domains for a long time.

Another finding is that all revolving domains in our dataset were
discovered via DNS records. For example, all revolving domains
from LuckyAds, such as qakdki.com and inpiza.com, shared com-
mon CNAME records (either luckylb.com or luckyads.tech).
Similarly, all revolving domains from another ad-domain cluster,
such as adeclc.com and basetts.com, were resolved to teser.net
via CNAME records. This finding indicates that blocking revolving
domains via DNS records is promising.

3.1.3 Changing subdomains. We found 627 RAD domains (226
eTLD+13) that had the same parent domains as their related ad
domains, meaning that the advertisers simply changed the sub-
domain. For instance, ggdata1.cnr.cn was a RAD domain of a
known ad domain adsame1.cnr.cn. Both were under the parent
domain, cnr.cn. However, the ad domain was blocked by the rule
||adsame1.cnr.cn^ on July 7, 2017, and soon later, the RAD do-
main appeared on October 11, 2017. It was not blocked until a more
general rule ||cnr.cn/s?z=4 was added on August 10, 2018.

Conceivably, filter-list maintainers favor specific rules block-
ing individual subdomains over wildcard rules blocking entire do-
mains, to avoid false positives. Unfortunately, such an approach
allows advertisers to bypass filter rules easily. An examination of
the discussion threads on the EasyList forum turned up several
cases supporting the above speculation. One example is social-
blade.com. One of its subdomains, analytics.socialblade.com,
was added to EasyPrivacy on May 24, 2019. Another subdomain,
analytics2.socialblade.com, was added on July 3, 2019. Social-
Blade started using another subdomain cupid.socialblade.com
on December 30, 2020, and it was blocked on February 1, 2021.
However, the parent domain socialblade.com was not on the
list as of February 2021. Another example is *.optimizely.com.
EasyPrivacy blocked this domain but included multiple exception
rules (such as cdn.optimizely.com/js/$domain=zdnet.com) to
3An effective top-level domain (eTLD) is a domain under which users can directly
register names, defined by the Public Suffix List [46]. eTLD+1 domains are more
fine-grained than TLD+1 domains, in which TLD stands for top-level domains.
4The rule blocks requests whose paths starting with s?z= and the domain is cnr.cn
or its subdomains.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lin, Chou, et al.

remove false positives. This demonstrates that naively blocking a
wildcard domain might introduce a large number of false positives.
Moreover, though blocking/allowing specific path substrings can
reduce false positives, advertisers can circumvent them by changing
the paths, which is easier than changing domains.

3.1.4 Using CDN domains. Among the 1,761 RAD domains, five
were hosted on Azure CDN (*.azureedge.net) and 160 on Ama-
zon CloudFront CDN (*.cloudfront.net). Because CDN domains
are easy to create and can serve benign content, it is reasonable for
filter-list maintainers to be hesitant about blocking CDN-based ad
domains. For example, EasyList and EasyPrivacy contain 327 unique
rules for blocking CDN subdomains under *.cloudfront.net,
each of which is prefixed with a different hash value, such as
dls7rxd829s2x.cloudfront.net.

0 250 500 750 1000 1250 1500 1750 2000
Survival time (days)

All
(All: 1748, Blocked: 1096)

Using CDN Domains
(All: 167, Blocked: 34)

Changing subdomains
(All: 627, Blocked: 524)

Using Revolving domains
(All: 222, Blocked: 154)

Moving to
 First-party subdomains
(All: 305, Blocked: 135)

Figure 1: The box plot of the survival time of blocked domains
exhibiting common patterns. The triangle marker indicates
mean value.

3.2 Impact of RAD domains
In total, among all the 50,000 websites we crawled, 5,121 (10.24%)
have sent requests to at least one RAD domain. Since RAD domains
appeared on a non-negligible number of websites, they could sub-
stantially harm user privacy if they exhibited privacy-intrusive
behaviors and survived for a long enough time. Thus, to assess
the impact of RAD domains on user privacy, this subsection an-
alyzes survival time (how long they have survived before being
blocked) and additional survival time (how long the timespan of
ads distribution is extended).

3.2.1 Survival time. Among all 1,096 blocked RAD domains, the
average survival time was 410.5 days, and the median was 195.5
days. Only 334 RAD domains (30.5%) were blocked within 90 days
from their first appearances. This may indicate that the filter-list
maintainers struggled to keep up with the fast deployment of RAD
domains.

Figure 1 and Table 3 also list the survival times of each com-
mon domain-changing pattern. The average survival time of RAD
domains that exhibited at least one pattern was 336.4 days, and
the median was 152.5 days. The survival times of moving to first-
party subdomains and changing subdomains were similar to that
of all RAD domains. However, only 26 of the moving to first-party
subdomains cases (8.5%) were found and blocked within 90 days,
much lower than that of all RAD domains (30.5%), indicating that
the filter-list maintainers struggled to discover them in time. The

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00

0
30
60
90

120
150
180
210
240
270
300

Blocked
Non-blocked

0.0 0.2 0.4 0.6 0.8 1.0

Additional survival time (days)

0.0

0.2

0.4

0.6

0.8

1.0

of

 R
AD

 d
om

ai
ns

Figure 2: The histogram and box plot of additional survival
time for RAD domains. The non-blocked RAD domains were
assumed to be blocked by the end of February 2021.
revolving domains had the shortest survival time (95.92 days on
average), and nearly half of them survived less than 90 days, reflect-
ing the effectiveness of the automatic detection tools mentioned
in Section 3.1.2. The RAD domains hosted on CDN (i.e., the using
CDN domains pattern) had the lowest percentage of being blocked,
but their average survival time was shorter than that of all RAD do-
mains. This result shows that it is generally challenging to identify
RAD domains hosted on CDN, but some easy cases may be caught
quickly.

3.2.2 Additional survival time. We used additional survival time
(defined in §2.3) to measure how much the advertisers can extend
the timespan of advertisement distributions by utilizing the RAD
domains. Figure 2 shows the additional survival time of blocked
(in blue) and non-blocked (in orange) RAD domains as of February
2021. Note that, for a non-blocked domain, we present a lower bound
of its additional survival time—that is, assuming that it was blocked
by the end of February 2021 (i.e., the end of our Wayback Machine
and block-list data collection).

For non-blocked RAD domains, their average additional survival
time (based on the lower-bound estimation) was 784.7 days, sug-
gesting the existence of long-standing RAD domains. On the other
hand, for blocked RAD domains, the average additional survival
time was 424.2 days, and the median was 196 days. This significant
discrepancy between blocked and non-blocked RAD domains may
be suggesting that the automatic detection deployed by filter-list
maintainers can quickly detect and block on the monitored ad net-
works [11]; however, those not monitored can survive for a very
long time. Moreover, as we presented in Section 3.1.2, advertisers
can keep changing their resource-serving domains, such that the
overall survival time can increase significantly even though each
domain was shortlived.

3.3 Purpose of trackers on RAD domains
Advertisers can use ad domains to host trackers for several pur-
poses, such as serving ads, marketing attributions, or analyzing
user behaviors. We analyzed the purposes of trackers on RAD do-
mains to understand how they were used, their impact on users,
and whether they showed different distribution than the general
ad domains, i.e., all the known ad domains we encountered in our
crawls.

Investigating Advertisers’ Domain-changing Behaviors and Their Impacts on Ad-blocker Filter Lists WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Ad Motivated

Trackin
g
Advertis

ing

Analytics

Audience Measurement

Third-Party

Analytics
 Marke

ting

Embedded Content

Actio
n Pixels

Ad Fra
ud

Social Sharing

Buttons

Sessio
n Replay

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f d
om

ai
ns

66
.2

%

65
.9

%

29
.0

%

22
.6

%

21
.8

%

18
.7

%

9.
9%

6.
9%

3.
5%

3.
0%

54
.0

%

52
.0

%

47
.2

%

30
.8

%

28
.4

%

17
.8

% 24
.8

%

4.
8%

0.
7%

20
.5

%

Purposes of Domains
All ad domains
RAD domains

Figure 3: The percentage of ad domains and RAD domains,
by purpose. The populations are ad domains (5,133) and RAD
domains (420) with identifiable purposes, respectively. See
Table 2 in the appendix for the explanation of each purpose.

We used the dataset from DuckDuckGo’s Tracker Radar [23] to
infer the purposes of trackers on RAD domains. Tracker Radar reg-
ularly crawls the Internet and extracts domains exhibiting privacy-
intrusive behaviors, such as extensive uses of browser APIs known
for fingerprinting. Thus, our analysis presented in this section is
limited to domains with privacy-intrusive behaviors; others, such
as ad domains serving only static image files, are excluded.

Table 2 in the appendix details each purpose included in our
analysis. Note that one RAD domain may have several purposes;
for example, most domains in Ad Motivated Tracking also appeared
in Advertising. Since the Tracker Radar dataset contained only a
subset RAD domains we crawled, we expanded this dataset by
heuristically inferring a RAD domain’s purpose via its related ad
domain, and vice versa. We additionally labeled 300 domains by
doing so.

We confirmed that 415 RAD domains (23.7% of all RAD domains)
were serving privacy-intrusive trackers, and these RAD domains af-
fected 1,758 first-party domains. Figure 3 shows the distribution of
purposes. 54.0% of the trackers on RAD domains were related to ad-
vertisement (Ad Motivated Tracking), performing privacy-intrusive
tasks such as targeting users and demographic collection, affecting
2.8% of the first-party websites we crawled. In addition, more than
20% of trackers on RAD domains, nearly seven times of the general
ad domains, were performing session replay, which collects much
more data than typical analytic scripts. This confirms that many
RAD domains were serving privacy-harming contents and exhibit-
ing privacy-intrusive behaviors. We also discuss the prevalence of
browser fingerprinting in Appendix C.

4 DISCUSSION
4.1 Possible reasons of using RAD domains
A common presumption of why RAD domains exist is that they
are merely for ad-blocker circumvention. Prior work has also as-
sumed that serving similar ad-related content on several domains
indicates evasion attempts [11, 56]. This section discusses some
possible reasons for using RAD domains based on our observa-
tion in this study. Although it is challenging to precisely know
the reasons that underlie the use of RAD domains, we manually
inspected them and concluded four major reasons: customer iso-
lation, localization, infrastructure changes or service rebranding,
and ad-blocker evasion.

4.1.1 Customer isolation. Several advertisers use unique domains
or subdomains for different customers, such that each of its ad do-
mains only appears on one first-party domain. For example, we ob-
served eight RAD domains owned by Reflektion, all of which were
in the form of *-prod.rfksrv.com. We found that Reflektion as-
signed one domain for each customer exclusively, e.g., 259817494-
prod.rfksrv.com only appeared on the first-party domain music-
notes.com. However, Reflektion might not intend to bypass ad
blockers, because all its customers’ ad domains were blocked by
a wildcard rule, ||rfksrv.comˆ$third-party. Some other cases
were podfdch.com (*.podfdch.com, 67 RAD domains), Agile CRM
(*.agilecrm.com, 20), and Insider (*.api.useinsider.com, 15).

4.1.2 Localization. Another possibly benign reason of RAD do-
main usage is localization. For instance, counter.24log.it was
deemed a RAD domain of counter.24log.ru by our approach.
By replacing the country TLD, we also found the German version
(24log.de), the Spanish version (24log.es), and the English ver-
sion (24log.com); all of them were blocked as of February 2021.
Although they were all ad domains, their main goal seemed to be
serving localized content.

4.1.3 Infrastructure changes or service re-branding. We also ob-
served several cases thatmight be performing infrastructure changes
or service rebranding. For example, akamai-utility.rogersme
dia.com was a RAD domain of utility.rogersmedia.com. The
former was observed only once (in November 2019) during our
crawl, while the latter was observed several times between Decem-
ber 2015 and February 2021. Judging from its name, we concluded
that the RAD domain might be created for testing the Akamai CDN.
Another example is www.afi-b.com, which was a RAD domain of
www.affiliate-b.com. The RAD domain first appeared in May
2017 and then was blocked in November 2020. After searching for
information about this company, we found a press release issued
in April 2017 announcing its service name change, from “Affiliate
B” to “afb”, and containing the new domain name afi-b.com [4].
Therefore, though ad blockers did not catch this RAD domain for
more than three years, the reason of creating it seemed benign.

4.1.4 Ad-blocker evasion. Despite the existence of relatively be-
nign reasons discussed above, we speculate that many of the RAD
domains we found might be created for ad-blocker evasion. For ex-
ample, some advertisers explicitly advised their customers to move
ad domains to first-party subdomains for evading ad blockers, and
their RAD domains indeed appeared and being blocked after their
related ad domains. Nevertheless, for most cases, it is challenging to
obtain concrete evidence of evasion attempts. We leave it as future
work to identify domains that intend to evade ad blocking.

4.2 Recommendations
We now discuss general and pattern-specific detection against the
four common domain-changing patterns (§3.1).

Our findings show that RAD domains were often left unblocked
by today’s ad blockers and survived for very long periods. We also
found evidence that advertisers took advantage of the fundamental
limitations of filter lists, creating domains to bypass ad blockers
deliberately. Thus, it is more challenging to block such domains than
regular ad domains. Generally, we recommend exploring automated

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lin, Chou, et al.

methods to detect RAD domains, thereby quickly spotting them
and reducing their survival time. For example, one possibility is to
integrate runtime information such as JavaScript execution traces
and request traffic with content, URL, and ownership information,
and apply machine-learning detection techniques [37, 38, 42] to
complement our rule-based detection.

Moving to first-party subdomains. Ideally, we hope that first-
party website owners can be transparent about their cooperation
with advertisers, but they may hardly have incentives to do so.
More practically, we recommend that the filter-list policies should
not be lenient to first-party trackers but instead consider the actual
information flow on the first-party domain. Also, we believe more
studies are needed to weigh the advantages and disadvantages of
providing ad blockers with access to DNS records. On the one hand,
this allows ad-blockers to recover the actual destination following
the DNS redirection (e.g., CNAME cloaking or simply pointing to
the ad domains’ IP addresses). On the other hand, granting more
access to ad blockers may give rise to new types of privacy concerns.

Using revolving domains. As our findings show that it is
promising to identify revolving domains via DNS records, we rec-
ommend that the filter-list maintainers and ad-blocker developers
use DNS records for lightweight detection in addition to the general
improvements discussed above. Although our findings show that
the filter-list maintainers reacted fast to nearly half of the resolving
domains we encountered, possibly through automatic scripts, we
also point out that revolving domains can easily evade EasyList by
leveraging outdated filter-list cache or deploying different domains
per customer.

Changing subdomains. Some advertisers change subdomains
of ad domains to bypass filter lists. Thus, to strengthen the defense
against this domain-changing pattern, we recommend the filter list
maintainers monitoring the subdomains of known ad domains.

Using CDN domains.We observed that some CDN providers
used the same IP address or certificates formultiple customers. Thus,
it is challenging to differentiate ad and regular domains merely by
their owners. Therefore, for CDN domains, we recommend mainly
using content-based or behavioral-based detection, as the owner-
ship information may be misleading.

5 RELATEDWORK
Many ad blockers use filter lists to identify ad domains, and thus
their effectiveness heavily depends on the quality and completeness
of the filter lists. Prior work has studied the issues of community-
maintained filter lists and pointed out a handful of techniques
to bypass them [11, 56]. Researchers have also analyzed specific
evasion techniques, including CNAME cloaking [18, 44], exploiting
cosmetic filters [57, 59], abusing WebSockets [12], and changing
resource-serving domains or URLs [15, 58].

Among those touching upon advertisers’ domain-changing be-
haviors, several studies [11, 56] have been limited to analyzing
domains that have already been blocked, resulting in selection bias.
Particularly, Alrizah et al. [11] found that many RAD domains were
blocked shortly after the traffic commenced, implying that the Ea-
syList community promptly and successfully detected them. Our
findings, in contrast, suggest that RAD domains can survive for
more than a year. In addition to the selection-bias issue, Snyder

et al. [56] linked domains with identical file content, which did
not work well for domains serving dynamic content or using con-
tentless tracking methods such as tracking pixels. OmniCrawl [15]
briefly presented a heuristic to discover RAD domains based on URL
paths and TLS certificates. Inspired by these studies, our methods
combine information extracted from DNS records, TLS certificates,
file contents, and URL paths to search for RAD domains in the wild.

Besides using filter lists, recent work on ad blocking has also
explored behavioral-based [16, 31] or content-based [21, 55] tech-
niques to detect advertisements and tracers at runtime. Some fo-
cused on detecting tracking scripts using JavaScript execution
traces [16, 33, 41], and some on detecting non-JavaScript ads or
tracking contents by using DOM elements in HTML documents
to train machine-learning classifiers [13, 37, 38, 42]. Our work can
take advantage of these advances to improve the identification of
similar-functionality domains. Of particular note is the work of
Chen et al. [16], which built a tool to block privacy-and-security
harming scripts at runtime and found 3,589 unique scripts not
blocked by EasyList. They also presented a JavaScript-level evasion
taxonomy (i.e., Moving, Inlining, Bundling, Common Code). By con-
trast, our work considered domain-level changes, and our analysis
additionally incorporated temporal and ownership information.

Domain blocklists are commonly seen in the contexts of censor-
ship [32] and malware detection [29]. In the former, censors build
lists to block specific sites, and these sites try to bypass them. In
the latter, antivirus software blocks access to specific command-
and-control (C&C) servers, and malware tries to bypass and contact
other C&C servers. One interesting future direction is to examine
the domain-changing behaviors in these two fields, but our current
methodology might not be directly applied. Our method to identify
same-owner domains via DNS records and TLS certificates may
be able to link re-hosted censored sites, but may fail to link C&C
domains because C&C servers are usually compromised machines
belonging to different victims.

6 CONCLUSION
To investigate advertisers’ domain-changing behaviors, this work
proposed methods to search for RAD domains produced by such be-
haviors and conducted a comprehensive analysis of their prevalence
and impact. We found four common domain-changing patterns and
discussed challenges to catch them using filter lists. Notably, the
use of first-party subdomains to proxying third-party ads (i.e., the
"moving to first-party subdomains" pattern) presents a significant
challenge to ad blockers because of its extensive use, long survival
time, and low blocking rate. Besides, it might introduce additional
security issues that require further investigation. Our analysis also
revealed that the non-blocked RAD domains extended the lifespan
of ads or trackers for an average of 784.7 days. Moreover, 23.7% of
the RAD domains exhibited privacy-intrusive behaviors, confirming
their negative impact on ad blockers’ privacy protection.

ACKNOWLEDGMENTS
This research was supported in part by the Ministry of Science and
Technology of Taiwan under grants MOST 109-2636-E-002-021 and
110-2628-E-002-002 and by the National Science Foundation via
grant CNS1704542.

Investigating Advertisers’ Domain-changing Behaviors and Their Impacts on Ad-blocker Filter Lists WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] [n.d.]. EasyList Forum - Rules. Retrieved September 20, 2021 from https://forums

.lanik.us/rules#revolvingads
[2] [n.d.]. Esprima. Retrieved June 20, 2021 from https://esprima.org/
[3] 2015. Issues with Yavli Advertising. https://easylist.to/2015/08/19/issues-with-

yavli-advertising.html [Online; accessed 20-September-2021].
[4] 2017. 株式会社フォーイットが提供するアフィリエイト・サービス　
サービス名リニューアルに伴うキャンペーン開催. Retrieved July 5, 2021
from https://www.for-it.co.jp/pressroom/pressrelease/20170414/

[5] 2017. Create a tool/script to pickup revolving adservers. Retrieved September 20,
2021 from https://issues.adblockplus.org/ticket/5323/

[6] European Commission 2018. 2018 reform of EU data protection rules. European
Commission. Retrieved October 16, 2020 from https://ec.europa.eu/commission/
sites/beta-political/files/data-protection-factsheet-changes_en.pdf

[7] AdBlock Support. 2021. Introduction to Filter Lists. Retrieved October 24, 2021
from https://help.getadblock.com/support/solutions/articles/6000066909-
introduction-to-filter-lists

[8] Adguard Team. 2020. Adguard - CNAME-cloaked trackers. Retrieved October 16,
2020 from https://github.com/AdguardTeam/cname-trackers

[9] Adguard Team. 2020. AdguardFilters - AdGuard Content Blocking Filters. Retrieved
October 16, 2020 from https://github.com/AdguardTeam/AdguardFilters

[10] aeris. 2020. Address 1st-party tracker blocking. Retrieved October 16, 2020 from
https://github.com/uBlockOrigin/uBlock-issues/issues/780

[11] Mshabab Alrizah, Sencun Zhu, Xinyu Xing, and Gang Wang. 2019. Errors, Misun-
derstandings, and Attacks: Analyzing the Crowdsourcing Process of Ad-Blocking
Systems. In Proceedings of the Internet Measurement Conference (Amsterdam,
Netherlands) (IMC ’19). Association for Computing Machinery, New York, NY,
USA, 230–244. https://doi.org/10.1145/3355369.3355588

[12] Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson, and
Christo Wilson. 2018. How Tracking Companies Circumvented Ad Blockers
Using WebSockets. In Proceedings of the Internet Measurement Conference 2018
(Boston, MA, USA) (IMC ’18). Association for Computing Machinery, New York,
NY, USA, 471–477. https://doi.org/10.1145/3278532.3278573

[13] Jason Bau, JonathanMayer, Hristo Paskov, and John CMitchell. 2013. A promising
direction for web tracking countermeasures. Proceedings of W2SP (2013).

[14] Frank Cangialosi, Taejoong Chung, David Choffnes, Dave Levin, Bruce M. Maggs,
Alan Mislove, and Christo Wilson. 2016. Measurement and Analysis of Private
Key Sharing in the HTTPS Ecosystem. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria) (CCS
’16). Association for Computing Machinery, New York, NY, USA, 628–640. https:
//doi.org/10.1145/2976749.2978301

[15] Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang,
Lujo Bauer, Hsu-Chun Hsiao, Limin Jia, and Timothy Libert. 2022. OmniCrawl:
Comprehensive Measurement of Web Tracking With Real Desktop and Mobile
Browsers. Proceedings on Privacy Enhancing Technologies 2022, 1 (Jan. 2022).

[16] Quan Chen, Peter Snyder, Ben Livshits, and Alexandros Kapravelos. 2021. De-
tecting Filter List Evasion with Event-Loop-Turn Granularity JavaScript Sig-
natures. In 2021 IEEE Symposium on Security and Privacy (SP). 1715–1729.
https://doi.org/10.1109/SP40001.2021.00007

[17] Conva Ventures Inc. 2020. Bypass ad-blockers with custom domains - Fathom
Analytics. https://usefathom.com/blog/bypass-adblockers.

[18] Ha Dao and Kensuke Fukuda. 2020. A machine learning approach for detecting
CNAME cloaking-based tracking on the Web. (2020), 1–6. https://doi.org/10.110
9/GLOBECOM42002.2020.9322514

[19] Ha Dao, Johan Mazel, and Kensuke Fukuda. 2021. CNAME Cloaking-Based
Tracking on the Web: Characterization, Detection, and Protection. IEEE Trans-
actions on Network and Service Management 18, 3 (2021), 3873–3888. https:
//doi.org/10.1109/TNSM.2021.3072874

[20] Yana Dimova, Gunes Acar, Lukasz Olejnik,Wouter Joosen, and TomVanGoethem.
2021. The CNAME of the Game: Large-scale analysis of dns-based tracking
evasion. Proceedings on Privacy Enhancing Technologies 2021, 3 (2021), 394–412.

[21] Zainul Abi Din, Panagiotis Tigas, Samuel T. King, and Benjamin Livshits. 2020.
PERCIVAL: Making In-Browser Perceptual Ad Blocking Practical with Deep
Learning. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, 387–400. https://www.usenix.org/conference/atc20/presentation/d
in

[22] Duck Duck Go, Inc. [n.d.]. CATEGORIES - DuckDuckGo Tracker Radar. Retrieved
July 5, 2021 from https://github.com/duckduckgo/tracker-radar/blob/main/docs
/CATEGORIES.md

[23] Duck Duck Go, Inc. [n.d.]. DuckDuckGo Tracker Radar. Retrieved July 5, 2021
from https://github.com/duckduckgo/tracker-radar

[24] EasyList contributors. [n.d.]. EasyList - Policy. Retrieved January 29, 2021 from
https://easylist.to/pages/policy.html

[25] EasyList contributors. [n.d.]. EasyList / EasyPrivacy / Fanboy Lists. Retrieved
October 20, 2020 from https://github.com/easylist/easylist

[26] EasyList contributors. [n.d.]. EasyList / EasyPrivacy / Fanboy Lists Support. Re-
trieved October 20, 2020 from https://github.com/easylist/easylist#support

[27] EasyList contributors. 2011. What is acceptable first-party tracking? Retrieved
January 29, 2021 from https://easylist.to/2011/08/31/what-is-acceptable-first-
party-tracking.html

[28] EasyList contributors. 2020. EasyList - Overview. Retrieved October 16, 2020
from https://easylist.to/

[29] Christopher M Frenz and Christian Diaz. 2017. Anti-ransomware guide. https:
//owasp.org/www-pdf-archive/Anti-RansomwareGuidev1-7.pdf. Retrieved from
owasp. org (2017). [Online; accessed 20-September-2021].

[30] Google. 2020. Public DNS | Google Developers. Retrieved October 16, 2020 from
https://developers.google.com/speed/public-dns

[31] David Gugelmann, Markus Happe, Bernhard Ager, and Vincent Lenders. 2015.
An automated approach for complementing ad blockers’ blacklists. Proceedings
on Privacy Enhancing Technologies 2015, 2 (2015), 282–298.

[32] Joseph Lorenzo Hall, Michael D. Aaron, Stan Adams, Amelia Andersdotter, Ben
Jones, and Nick Feamster. 2020. A Survey of Worldwide Censorship Techniques.
Internet-Draft draft-irtf-pearg-censorship-04. Internet Engineering Task Force.
https://datatracker.ietf .org/doc/html/draft-irtf-pearg-censorship-04 Work in
Progress.

[33] Muhammad Ikram, Hassan Jameel Asghar, Mohamed Ali Kaafar, Anirban Ma-
hanti, and Balachandar Krishnamurthy. 2017. Towards seamless tracking-free
web: Improved detection of trackers via one-class learning. Proceedings on Privacy
Enhancing Technologies 2017, 1 (2017), 79–99.

[34] Internet Archive. 2020. Wayback Machine. Retrieved October 16, 2020 from
http://web.archive.org/

[35] Internet Corporation for Assigned Names and Numbers. 2021. Temporary Speci-
fication for gTLD Registration Data - ICANN. Retrieved February 3, 2021 from
https://www.icann.org/resources/pages/gtld-registration-data-specs-en/

[36] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The Ad Wars: Retro-
spective Measurement and Analysis of Anti-Adblock Filter Lists. In Proceed-
ings of the 2017 Internet Measurement Conference (London, United Kingdom)
(IMC ’17). Association for Computing Machinery, New York, NY, USA, 171–183.
https://doi.org/10.1145/3131365.3131387

[37] Umar Iqbal, Zubair Shafiq, Peter Snyder, Shitong Zhu, Zhiyun Qian, and Benjamin
Livshits. 2018. Adgraph: A machine learning approach to automatic and effective
adblocking. arXiv preprint arXiv:1805.09155 41 (2018).

[38] Umar Iqbal, Peter Snyder, Shitong Zhu, Benjamin Livshits, Zhiyun Qian, and
Zubair Shafiq. 2020. Adgraph: A graph-based approach to ad and tracker blocking.
In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 763–776.

[39] John Wilander. 2020. CNAME Cloaking and Bounce Tracking Defense. Retrieved
July 4, 2020 from https://webkit.org/blog/11338/cname-cloaking-and-bounce-
tracking-defense/

[40] Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation (1972).

[41] Andrew J. Kaizer and Minaxi Gupta. 2016. Towards Automatic Identification of
JavaScript-Oriented Machine-Based Tracking. In Proceedings of the 2016 ACM on
InternationalWorkshop on Security And Privacy Analytics (NewOrleans, Louisiana,
USA) (IWSPA ’16). Association for Computing Machinery, New York, NY, USA,
33–40. https://doi.org/10.1145/2875475.2875479

[42] Amir Hossein Kargaran, Mohammad Sadegh Akhondzadeh, Mohammad Reza
Heidarpour, Mohammad Hossein Manshaei, Kave Salamatian, and Masoud Nejad
Sattary. 2020. On Detecting Hidden Third-Party Web Trackers with a Wide
Dependency Chain Graph: A Representation Learning Approach. arXiv preprint
arXiv:2004.14826 (2020).

[43] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS 2019). https:
//doi.org/10.14722/ndss.2019.23386

[44] Arunesh Mathur, Jessica Vitak, Arvind Narayanan, and Marshini Chetty. 2018.
Characterizing the Use of Browser-Based Blocking Extensions to Prevent On-
line Tracking. In Proceedings of the Fourteenth USENIX Conference on Usable
Privacy and Security (Baltimore, MD, USA) (SOUPS ’18). USENIX Association,
USA, 103–116.

[45] Mozilla and individual contributors. 2020. dns - Mozilla | MDN. Retrieved
October 4, 2020 from https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/API/dns

[46] Mozilla Foundation. 2020. Public Suffix List. Retrieved October 20, 2020 from
https://publicsuffix.org/

[47] NetApplications. 2020. Browser market share. Retrieved October 16, 2020 from
https://netmarketshare.com/

[48] Paradot. 2021. Add a Tracker Domain. Retrieved September 22, 2021 from
https://help.salesforce.com/articleView?id=sf.pardot_admin_add_tracker_dom
ain.htm&type=5

[49] Peter Lowe. 2020. Blocking with ad server and tracking server hostnames. Retrieved
October 16, 2020 from https://pgl.yoyo.org/adservers/index.php

[50] Plausible. 2021. Serve the script from your domain as a first-party connection |
Plausible docs. Retrieved September 22, 2021 from https://plausible.io/docs/cust
om-domain

https://forums.lanik.us/rules##revolvingads
https://forums.lanik.us/rules##revolvingads
https://esprima.org/
https://easylist.to/2015/08/19/issues-with-yavli-advertising.html
https://easylist.to/2015/08/19/issues-with-yavli-advertising.html
https://www.for-it.co.jp/pressroom/pressrelease/20170414/
https://issues.adblockplus.org/ticket/5323/
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://help.getadblock.com/support/solutions/articles/6000066909-introduction-to-filter-lists
https://help.getadblock.com/support/solutions/articles/6000066909-introduction-to-filter-lists
https://github.com/AdguardTeam/cname-trackers
https://github.com/AdguardTeam/AdguardFilters
https://github.com/uBlockOrigin/uBlock-issues/issues/780
https://doi.org/10.1145/3355369.3355588
https://doi.org/10.1145/3278532.3278573
https://doi.org/10.1145/2976749.2978301
https://doi.org/10.1145/2976749.2978301
https://doi.org/10.1109/SP40001.2021.00007
https://usefathom.com/blog/bypass-adblockers
https://doi.org/10.1109/GLOBECOM42002.2020.9322514
https://doi.org/10.1109/GLOBECOM42002.2020.9322514
https://doi.org/10.1109/TNSM.2021.3072874
https://doi.org/10.1109/TNSM.2021.3072874
https://www.usenix.org/conference/atc20/presentation/din
https://www.usenix.org/conference/atc20/presentation/din
https://github.com/duckduckgo/tracker-radar/blob/main/docs/CATEGORIES.md
https://github.com/duckduckgo/tracker-radar/blob/main/docs/CATEGORIES.md
https://github.com/duckduckgo/tracker-radar
https://easylist.to/pages/policy.html
https://github.com/easylist/easylist
https://github.com/easylist/easylist#support
https://easylist.to/2011/08/31/what-is-acceptable-first-party-tracking.html
https://easylist.to/2011/08/31/what-is-acceptable-first-party-tracking.html
https://easylist.to/
https://owasp.org/www-pdf-archive/Anti-RansomwareGuidev1-7.pdf
https://owasp.org/www-pdf-archive/Anti-RansomwareGuidev1-7.pdf
https://developers.google.com/speed/public-dns
https://datatracker.ietf.org/doc/html/draft-irtf-pearg-censorship-04
http://web.archive.org/
https://www.icann.org/resources/pages/gtld-registration-data-specs-en/
https://doi.org/10.1145/3131365.3131387
https://webkit.org/blog/11338/cname-cloaking-and-bounce-tracking-defense/
https://webkit.org/blog/11338/cname-cloaking-and-bounce-tracking-defense/
https://doi.org/10.1145/2875475.2875479
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/dns
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/dns
https://publicsuffix.org/
https://netmarketshare.com/
https://help.salesforce.com/articleView?id=sf.pardot_admin_add_tracker_domain.htm&type=5
https://help.salesforce.com/articleView?id=sf.pardot_admin_add_tracker_domain.htm&type=5
https://pgl.yoyo.org/adservers/index.php
https://plausible.io/docs/custom-domain
https://plausible.io/docs/custom-domain

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lin, Chou, et al.

[51] Romain Cointepas, NextDNS Inc. 2020. CNAME Cloaking, the dangerous disguise
of third-party trackers | by Romain Cointepas | NextDNS | Medium. Retrieved
October 16, 2020 from https://medium.com/nextdns/cname-cloaking-the-
dangerous-disguise-of-third-party-trackers-195205dc522a

[52] Nikita Savchenko. [n.d.]. GitHub - dataunlocker/save-analytics-from-content-
blockers: A proxy back end for Google Tag Manager & Google Analytics. Retrieved
September 20, 2020 from https://github.com/dataunlocker/save-analytics-from-
content-blockers

[53] Sectigo Limited. 2020. crt.sh | Certificate Search. Retrieved October 16, 2020 from
https://crt.sh/

[54] Segment.io, Inc. 2020. Set up a custom domain proxy for Analytics.js -_ Segment
Documentation. Retrieved January 29, 2021 from https://segment.com/docs/con
nections/sources/catalog/libraries/website/javascript/custom-proxy/

[55] Alexander Sjösten, Peter Snyder, Antonio Pastor, Panagiotis Papadopoulos, and
Benjamin Livshits. 2020. Filter list generation for underserved regions. In Pro-
ceedings of The Web Conference 2020. 1682–1692.

[56] Peter Snyder, Antoine Vastel, and Ben Livshits. 2020. Who Filters the Filters: Un-
derstanding the Growth, Usefulness and Efficiency of Crowdsourced Ad Blocking.
In Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference
on Measurement and Modeling of Computer Systems (Boston, MA, USA) (SIGMET-
RICS ’20). Association for Computing Machinery, New York, NY, USA, 75–76.
https://doi.org/10.1145/3393691.3394228

[57] Florian Tramèr, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan Boneh.
2019. AdVersarial: Perceptual Ad Blocking Meets Adversarial Machine Learning.
(2019), 2005–2021. https://doi.org/10.1145/3319535.3354222

[58] Phani Vadrevu and Roberto Perdisci. 2019. What You See is NOT What You Get:
Discovering and Tracking Social Engineering Attack Campaigns. In Proceedings
of the Internet Measurement Conference (Amsterdam, Netherlands) (IMC ’19).
Association for Computing Machinery, New York, NY, USA, 308–321. https:
//doi.org/10.1145/3355369.3355600

[59] Weihang Wang, Yunhui Zheng, Xinyu Xing, Yonghwi Kwon, Xiangyu Zhang,
and Patrick Eugster. 2016. WebRanz: Web Page Randomization for Better Ad-
vertisement Delivery and Web-Bot Prevention. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Seattle, WA, USA) (FSE 2016). Association for Computing Machinery, New York,
NY, USA, 205–216. https://doi.org/10.1145/2950290.2950352

[60] Wikipedia contributors. 2021. Tf–idf — Wikipedia, The Free Encyclopedia. Re-
trieved February 3, 2021 from https://en.wikipedia.org/w/index.php?title=Tf%E2
%80%93idf

[61] wordlists. 2017. GitHub - xajkep/wordlists: Infosec Wordlists. Retrieved January
29, 2021 from https://raw.githubusercontent.com/xajkep/wordlists/master/disc
overy/directory_only_one.small.txt

[62] George Kingsley Zipf. 2016. Human behavior and the principle of least effort: An
introduction to human ecology. Ravenio Books.

A Limitations of our methodology
A.1 CDN and web-hosting services. Our methods for identifying
same-owner domains assume that the entity controlling the hosting
machine, the web content, or the TLS private key is the owner.
However, this assumption may be false if the domain is hosted on
a CDN. We observed that some CDN providers allocated the same
IP address to multiple customers, or created so-called cruise-liner
certificates [14]. Our manual inspection excluded false positives
involving popular CDNs, but we might have missed cases hosted
on CDN services that we did not recognize. Also, we observed
that in some cases, the domain hosted on CDNs might be resolved
to different data centers or different IPs of a data center, causing
false negatives. However, on the other hand, linking all known IPs
belonging to the same CDNs will create many false positives, and
thus we did not take this approach.

A.2 URL path similarity. Our approach to collecting URL paths
limited our findings to those captured by Wayback Machine. It
therefore might be possible to improve the similarity measurement
by actively traversing and collecting URL paths on websites directly.
However, as well as imposing significant overheads on the websites
in question, this would imply the loss of any historical perspective.
Additionally, our URL path-similarity metric contains a threshold
parameter affecting the tradeoff between false positives and false

899 316533

DNS
Certificates

1748 RAD domains

522 142432

DNS
Certificates

1096 RAD domains
(blocked as of February 2021)

377 174101

DNS
Certificates

652 RAD domains
(not yet blocked as of February 2021)

1361 181206

URL paths

Served files

840 139117

URL paths

Served files

521 4289

URL paths

Served files

Figure 4: Venn diagram of RAD domains. Numbers represent
the sizes of the exclusive power sets.

negatives. We conducted a manual inspection of our data to de-
termine a suitable threshold value (as discussed in Appendix D.1).
However, this threshold value may not be suitable for other datasets,
for which additional tuning would be required.

A.3 Functionality similarity via served files. Another method we
used for evaluating functionality similarity is to calculate the Jac-
card Similarity of either the SHA-256 hashes or the ASTs of file
contents from two domains. This method, however, relies on the
assumption that files served on two domains are the same if and
only if two domains have similar functionality. As a result, this
method may fail to link two similar-functionality domains with
different file contents , such as subtle changes in images. In addition,
sophisticated script obfuscation algorithms can easily bypass our
AST-based method. However, we are unaware of any code similar-
ity detection tools to date that can efficiently and accurately handle
script obfuscation. We chose this method because it has proven
effective and favors precision over recall, as shown in [16]. We
reduced such false negatives by considering their path similarity as
well. On the other hand, two unrelated domains may be considered
having similar functionality if they serve some well-known files
such as jQuery scripts. We reduced such false positives by setting
the Jaccard Similarity threshold. Moreover, we relied on the same-
owner requirement and manual validation to further reduce the
chance of having falsely linked domains.

B RAD domain relationship
B.1 Ownership. To ascertain if there was any redundancy between
our two methods of linking domains with the same owner (i.e.,
DNS records and TLS certificates), we grouped RAD domains by
the method that could be used to discover them, and found that no
group fully overlappedwith another. Figure 4’s Venn diagram shows
how many of the RAD domains we identified could be linked via
each of our methods, and clearly illustrates that these two methods
complement each other, and each has its own merits.

B.2 Similar-functionality. To determine if there was any overlap
between our methods of linking domains with similar function-
ality (i.e., URL paths and served files), we grouped RAD domains
according to how they were discovered, and found little overlap. In
Figure 4, the Venn diagram demonstrates how many of the RAD
domains we identified could be linked to each other using our

https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-third-party-trackers-195205dc522a
https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-third-party-trackers-195205dc522a
https://github.com/dataunlocker/save-analytics-from-content-blockers
https://github.com/dataunlocker/save-analytics-from-content-blockers
https://crt.sh/
https://segment.com/docs/connections/sources/catalog/libraries/website/javascript/custom-proxy/
https://segment.com/docs/connections/sources/catalog/libraries/website/javascript/custom-proxy/
https://doi.org/10.1145/3393691.3394228
https://doi.org/10.1145/3319535.3354222
https://doi.org/10.1145/3355369.3355600
https://doi.org/10.1145/3355369.3355600
https://doi.org/10.1145/2950290.2950352
https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf
https://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf
https://raw.githubusercontent.com/xajkep/wordlists/master/discovery/directory_only_one.small.txt
https://raw.githubusercontent.com/xajkep/wordlists/master/discovery/directory_only_one.small.txt

Investigating Advertisers’ Domain-changing Behaviors and Their Impacts on Ad-blocker Filter Lists WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 2: Categories of Purposes from Tracker Radar. Adapted from [22].

Category Description
Ad Motivated Tracking Trackers related to ads, including user targeting, header bidding, demographic collection, etc.
Advertising Trackers related to ads.
Analytics Trackers for analytics, including market analytics, website analytics, etc.
Audience Measurement Trackers for analytics, but focus more on demographics, behavior sets, and specific actions.
Third-Party Analytics Marketing Trackers related to third-party analytics systems for marketing, usually marketing attribution or funnel management.
Embedded Content The domain is used to embed content, such as Youtube, Vimeo, widgets, etc.
Action Pixels Trackers that collect user specific events.
Ad Fraud Trackers to prevent ad fraud.
Social Sharing Buttons (Social - Share) Third-party SDK powered social sharing buttons, such as Facebook’s share buttons.
Session Replay Recording visitors’ behaviors. Often records much more user behaviors than typical analytics libraries.

Table 3: Numbers of RAD domains exhibiting common pat-
terns and statistics on their survival times.

Pattern RAD Survival Times of
Domain Block Domains (days)

All Blocked Mean Median
Moving to first-party subdomains 305 135 436.0 196

Using revolving domains 222 154 95.9 37
Changing subdomains 627 524 419.2 224
Using CDN domains 167 34 249.1 151

Domains having at least one pattern 1,217 790 336.4 152.5
All RAD domains 1,748 1,096 410.5 195.5

two methods; this shows how these two methods complement one
another and have strengths and weaknesses of their own.

We then looked into the similar paths and the set of served
files that link RAD domains. For most URL-path-linked domains,
the length of similar paths was surprisingly short, with only 14.71
characters and 2.71 path segments 5 on average, for we expected
that the paths should be long enough to be unique.We inspected the
short similar paths and found that most of themwere indeed unique
enough to be identified, such as /vast-im.js and /wrapperMe
ssagingWithoutDetection.js. Meanwhile, we also observed
several long URL paths, such as /mn9l17912/ilvpm003y/oln/786
/vqu768kypc01r and /bultykh/ipp24/7/bazinga. This confirms
our assumption that similar paths indicate similar functionalities.

For the served-file-linked domains, we observed that most of
them have small sets of files, with 1.65 files on average. Moreover,
among 387 domains linked via served files, 335 of them served
only one file, including 57 revolving domains. The majority of
those that served small numbers of files and were linkable only
via the served files had randomized or obfuscated file paths. For
example, we encountered an ad domain qakdki.com with the path
/i2dl71/921livp0m30yh8q/867vuq/768kypph1zo.php, and its
RAD domain zesdmn.com with the path /5ka1l7291/vli0mp30y
q8h687uqv/876kypyv.php. Both URLs pointed to the same file
and exchanging the paths between the two domains also worked.
Furthermore, some ad domains seemed to serve the identical files
across all paths. For example, we encountered kont-news.com/m
KJg.js during the crawl, and by manual inspection, the ad server
served the same file for all four-character-long file names, such
as kont-news.com/abcd.js. Our suspicion is that this method
was used to circumvent blocking by the filter lists via URL paths. It
justifies the need for the served-file relationship, since the similar-
path relationship may miss these cases.

5Note that /abc/def.js has three path segments: /, abc/, def.js

22 23 24 25 26 27 28 29 210 211 212 213 214 215

α

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

%
 o

f p
at

hs
 w

ith
 ID

F
<
α

Figure 5: Cumulative distribution function of paths with
Inverse Path Frequency less than 𝛼 domains.

C Prevalence of browser fingerprinting
As we presented in Section 3.3, a high percentage of ad domains
were tracking users. We also analyzed how many RAD domains
served scripts for browser fingerprinting, one of the most privacy-
intrusive techniques to achieve tracking.

We utilized the Tracker Radar dataset [23] again to determine the
likelihood that a domain was fingerprinting users. The likelihood
is categorized from the lowest to the highest as: Certainly Not, Not
Obviously, Possibly, Certainly. “Certainly Not" means the domain
does not use browser APIs, and “Certainly" means the domain uses
browser APIs excessively and almost certainly for tracking purposes.
Similar to Section 3.3, we utilized the RAD relationships to fill in
missing information. If a RAD domain had no likelihood data, we
assigned it the lowest level among all of its related ad domains,
and same applies to the ad domains. In the end, we labeled the
likelihood level of 2,520 ad domains and 395 RAD domains, 290 of
which are inferred from their related ad domains.

Our analysis shows that 253 (64.1%) RAD domains were proba-
bly not doing browser fingerprinting. However, 142 (35.9%) RAD
domains were possibly or certainly serving fingerprinting scripts.
This observation shows that some advertisers use RAD domains
to serve privacy-intrusive scripts. However, we did not see statis-
tical differences in the distribution between ad domains and RAD
domains.

D Parameter selection
D.1 URL similarity. We mentioned in Section 2.1.2 that the simi-
larity of URL paths is an indicator of similar functionalities. In this
section, we describe our parameter selection process for 𝛼 , as it
may affect the precision and recall. To choose the parameter 𝛼 , we
first computed the cumulative distribution of paths as shown in

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Lin, Chou, et al.

Figure 5. As the trend follows Zipf’s law [62], the number of paths
starts to decrease dramatically when 𝛼 ≥ 23. Thus, we next manu-
ally inspected the paths where 23 ≤ 𝛼 ≤ 215. When 𝛼 > 211, and
saw that common WordPress paths wp-includes were included.
When 𝛼 = 211, unwanted paths like uploads/ and scripts/ were
included. We empirically set 𝛼 to 210, though stylesheets/ was
included, it seems to be reliable under 𝛼 = 10. According to our
manual validation, overall, our heuristic yields a reasonable true
positive rate.

Since 𝛼 may affect the precision and recall, ideally, we should
find a 𝛼 which maximizes the F1 score. However, as there is no

ground truth of RAD domains and manually labeling a large set of
data is infeasible, we choose a relatively conservative 𝛼 to strike a
balance. Estimating the F1 score and fine-tuning 𝛼 is left as future
work.

D.2 Served files. We randomly sampled 100 pairs of domains
known to be the RAD domains of each other, and sampled an-
other 200 domains and pair them randomly. The distribution of the
Jaccard similarities of the two populations is extreme, for most are
either close to zero or one. We empirically chose the threshold at
0.7.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Domain-changing events
	2.2 Data collection
	2.3 Analysis methods

	3 Results
	3.1 Common domain-changing patterns
	3.2 Impact of RAD domains
	3.3 Purpose of trackers on RAD domains

	4 Discussion
	4.1 Possible reasons of using RAD domains
	4.2 Recommendations

	5 Related Work
	6 Conclusion
	References
	A Limitations of our methodology
	B RAD domain relationship
	C Prevalence of browser fingerprinting
	D Parameter selection

