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Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/
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Malware detection is fundamental for cybersecurity

Anti-virus software routinely needs to examine programs for potential threats

Machine learning (ML) models show promise / are in use for detection

But, malware classification models may be susceptible to evasion

Creating useful defenses requires knowledge of how ML models can be attacked

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/cloud-protection-microsoft-defender-antivirus?view=o365-worldwide
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.mcafee.com/enterprise/en-us/solutions/machine-learning.html
https://www.deepinstinct.com/
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Deep Neural Networks (DNNs) for Static Malware Detection

Program binary represented as variable length sequence of integers/bytes
• A single byte’s meaning depends on the values of bytes around it
• Byte values are treated as categorical

• Absolute difference between byte values has no meaning

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.
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Attacking ML Algorithms – Adversarial Examples

Adversarial Example
(image from Goodfellow 2015)

Attacks use classifier’s trained weights to craft imperceptible adversarial noise (or 
perturbations) to cause misclassification

• Fast Gradient Sign Method (FGSM)
• Projected Gradient Descent (PGD)

+  0.007x                                      =

“Panda” “Gibbon”

I. J. Goodfellow, J. Shlens, and C. Szegedy. 2014. “Explaining and Harnessing Adversarial Examples.” arXiv [stat.ML]. arXiv. 
http://arxiv.org/abs/1412.6572.
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Attacking DNNs for Static Malware Detection

Must ensure all byte changes preserve binary functionality
Assume whitebox access to target model (can view trained weights)
• Our paper also examines a blackbox threat model

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.
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Creating Adversarial Examples from Binaries

To modify binaries without changing 
functionality, use functionality 
preserving transformations:

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using 
In-Place Code Randomization.” 2012. In Proc. IEEE S&P.
H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In 
Proc. AsiaCCS.
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Creating Adversarial Examples from Binaries

mov edx, [ebp+4]
sub edx, -0x10
mov ebx, [ebp+8]
mov [ebx], edx

(8b5504)
(83eaf0)
(8b5d08)
(8913)

mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, -0x10
mov [ebx], edx

(8b5d08)
(8b5504)
(83eaf0)
(8913)

Reorder (1/4 IPR)

To modify binaries without changing 
functionality, use functionality 
preserving transformations:

• In-Place Replacement (IPR)

• Four types: preserv, swap, reorder, 

equiv

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using 
In-Place Code Randomization.” 2012. In Proc. IEEE S&P.
H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In 
Proc. AsiaCCS.
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Creating Adversarial Examples from Binaries

mov edx, [ebp+4]
sub edx, -0x10
mov ebx, [ebp+8]
mov [ebx], edx

(8b5504)
(83eaf0)
(8b5d08)
(8913)

mov ebx, [ebp+8]
mov edx, [ebp+4]
sub edx, -0x10
mov [ebx], edx

(8b5d08)
(8b5504)
(83eaf0)
(8913)

Reorder (1/4 IPR) Displacement

To modify binaries without changing 
functionality, use functionality 
preserving transformations:

• In-Place-Replacement (IPR)

• Four types: preserv, swap, reorder, 

equiv

• Displacement (Disp)

V. Pappas, M. Polychronakis, and A. D. Keromytis. 2012. “Smashing the Gadgets: Hindering Return-Oriented Programming Using 
In-Place Code Randomization.” 2012. In Proc. IEEE S&P.
H. Koo and M. Polychronakis. 2016. “Juggling the gadgets: Binary-level code randomization using instruction displacement.” In 
Proc. AsiaCCS.

...
0x4587:
0x458b:
0x458f:
...

...
add ax, 0x10
sub bx, 0x10
cmp ax, bx
...

...
(6683c010)
(6683eb10)
(6639d8)
...

...
0x4587:
0x458c:
0x458f:
...

...
0x4800:
0x4804:
0x4808:
0x4805:
0x4806:
0x4807:
0x480a:
0x480b:
0x480d:
...

...
jmp 0x4800
mov cx, cx
cmp ax, bx
...

...
add ax, 0x10
sub bx, 0x10
nop
pushfd
push ebx
add ebx, 0x1a
pop ebx
popfd
jmp 0x458c
...

...
(e974020000)
(6689c9)
(6639d8)
...

...
(6683c010)
(6683eb10)
(90)
(9c)
(53)
(83c31a)
(5b)
(9d)
(e97afdffff)
...
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Attack Algorithm

1. Random initialization



14

Attack Algorithm

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations



15

Attack Algorithm

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations
b. Generate byte changes using chosen transformation 

and check gradient in embedding
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Guided Transformations

1. Random initialization

2. For every function:

a. Randomly choose from valid transformations
b. Generate byte changes using chosen transformation
c. If byte changes align with loss gradient – accept and 

move on to next part of function. If not, discard and 
go back to step b

d. Execute until all instructions in function have been 
reached
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Attack Algorithm

1. Random initialization

2. For every function:

a. -- d. …

3. Repeat step 2 until success or 200 iterations
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Experiment Setup – Dataset

• 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020, 
collected from VirusTotal feed (VTFeed), either 0 or >40 AV detections
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Experiment Setup – Dataset

• 32-bit portable executable (PE) files, smaller than 5 MB, first seen in 2020, 
collected from VirusTotal feed (VTFeed), either 0 or >40 AV detections

• Labeled as benign (resp. malicious) if classified malicious by 0 (resp. >40) antivirus 
vendors aggregated by VirusTotal

• 139K benign and 139K malicious, shuffled, and randomly partitioned into 
Train (80%), Validation (10%), and Test (10%) sets
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Experiment Setup – DNNs

State-of-the-art architectures we trained:

• MalConv – proposed by Raff et al.

• Avast – proposed by Krčál et al.

Endgame – pre-trained DNN (Anderson et al.)
• Based on MalConv architecture
• Trained on 600K binaries, evenly distributed between benign and malicious
• 92% detection rate when restricted to a false positive rate of 0.1%

Architecture diagram of MalConv model (from Raff et al.)

H. S. Anderson and P. Roth. 2018. Ember: An Open Dataset for Training Static PE Malware Machine Learning Models .arXiv
preprint arXiv:1804.04637(2018).
M. Krcál et al. “Deep Convolutional Malware Classifiers Can Learn from Raw Executables and Labels Only.” ICLR (2018).
E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. Nicholas. 2017. “Malware Detection by Eating a Whole EXE.” arXiv
[stat.ML]. arXiv. http://arxiv.org/abs/1710.09435.
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Results – DNNs and Malware Samples

Malware samples used to construct adversarial examples

• 100 sampled from VirusTotal (aggregates binaries and anti-virus vendor detections)

• Unpacked
• Size below models’ smallest input (512KB)
• At least 40 anti-virus detections for malware
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Experiment methods

• 10 repetitions of each experiment

• Deemed successful if an attack can reduce maliciousness score to 
below 0.1% FPR threshold (0.5 for Endgame)

Experiment Setup – Measuring Success
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Experiment methods

• 10 repetitions of each experiment

• Deemed successful if an attack can reduce maliciousness score to 
below 0.1% FPR threshold (0.5 for Endgame)

Two measures of success

• Coverage – fraction of binaries an attack was successful in at least
one of the trials

• Potency – fraction of trials that succeeded, over all binaries

Experiment Setup – Measuring Success

T
ria

ls

Binaries

Coverage = 3/5 = 60%
Potency = 8/25 = 32%
Coverage ≥ Potency

- Success

- Failure
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Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars
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Results – Overall

Attack success rates in the white-box setting
• Potency shown as lighter bars and coverage as darker bars

Random < IPR < Disp < IPR+Disp
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Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target 
models and attacked binaries



44

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target 
models and attacked binaries



45

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target 
models and attacked binaries



46

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target 
models and attacked binaries



47

Results – Contrasting Attack Types

Attack success rates at each iteration in the white-box setting averaged over all target 
models and attacked binaries



48

Results – Effects on Anti-Viruses
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Results – Effects on Anti-Viruses

VirusTotal. https://www.virustotal.com/.  Online

Unmodified malicious binaries were detected by a median 
of 55/68 AVs

Randomly transformed malicious binaries were detected by 
a median of 42/68 AVs

Adversarially transformed malicious binaries were detected 
by a median of 33-36/68 AVs
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Potential Defenses

• Binary normalization – effective against IPR, ineffective against Displacement

• Masking random instructions – effective when masking over 25% of instructions

• Adversarial training – currently not computationally feasible
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Summary

• Described a process for modifying executable bytes of a binary to produce 
adversarial examples

• Best attack succeeded in evading detection from all malware classification DNNs 
on nearly every binary

• Functionally preserving transformation code available on Github

• Does not contain attack algorithm
• https://github.com/pwwl/enhanced-binary-diversification

• Thank you for your time!
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