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Abstract. Industrial control systems (ICS) provide critical functions to
society and are enticing attack targets. Machine learning (ML) models—
in particular, reconstruction-based ML models—are commonly used to
identify attacks during ICS operation. However, the variety of ML model
architectures, datasets, metrics, and techniques used in prior work makes
broad comparisons and identifying optimal solutions difficult. To as-
sist ICS security practitioners in choosing and configuring the most
effective reconstruction-based anomaly detector for their ICS environ-
ment, this paper: (1) comprehensively evaluates previously proposed
reconstruction-based ICS anomaly-detection approaches, and (2) shows
that commonly used metrics for evaluating ML algorithms, like the point-
F1 score, are inadequate for evaluating anomaly detection systems for
practical use. Among our findings is that the performance of anomaly-
detection systems is not closely tied to the choice of ML model architec-
ture or hyperparameters, and that the models proposed in prior work are
often larger than necessary. We also show that evaluating ICS anomaly
detection over temporal ranges, e.g., with the range-F1 metric, better
describes ICS anomaly-detection performance than the commonly used
point-F1 metric. These so-called range-based metrics measure objectives
more specific to ICS environments, such as reducing false alarms or reduc-
ing detection latency. We further show that using range-based metrics
to evaluate candidate anomaly detectors leads to different conclusions
about what anomaly-detection strategies are optimal.

1 Introduction

Industrial control systems (ICS) govern vital infrastructures such as power grids,
water treatment plants, and transportation networks. These systems collect and
monitor real-time information from an industrial process and use a programmed
model to govern its operation [11]. As ICS become further interconnected, par-
ticularly with the public Internet, the attack risk increases. An adversary could
either directly or over the network interfere with an ICS (e.g., by injecting false
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data or commands [36]) and cause the ICS to modify the physical process, po-
tentially causing damage or risking human life [31]. Given the potential harms
of attacks on ICS, detecting and preventing them in a timely manner is critical.

In response, researchers have proposed using machine learning (ML) to de-
tect attacks; among ML-based techniques, reconstruction-based ML models have
been shown to be particularly promising [18,32,37]. Reconstruction-based ML in-
volves training an ML model to represent the expected, benign behavior of an
ICS. After a model is trained, it is used to assess the observed real-time behav-
ior of an ICS; any behaviors that are not consistent with the trained model are
called out to operators as potentially dangerous anomalies.

To use these anomaly-detection techniques, ICS security practitioners must:
(1) select the ML model architecture (e.g., convolutional neural networks), (2)
select hyperparameters for the model (e.g., the size and number of hidden layers
in the model), (3) collect a sufficient volume of benign ICS operational data, (4)
train an ML model to reconstruct system states, and (5) tune detection hyper-
parameters (the threshold for an anomaly to be declared) to turn system-state
reconstructions into attack predictions in a live setting. Despite the variety of
work in reconstruction-based ICS anomaly detection, there is no consensus on
what solutions are best. Proposed approaches use different ML model archi-
tectures (e.g., autoencoders [7,32], CNNs [18,19], LSTMs [8,37]), use different
datasets [4,10,33], and employ different data pre-processing and training tech-
niques. Thus, when one approach is reported to outperform another, it is not
clear what characteristics are responsible for the improved performance.

In this work, we perform a comprehensive, empirical evaluation of techniques
across the most common datasets used in reconstruction-based ICS anomaly de-
tection. We find that most ML model architectures, regardless of the choice of
model hyperparameters, perform about equally well. Additionally and to our
surprise, we find that many proposed models are larger (i.e., contain more pa-
rameters) than necessary and that far smaller models provide similar detection
performance. Furthermore, we identify training and data pre-processing tech-
niques that strongly affect the results of reconstruction-based ICS anomaly de-
tection, but are not used consistently across prior work.

Another important consideration when designing ICS anomaly-detection sys-
tems is the metric used to tune and evaluate detection strategies. Typically, prior
work equally penalizes false alarms and missed attacks on a per-timestep basis
by evaluating with the point-F1 score [30]. However, as we describe in Sec. 5.1,
since ICS attacks take place over a sequence of timesteps [4,10], and because
timely detection of attacks is important [14], ICS anomaly detection is better
evaluated over temporal ranges, rather than on each timestep independently.
Unlike the point-F1, which scores on individual timesteps, range-based metrics
score detection performance on temporal ranges and can express tradeoffs be-
tween increased detection rates, reduced false-alarm rates, and lowered detection
latency [34].

In this paper, we demonstrate the impact of using range-based metrics for
ICS anomaly detection, building on research from other anomaly-detection do-



mains [14,21,34]. We show empirically that using these metrics to tune and
evaluate ICS anomaly-detection models gives a better understanding of what
models are optimal. Furthermore, we propose the use of specific ICS objectives
that describe anomaly-detection performance in terms relevant to ICS opera-
tions. Given the wide variety of potential ICS anomaly-detection environments,
we opt for general objectives: examples include a low false-alarm rate, a high
attack-detection rate, and low-latency attack detection.

In summary, our work answers two research questions. RQ1: across proposed
techniques for reconstruction-based ICS anomaly detection, what model archi-
tectures, model hyperparameters, and pre-processing techniques are optimal?
RQ2: can using range-based metrics lead to a different understanding of what
models are most effective for reconstruction-based ICS anomaly detection? In
answering these questions, we make the following contributions:

– We perform a comprehensive comparison across the ML model architectures
and datasets used in reconstruction-based ICS anomaly detection and find
that the choice of model hyperparameters has little effect on detection per-
formance; prior work often proposes model hyperparameters that are far
larger than necessary.

– We implement and make publicly available1 a comprehensive test framework
that allows tuning of models and comparing the impact of factors such as
datasets, metrics, and hyperparameters. We instantiate the framework with
recently proposed reconstruction-based ML model architectures.

– We use range-based metrics to tune and evaluate reconstruction-based ICS
anomaly detectors. We provide examples of range-based metrics that support
various ICS objectives and demonstrate that models tuned with these range-
based metrics outperform their point-F1-tuned counterparts on the desired
ICS objectives.

– We find that using range-based metrics for optimizing anomaly-detection
systems provides a different understanding of what models are best compared
to using the point-F1 metric.

2 Background and Related Work

In this section, we provide background on ICS and attacks and defenses for them
(Sec. 2.1). We also introduce the various models (Sec. 2.2), metrics (Sec. 2.3),
and datasets (Sec. 2.4) used in prior work. We lastly categorize prior work in
reconstruction-based ICS anomaly detection along these dimensions (Sec. 2.5).

2.1 Industrial Control Systems: Threats and Defenses

An ICS governs the operation of a physical, safety-critical process. Fig. 1 shows
the structure and components of an ICS, and how they are separated in the hi-
erarchical Purdue model of ICS [16]. The model divides an ICS into levels from

1 https://github.com/pwwl/ics-anomaly-detection
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Fig. 1. An overview of a typical ICS/SCADA hierarchical layered architecture with
examples of compromised endpoints and communication channels.

the physical process (Level 0, the strictest level of access) to higher-level appli-
cations (Level 3, less strict). Sensors and actuators (Level 0) allow feedback and
input with the physical process. Programmable logic controllers (PLCs, Level
1) directly interface with sensors and actuators to automate the ICS process.
Supervisory control and data acquisition (SCADA, Level 2) governs multiple
PLCs by collecting data and providing an interface to operators for control and
analysis of the physical process [31].

ICS networks were previously not monitored for security purposes. Instead,
ICS were typically isolated from external threats by a firewall between Levels
2 and 3, preventing compromised, higher-level devices from manipulating the
physical process [31]. With the exposure of ICS environments to the Internet
and third parties [11], the potential of compromise has increased significantly:
when an attacker compromises parts of an ICS in Levels 0 through 2, they can
manipulate the data being sent over the network to cause process degradation or
even failure. This strategy was used in the BlackEnergy (2015) and Industroyer
(2016) attacks on the Ukrainian power grid [20], which caused over 200,000
people to lose electric power for several hours; and in the Triton malware attack
(2017) [6], which caused a chemical processing plant to shut down. For this
reason, it is critical to monitor ICS networks for signs of potential compromise
and misuse.

In this work, we focus on techniques that train deep-learning ML models
to perform system reconstructions and identify as potentially anomalous any
system states for which the reconstruction error is high [18,32,37]. We focus on
deep-learning models, as they have been shown to outperform other classical
methods in anomaly detection [25]. For these techniques, three ML model ar-
chitectures have risen to prominence: autoencoders (AEs), convolutional neural
networks (CNNs), and long-short-term-memory (LSTM) networks. We overview
these model architectures in Sec. 2.2.



Table 1. The ICS datasets most commonly used for training and evaluating
reconstruction-based anomaly-detection models.

Name
# of Points in

Benign Dataset
# of Points in

Attack Dataset
# of

Features
# of

Attacks

BATADAL 48,106 10,081 (16% attack) 43 7
WADI 1,048,571 172,801 (6% attack) 103 15
SWaT 496,800 449,919 (12% attack) 51 36

2.2 ML Model Architectures for ICS Anomaly Detection

In this section, we provide an overview of ML model architectures commonly
used in ICS anomaly-detection systems. Autoencoders (AEs) are composed of a
sequence of stacked, fully connected layers that compress inputs into a smaller
latent representation [12]; an AE is trained to reconstruct an input system state.
Convolutional neural networks (CNNs) [5] and long-short-term-memory units
(LSTMs) [13] instead use time-based information to predict system states: based
on a fixed-time-length input, CNNs and LSTMs predict the next expected system
state. CNNs use 1-D convolutional kernels to process time, whereas LSTMs use a
custom unit that maintains separate weighted connections that pass information
far along the time axis (long-term memory) and to immediate recent states
(short-term memory).

2.3 Traditional Anomaly Detection Metrics

Anomalies are rare and accuracy scores may misrepresent the anomaly detection
performance. Much of prior work uses the point-F1 score—the harmonic mean
of the precision and recall—to characterize anomaly-detection performance:

point-F1 =
2 ∗ prec ∗ rec

prec + rec
prec =

TP

TP + FP
rec =

TP

TP + FN

TP (true positives) is the number of timesteps during which an attack was
correctly detected, FP (false positives) is the number of timesteps where an
attack was falsely reported, and FN (false negatives) is the number of timesteps
where an attack is undetected. In Sec. 5, we show the shortcomings of using the
point-F1 score to tune and evaluate anomaly detectors and instead propose the
use of range-based metrics.

2.4 Publicly Available ICS Datasets

In lieu of direct access to a real ICS, a variety of ICS datasets have been made
publicly available for research. Each dataset is typically partitioned into two
parts: a benign dataset and attack dataset. The benign dataset contains a se-
quence of system states during a benign execution of ICS operations. The attack
dataset contains a sequence of system states during an execution that models



an attacker who gains access to the ICS and manipulates a subset of sensor and
actuator values in a false-data-injection attack [10]. These datasets cover a va-
riety of domains, including water distribution [4,33], water treatment [10], gas
pipelines [24], and power generation [3,28].

In our analysis, we focus on the most commonly used datasets: BATADAL [33]
(water distribution), SWaT [10] (water treatment), and WADI [4] (water distri-
bution). Table 1 shows the details of each dataset. Since the originally released
SWaT (2015) and WADI (2017) datasets, additional data from the same system
has been released. However, we opt to use the original versions of both datasets
to match what is used in the majority of prior work.

2.5 Prior Work in ICS Anomaly Detection

In this section, we overview the prior work in ICS anomaly detection, across
the most commonly used ICS datasets identified in Sec. 2.4. Table 2 shows, for
each prior work, the details of the ML model architecture, suggested optimal
model hyperparameters, and metrics used for tuning and evaluation.

We identify two gaps across the state of the art. First, although some prior
work compares ML model architectures [1,19,37], none covers the full selection
of model architectures, datasets, and pre-processing techniques, making it is
unclear what approaches are optimal across all settings.

Second, models are commonly tuned with the point-F1 (or not tuned at all),
which ignores the temporal aspect of time-series detection, and does not bal-
ance the trade-offs between precision, recall, and latency in anomaly detection.
Across this prior work, only one tunes with a range-based metric [18]; although
some prior work considers ranges in evaluation, most only remark on the num-
ber of attacks detected or missed and only four evaluate with a range-based
metric [8,18,23,27]. In Sec. 5, we show that tuning with range-based metrics re-
sults in different selections of optimal hyperparameters and different conclusions
about which models perform better than others.

3 Reconstruction-based ICS Anomaly Detection Process

An anomaly detector reconstructs ICS system states to determine if an anomaly
is occurring. Fig. 2a outlines this process.2 First, system states ~X over the pre-
vious h timesteps are collected from observed network traffic, up to the current
timestep t. Second, the trained ML model is provided the system state sequence
( ~Xt−h, ~Xt−h+1, . . . , ~Xt) and predicts the next system state ~X ′t+1. Third, the
predicted and observed states are compared, and the reconstruction error ~et is

computed through the mean-squared-error (MSE): ~et = || ~X ′t− ~Xt||2. Lastly, the
prediction y′t is calculated over a sequence of reconstruction errors (~e0, ~e1, . . . , ~et):

2 Autoencoders are a special case since they do not consider a sequence of states
(h = 0), and instead reconstruct the current state ~X ′

t.



Table 2. ML model architectures, datasets, and metrics from prior ICS anomaly-
detection work. Range-based metrics are shown in bold. (CM = confusion matrix;
TPR/FPR = true/false positive rate; TNR = true negative rate; Coverage % = per-
centage of detection overlap; Norm-TPR = normalized true positive rate.)

Model Details
Datasets Tuning

Metric
Evaluation
Metric(s)

Source
B S W

AE: 3-layers FPR
Precision, Recall

Point-F1
[19]

AE: 4-layers None
Precision, Recall

Point-F1, Numenta
[27]

AE: 5-layers Point-F1
Precision, Recall

Point-F1
[32]

AE: 5-layers None
Precision, Recall

Accuracy, Point-F1
[7]

CNN: 8-layers, 32 filters Range-F1 Range-F1 [18]

CNN: 8-layers, 32 filters FPR
Precision, Recall

Point-F1
[19]

LSTM: 2-layers, 256 units None
TPR, Norm-TPR

FPR, Atk TP
[8]

LSTM: 3-layers, 100 units Point-F1
Precision, Recall

Point-F1
[15]

LSTM: 3-layers, 100 units None Atk TP, Atk FP [9]

LSTM: 4-layers, 64 units None Atk TP, Atk FP [17]

LSTM: 4-layers, 512 units None CM, Point-F1, Atk TP [26]

LSTM: 4-layers, 512 units Point-F1 Point-F1 [37]

1-class SVM Point-F1 Point-F1 [15]

DNN: 3-layer None CM, TPR, TNR [2]

Custom wide
and deep CNN

None
Precision, Recall

Point-F1, Atk TP
[1]

GAN Point-F1
Precision, Recall

Point-F1
[22]

Bayesian Network None
Atk FP, Atk TP

FP length, Coverage %
[23]

y′t = 1 when the reconstruction error exceeds a threshold τ for w consecutive

timesteps: y′t =
t+w∏
i=t

I(~ei > τ). The threshold τ is determined using the distribu-

tion of benign-validation errors. For example, τ can be set to the distribution’s
99.5-th percentile value. Both τ and the window length w are detection hyperpa-
rameters: they are independent of the underlying trained ML model and convert
the system state reconstruction to attack predictions. We show that detection
hyperparameter tuning is closely affected by the choice of metric, and optimal
models often change when different metrics are used.

End-to-end, to optimize reconstruction-based anomaly detection, (1) we train
a ML model to minimize MSE and (2) we tune its detection hyperparameters
to maximize its performance according to a chosen metric. Fig. 2b shows the
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Fig. 2. The anomaly-detection process is shown on the left: a sequence of system states
is reconstructed by an ML model, and high reconstruction errors are used to identify
anomalies. The optimization pipeline for the anomaly-detection process is shown on
the right, with each optimization step and its relevant datasets.

steps and datasets used in optimization. Most prior work focuses on selecting
the best model architecture and best model hyperparameters (step 1), but in
this work we show that optimization across both steps plays a substantial role
in the effectiveness of reconstruction-based ICS anomaly detection.

We independently evaluate both steps. In Sec. 4, we keep the choice of tuning
metric (point-F1) constant and compare the performance across various ML
model architectures and hyperparameters from prior work, In Sec. 5, we keep
the underlying trained model constant and compare how the choice of tuning
metric affects detection hyperparameter tuning. Lastly, in Sec. 5.4, we show how
the choice of tuning metric affects both the optimal model hyperparameters and
detection hyperparameters in an end-to-end optimization.

4 Comparing ML Model Architectures and Datasets for
ICS Anomaly Detection

In this section, we report on a comprehensive comparison of model architec-
tures and model hyperparameter values, evaluating across techniques proposed
in prior work. For each model hyperparameter setting, we optimize the anomaly-
detection system through the steps shown in Fig. 2b. We explain our experimen-
tal setup in Sec. 4.1 and present our findings in Sec. 4.2.



4.1 Experiment Setup

Data Pre-processing. Before training and evaluating each model, each feature
is normalized; the scaling transformation is saved and applied to the attack
dataset before evaluating the model. 70% of the training dataset is randomly
chosen for training the ML model. The other 30%, referred to as the benign
validation dataset, is used to give an unbiased score during training; we use the
benign-validation loss as an indicator for early stopping to prevent overfitting.

In our experiments, we identify techniques that impact the quality and re-
producibility of results but were used inconsistently in prior work. Techniques
such as: data pre-processing through feature selection, benign data shuffling, at-
tack cleaning, and early stopping are necessary when comparing across solutions,
as they improve the quality and consistency of anomaly-detection results. We
present descriptions of these techniques and their impacts in Appendix A.

Model Hyperparameter Tuning. We perform a hyperparameter search for 3
ML model architectures: autoencoders, CNNs, and LSTMs. For autoencoders, we
vary the number of hidden layers in the encoder/decoder from 1 to 5 (by 1) and
the compression factor from 1.5 to 4.0 (by 0.5). For CNNs, we vary the number
of layers from 1 to 5 (by 1), and vary the number of units per layer from 4 to 256
(by a factor of 2). The kernel size is fixed at 3 and we use history lengths of 50,
100, or 200 timesteps. For LSTMs, we vary the number of layers from 1 to 4 (by
1), the number of units per layer from 4 to 128 (by a factor of 2), and use history
lengths of 50 or 100 timesteps. Each model was implemented in Tensorflow 1.14.0
using the tf.keras API and trained with the Adam optimizer using its default
parameters: {lr = 0.001, β1 = 0.9, β2 = 0.999}. A batch size of 512 samples was
used during training; each model was trained for up to 100 epochs. We apply
early stopping while training through the tf.keras.callbacks.EarlyStopping
callback class, with patience=3 (which terminates training if validation loss does
not improve over 3 consecutive epochs). Across our trained models, we found that
early stopping was always applied within the first 20 epochs: a finding that is
consistent with prior work [15].

Detection Hyperparameter Tuning. After the model is trained, we deter-
mine the optimal detection hyperparameters using 30% of the attack dataset,
referred to as the attack validation dataset. To simulate a setting with unseen
attacks, when dividing the attack dataset into validation and testing portions,
we divide the dataset into two continuous sequences.3 To find optimal detection
hyperparameter values, we perform a parameter search, based on a chosen tun-
ing metric, over the following ranges: τ -percentile ∈ [0.95, 0.99995], w ∈ [1, 100].
We report the final performance on the remaining 70% of the attack dataset for
a chosen evaluation metric. We use the point-F1 score as both the tuning metric
and evaluation metric, which Table 2 shows is commonly used in prior work.

3 We use the first 30% of the SWaT and WADI test datasets as their corresponding
attack validation datasets. We use the final 30% of the BATADAL test dataset as its
corresponding attack validation dataset, since the first 30% of the BATADAL test
dataset does not contain any attacks.
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Fig. 3. The final point-F1 scores of each model when trained and tuned on three
experimental ICS datasets. For each dataset, a model hyperparameter setting from
prior work is included for comparison. When using the point-F1, the performance of
AEs vary greatly, and most LSTM and CNN configurations perform similary.

4.2 Optimization Results

Fig. 3 shows the final point-F1 scores for each model hyperparameter setting, for
each ML model architecture and dataset. We perform a full optimization three
times over different random seeds for CNNs and LSTMs. For autoencoders, we
observed a higher variance in the resulting point-F1 scores and thus repeat this
process five times. Furthermore, we train three selected models from prior work
with the same methodology. We include a 5-layer autoencoder [32], an 8-layer,
32-unit CNN with a history of 200 [18], and a 2-layer, 256-unit LSTM with a
history of 50 [8]. Fig. 3 includes the point-F1 scores for these three models.

We find that larger models (CNNs and LSTMs) performed poorly on the
BATADAL dataset. We attribute the poor performance to the relatively small
size of the BATADAL dataset (only ∼48,000 datapoints, compared to ∼500,000
in SWaT and ∼1,000,000 in WADI); in prior work, only one study trains a
CNN or LSTM on BATADAL [19]. In Sec. 5.4, we find that using a range-
based evaluation metric shows CNNs and LSTMs for BATADAL in a different
light, providing another example where the point-F1 may be misleading. For
the SWaT and WADI datasets, we find that almost all model hyperparameter
settings provide similarly strong performance: a 1-layer, 4-unit CNN or LSTM
produces a similar point-F1 score to CNNs and LSTMs with more layers and
units, including the optimal models from prior work [8,18,32].

Finding 1a: Substantially smaller models can achieve similar point-F1 scores
as the suggested model sizes from prior work.

Prior work noted that the performance of trained models differed between
runs [18], even under the same model hyperparameter settings. We found that
when early stopping and benign data shuffling are used, the results for CNNs
and LSTMs are more consistent: across random seeds, the final point-F1 scores
always differ by less than 0.05 (and less than 0.01 for a vast majority of cases).
More experimental results on the benefits of early stopping and dataset shuffling
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Fig. 4. Two detection examples: in each case, the x-axis represents time and the y-axis
shows attacks (top, red) and attack predictions (bottom, grey). In the example on the
left (case 1), all attacks are detected with no false positives, while in the example on
the right (case 2) only one attack is detected, with five false positives; yet, the point-F1
scores are the same.

are provided in Appendix A. There is a higher variance across autoencoder
hyperparameters, with some models achieving far higher scores than others.
This is likely because the autoencoder is trained to reconstruct independent
timesteps and does not consider temporal effects, rendering the performance of
autoencoders unstable.

In conclusion, although prior work performs model hyperparameter searches
and claims to find the optimal models for ICS anomaly detection, our experi-
ments show that equivalent results can be achieved over a range of ML model
architectures and hyperparameters when using the point-F1 score. In Sec. 5.3,
we show that tuning models with range-based metrics can produce outcomes
that more meaningfully address ICS anomaly-detection objectives.

Finding 1b: Although prior work focuses on optimizing the choice of ML model
architecture and hyperparameters, equivalent performance can be achieved by
several ML model architectures and over a wide range of model hyperparameters.

5 Tuning and Evaluating with Range-based Metrics

In this section, we first describe, in Sec. 5.1, the shortcomings of point-F1, which
is commonly used by prior work in ICS anomaly detection. We introduce range-
based metrics in Sec. 5.2. In Sec. 5.3, we show how range-based metrics affect
detection hyperparameter tuning and in Sec. 5.4 we show how they affect what
ML model architectures and hyperparameters are optimal.

5.1 Issues with the Point-F1 Score

ICS detection performance is poorly captured by the point-F1 for several reasons.
(1) The point-F1 score weighs false positives and false negatives equally, whereas
the cost of each may not be equal for a given ICS. (2) The point-F1 score places
more importance on longer attacks [14]. A high point-F1 score can be achieved
even if several short attacks are undetected; these attacks may be equally or even
more harmful than attacks with a longer duration. (3) When an attack occurs



over a long period of time, it may not be important to detect every timestep as
anomalous; once a prediction is made, corrective actions will be taken, and the
existence of any correct prediction within the attack may be sufficient. (4) The
point-F1 score does not consider when in the attack the detection occurs [21].
In reality, if an attack is only detected as it ends, harm may already have been
caused to the ICS, rendering the detection unhelpful.

We illustrate some of these deficiencies of point-F1 using two examples of
detection performance in Fig. 4. The true attack sequence is shown in red: six
attacks of varying length are executed in sequence. In case 1 (left), the first five
attacks are all detected perfectly, and approximately half of the last attack is
detected. In case 2 (right), the first five attacks are completely missed, 5 false
alarms occur, and the last attack is detected perfectly. When using the point-
F1 score, the two examples misleadingly result in equal detection success: the
point-F1 for both is 0.75. For many practical applications, however, case 1 shows
a detection system that works well, and case 2 a detection system that works
poorly. To address the shortcomings of point-F1, prior work proposes metrics
better suited to time-series detection tasks [14,21,34]. We define these metrics
in Sec. 5.2 and evaluate their implications in Sec. 5.3–5.4.

Observation 2a: The point-F1 score gives a misleading sense of performance
for many time-series-based detection tasks.

5.2 Range-based Performance Metrics

In this section, we provide examples of range-based metrics that could be used for
tuning and evaluating anomaly-detection performance. In Sec. 5.3–5.4, we show
the effect of these metrics on our understanding of what models are best. We
describe two types of range-based metrics: (1) range-Fβ metrics, which we define
based on a prior framework for range-based metrics [34] and (2) the Numenta
anomaly score [21], a metric from prior work.

Defining the Range-based Setting. Given sequences of binary labels (yt ∈
{0, 1}) and predicted labels (y′t ∈ {0, 1}), we convert these sequences to ranges.
Let (y0, y1, . . . , yt) be represented as R = {R0, R1, . . . , Rk}, where each range
Ri represents a continuous sequence of positive (yt = 1) labels. We express the
predictions (y′0, y

′
1, . . . , y

′
t) in the same way to produce R′ = {R′0, R′1, . . . , R′m}.

If no predictions or anomalies exist (∀t : yt = 0), then R = ∅.

Range-F1 and Range-Fβ Scores. Prior work has defined a general range-
based metric framework that combines existence rewards (whether any inter-
section exists) and overlap rewards (the size of the intersection) when scoring
a time-series prediction [34]. When demonstrating the impact of range-based
metrics on the understanding of ICS anomaly detection, we assume that any
alarm raised by the anomaly-detection system leads to investigation, so we only
consider existence rewards and leave exploring overlap rewards to future work.
For our existence reward, we count any overlap between a true attack Ri and the



entire predicted range R′ as a true detection. Using this notion, the range-based
recall and precision are calculated as follows:

IsTP(Ri) = I[|Ri ∩R′| ≥ 1] R-rec =

∑
i IsTP(Ri)

|R|

IsFP(R′i) = I[|R ∩R′i| == 0] R-prec =

∑
i IsTP(Ri)∑k

i IsTP(Ri) +
∑m

i IsFP(R′i)

The Fβ score is a generalized version of the F1 score that scores precision
with a relative weight of β. β > 1 indicates that precision is more important,
whereas β < 1 indicates that recall is more important. We define the range-F1
and range-Fβ score in the same fashion as the point-F1:

R-F1 =
2 ∗ R-prec ∗ R-rec

R-prec + R-rec
R-Fβ =

(1 + β2) ∗ R-prec ∗ R-rec

(β2 ∗ R-prec) + R-rec

Numenta Anomaly Score [21]. When using the Numenta anomaly score,
each attack is represented by an inverted sigmoid function, plotted with its
origin at the earliest true prediction. This (1) benefits earlier predictions within
an anomaly and (2) assigns a small positive score to when detection is made
shortly after the anomaly ends. In the original proposed Numenta score, both
the position and width of the sigmoid were fixed; we use recommendations from
follow-up work [29] for tuning. The Numenta score is adjusted by the position
of the sigmoid function: an earlier placement in the anomaly assigns a lower
score to late detection and penalizes false positives that occur shortly after the
anomaly ends. κ controls the width of the sigmoid function: lower values of κ
cause the function to be flatter, making the scoring more lenient towards late
detection and false positives.

Parameterizing Range-based Metrics for ICS Objectives. Each range-
based metric requires parameterization to contextualize their scoring. We de-
scribe the default setting for each range-based metric and provide three addi-
tional example settings for them, each prioritizing a different ICS objective.

By default, the range-F1 score as defined in Sec. 5.2 places equal importance
on reducing false positives and reducing false negatives. If an example use case
requires a high detection rate, we optimize for a higher recall by using the Fβ
score with β = 1/3 (range-Fβ1:3), such that recall is three times more important
than precision. An alternate use case for a highly critical ICS may require that
no false alarms occur. For this use case, we use the Fβ score with β = 3 (range-
Fβ3:1), which weighs precision three times more heavily than recall.

The default configuration of the Numenta anomaly score sets κ = 5 and
positions the sigmoid at the 50% point of each labeled anomaly [21]. We propose
an additional ICS objective that requires early attack detection, as harm may
be caused to the ICS even before the attack is completed. We optimize for early
detection by re-positioning the Numenta sigmoid to the 25% point of an anomaly,
reducing the false positive cost by 50%, and setting κ = 10, producing a stricter
decision boundary. We call this metric NA-early. With NA-early, a detection in



Table 3. For each optimal model proposed by prior work, we use a different tuning
metric to select the optimal detection hyperparameters and show the resulting number
of false alarms, detected attacks, and TP :FP ratio. Using range-F1 always outperforms
its point-F1 counterpart in TP :FP ratio.

Dataset
and Arch.

Tuning
Metric

False
Alarms

Detected
Attacks

TP :FP
Ratio

BATADAL AE Point-F1 11 4/4 0.36
Range-F1 1 4/4 4.00

WADI LSTM Point-F1 143 10/13 0.07
Range-F1 63 7/13 0.11

Point-F1 32 6/18 0.19
Range-F1 4 4/18 1.00

SWaT CNN range-Fβ3:1 0 3/18 ∞
range-Fβ1:3 47 7/18 0.15

NA-early 89
11/18

(7 early)
0.12

the last 75% of an attack is considered to be late and is penalized as a missed
attack, as we assume that the ICS has already been damaged.

5.3 Using Range-based Metrics to Tune Detection Hyperparameters

In contrast to Sec. 4, where we selected optimal model hyperparameters, in this
section we select optimal detection hyperparameters for a fixed ML model. In
doing so, we reveal whether using tuning metrics other than the point-F1 leads
to a different selection of detection hyperparameters and to markedly different
anomaly-detection performance, which may lead to a changed understanding of
which models are best or whether any are adequate for a particular deployment.
For each ML model architecture, we again use the optimal model hyperparam-
eters declared in prior work: a 8-layer, 32-unit CNN trained on SWaT [18], a
5-layer, 2-compression AE trained on BATADAL [32], and a 2-layer, 256-unit
LSTM trained on WADI [8].

We compare the detection outputs when using the point-F1 and the range-
F1 and show the number of detected attacks, false alarms, and ratio of true
positives to false positives (TP :FP ratio) in Table 3. Prior work hypothesized
that a TP :FP ratio of 1 or greater was acceptable and used the TP :FP ratio
as a success metric [8]. For all three optimal models from prior work, using the
range-F1 selects different detection hyperparameter values than using the point-
F1. For BATADAL and SWaT, using the point-F1 for detection hyperparameter
tuning results in an unacceptable model (TP :FP ratio < 1), whereas using the
range-F1 for detection hyperparameter tuning results in an acceptable model
(TP :FP ratio ≥ 1).

Using range-based metrics in tuning can achieve outcomes beyond an im-
proved TP :FP ratio. Table 3 shows the final detection results for our additional
metrics (defined in Sec. 5.2) after tuning the SWaT CNN from prior work [18].
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Fig. 5. The final range-F1 scores of each model when trained and tuned on 3 experi-
mental ICS datasets. For each dataset, a selected model hyperparameter setting from
prior work is included for comparison.

To detect more attacks, we tune with range-Fβ1:3. The resulting tuning de-
tects more attacks (7/18) than prior tunings, at the cost of more false alarms
(47). Conversely, to detect attacks with absolutely no false alarms, the range-
Fβ3:1 tuning can be used; fewer attacks (3/18) are detected but no false alarms
occur. Both tunings outperform their point-F1 or range-F1 counterparts on the
chosen objectives.

Lastly, we use NA-early to optimize for an ICS where only early detections
(within the first 25% of the attack) are useful. The original point-F1 tuning
produces 32 false alarms and detects six attacks, five of which are detected
early. With NA-early, the total number of false alarms (89) and attacks detected
(11/18) increase, but seven attacks are detected early, which outperforms the
general tuning selected by the point-F1.

Given the various ICS trade-offs and use cases, a universally optimal strategy
for hyperparameter tuning cannot exist, and we do not advocate for specific
metrics or hyperparameter values. Rather, we show that when tuning with range-
based metrics, it is possible to produce anomaly-detection systems that better
match defined ICS objectives.

Finding 2b: By using objective-driven range-based metrics to tune detection
hyperparameters, the resulting anomaly detection systems can better address
the defined objectives than their point-F1-tuned counterparts.

5.4 Using Range-based Metrics to Select Model Hyperparameters

In this section, we revisit model hyperparameter selection and show how range-
based metrics alter the findings from Sec. 4. Compared to the point-F1, using a
range-based metric for tuning and evaluation consistently leads to different con-
clusions about which models are optimal. Fig. 5 shows the final range-F1 scores
after repeating the experiments described in Sec. 4.2: we train each ML model
architecture under each model hyperparameter setting and tune the detection
hyperparameters with the range-F1.



Across model hyperparameters, CNNs/LSTMs on SWaT/WADI perform
similarly regardless of whether range-F1 or point-F1 is used in tuning: the differ-
ence in range-F1 (or point-F1) between model hyperparameter choices is small,
and the best performance can be achieved over a wide range of model hyper-
parameters. The results on BATADAL are different from those computed by
tuning with point-F1 ( Sec. 4.2): Despite far lower point-F1 scores, over 25%
of CNNs produce a range-F1 of 1, detecting all attacks without a single false
alarm! Range-F1-optimal LSTMs for BATADAL yield similar results: the best
models detect two out of four attacks with no false positives (perfect segment
precision, 50% segment recall) and exhibit a high range-F1, but point-F1 scores
below 0.2. In summary, previous experiments indicated that autoencoders were
best for BATADAL but no model performed particularly well; using the range-
F1 still reveals that autoencoders are on average, the best, but that all models
perform quite well. When the combination of ML model architecture and dataset
is held constant, the selected model hyperparameters always differ between the
range-based metric tuning (range-F1, range-Fβ or NA-early) and the point-F1
tuning, changing our understanding of what models are optimal.

Finding 2c: When using range-based metrics to optimize reconstruction-based
ICS anomaly detection, the selected ML model architectures and hyperparame-
ters are typically different from what would be selected when using point-F1; this
often changes the understanding of what model performs best by a substantial
margin.

In summary, we show that using range-based metrics to tune and evaluate
ICS anomaly-detection models (i) selects different outcomes compared to when
using the point-F1 and (ii) better addresses objectives relevant to ICS anomaly
detection. We evaluated these claims across three ICS datasets and note that
these datasets may not encompass the wide range of ICS behavior. Extending
our analysis to other datasets remains future work.

6 Conclusion

In this work, we explored the optimization of reconstruction-based ICS anomaly
detection. We performed a comprehensive comparison across anomaly-detection
solutions proposed in prior work, spanning three ICS datasets and three ML
model architectures. In doing so, we found that there is no globally optimal
technique and the best performance can be achieved over a range of ML model
architectures and hyperparameters. We used range-based metrics to optimize
ICS anomaly detection and found that they lead to different and potentially
more useful outcomes than the common approach of relying on the point-F1
score. Ultimately, we found that effective anomaly detection extends beyond
optimizing ML models for the point-F1, and better success measures are needed
to practically tune and evaluate ICS anomaly-detection models. We hope that
future work in reconstruction-based ICS anomaly detection considers its various
use cases when designing new ICS anomaly-detection techniques.
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A Key Findings in the Optimization Process

We identified four techniques that enhance the quality and reproducibility of
anomaly detection performance. Table 4 shows which previous works use these
techniques; no prior work incorporates all four.

Finding 1c: Techniques such as benign data shuffling, attack cleaning, feature
selection, and early stopping increase the quality and reproducability of results,
but are applied inconsistently in prior work.

Finding #1: Feature Selection. In WADI and SWaT, some benign-labeled test
data appears significantly different from benign-labeled training data [19,35].
To address this problem, statistical tests are used to select features for the
ML model. Prior work used a modified version of the Kolmogorov-Smirnov test
(called K-S*) [19] to identify features with a significant difference between their
training and test distributions. 11 features are removed from SWaT, and 10
features are removed from WADI, which matches the proportion of features re-
moved from these datasets in prior work [19]. We found that feature selection is
only effective on the SWaT dataset, so we only use feature selection for SWaT.

Finding #2: Attack Cleaning. Some attacks in the SWaT dataset do not execute
as described [15,17]: although labelled as attacks, the SWaT description [10]
notes that they did not actually perform as intended. These cases should not
be evaluated as attacks, yet the majority of prior work does. We recommend

Table 4. Identifying key pre-processing and model training techniques from prior ICS
anomaly-detection work. ‘ ’, ‘ ’, and ‘ ’ indicate if the technique was used, partially
used, or not used respectively. ‘?’ indicates that we could not determine if the technique
was used.

Source [1] [2] [7] [8] [9] [15] [17] [18] [19] [22] [23] [26] [27] [32] [37]

Feature Selection

Attack Cleaning

Benign Data Shuffling ? ? ? ? ? ? ?

Early Stopping
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Fig. 6. On left (a): the training and validation loss for a 4-layer, 64-unit CNN, across
random seeds. On right (b): the average overfit amount without early stopping, shown
for all CNN sizes, compared to the average overfit amount for all layers with early
stopping.

removing the benign “attacks” from the dataset. Furthermore, other prior work
has noted that the start and end times of attacks in SWaT are incorrect [37].
Hence, we recommend that the times of the labelled attacks be corrected.4

Finding #3: Benign Data Shuffling. When most prior work divides the benign
dataset into training and validation portions, it divides by a fixed time [8] or
does not describe how the division is performed. Since system behavior can differ
between days (e.g., if the final 30% of timesteps in SWaT are used for valida-
tion, the distributions of the training and validation datasets are significantly
different), splitting should be random across the benign dataset. For CNNs and
LSTMs, each timestep’s history should be collected before splitting.

Finding #4: Early Stopping. When early stopping is not used, models overfit
quickly and tend to diverge. We train a 4-layer, 64-unit CNN with a history
length of 50, repeated three times across random seeds; the model hyperparam-
eters, data ordering, and training parameters are all unchanged. Fig. 6a shows
the training and validation losses for 100 epochs. When early stopping is not
used, the models overfit (validation loss plateaus after the 6th epoch and begins
to increase afterward) and diverge after 10-20 epochs; this happens across all
model architectures, model hyperparameters, and datasets. Across CNN sizes,
Fig. 6b compares the final training and validation loss difference (overfit amount)
with and without early stopping, averaged across three random seeds. With early
stopping, the overfit amount is small for all model sizes. Without early stopping,
larger models overfit more.
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